Самоподдерживающаяся экзотермическая реакция антистоксовых гамма-переходов долгоживущих изомерных ядер. Ч. 2

Л.А.Ривлин

Рассмотрены условия осуществления цепной реакции горения в системе «долгоживущие метастабильные изомеры – квазиравновесное высокотемпературное излучение плазмы». Проведены оценки энергии поджига реакции, длительности импульса горения, размеров зоны реакции и др.

Ключевые слова: самоподдерживающаяся экзотермическая реакция, метастабильные изомеры, цепная реакция.

Введение

Освобождение ядерной энергии, запасенной в метастабильных состояниях долгоживущих изомерных ядер, – одна из актуальных задач современной квантовой нуклеоники [1].

Прямой путь решения этой задачи мог бы состоять в осуществлении резонансной цепной реакции радиационных антистоксовых переходов коллектива ядер, в которой энергия метастабильного состояния m выделяется в результате резонансного возбуждения вышележащего быстрорелаксирующего триггерного уровня t в обход правил запрета, наложенных на прямой переход из метастабильного состояния вниз. Такие триггерные переходы изучены экспериментально в [2, 3].

Для осуществления резонансной реакции необходимо наличие в ядрах двух пар эквидистантных уровней (рис.1,*a*), т. е. необходимо, чтобы энергия триггерного перехода $E_{\rm tm}$ с метастабильного уровня m на вышележащий триггерный уровень t была равна энергии $E_{\rm pq}$ одного из излучательных переходов каскада ($E_{\rm tm} = E_{\rm pq}$). Тогда при выполнении соответствующих пороговых условий открывается возможность протекания цепной ядерной реакции, которая после начального поджига поддерживается бесконечной последовательностью резонансных переходов поглощения и испускания m \rightarrow t, p \rightarrow q, m \rightarrow t,... и в которой выделение энергии происходит за счет остальных переходов каскада.

К сожалению, нам неизвестны изомерные ядра, содержащие две пары эквидистантных уровней и пригодные для реализации описанной резонансной схемы. Возможно также использование рабочего тела, содержащего смесь двух различных ядер с эквидистантными уровнями (рис.1, δ). Реакция начинается с поджига антистоксова перехода метастабильного ядра M, в котором один из излучательных переходов t — s каскада резонирует с переходом вверх q — р из основного состояния вспомогательного ядра A, а один из излучательных переходов p — q ядра A в свою очередь резонирует с триггерным перехо-

Московский государственный институт радиотехники, электроники и автоматики (технический университет), Россия, 117454 Москва, просп. Вернадского, 78; эл. почта: rla@superlum.msk.ru

Поступила в редакцию 3 апреля 2000 г.

дом $m \to t$ метастабильного ядра М. Однако нам не удалось пока отыскать и такую пару ядер.

В связи с этим более перспективным представляется нерезонансный вариант самоподдерживающейся экзотермической реакции [1], в которой триггерный переход вверх происходит под действием широкополосного жесткого излучения, заполняющего зону реакции и приближающегося по спектральному составу к излучению черного тела. Нужная для протекания реакции температура поддерживается за счет поглощения в зоне реакции энергии, выделяемой в каскаде ядерных переходов, в том числе в виде гамма-квантов.

Таким образом, энергетический цикл реакции представляет собой следующую замкнутую цепь: триггерное инициирование антистоксова ядерного перехода – выделение энергии метастабильными изомерными состояниями – поглощение энергии в зоне реакции и нагрев последней – широкополосное излучение горячей зоны реакции – инициирование антистоксова триггерного перехода ядер.

Ниже приводятся качественные оценки параметров экзотермической реакции без детального рассмотрения механизмов всех явлений в зоне реакции.

1. Зона реакции

Зона реакции представляет собой плазменное образование с концентрацией частиц *n* и протяженностью, обеспечивающими эффективное поглощение выделяемой в реакции энергии, в частности гамма-квантов. Механизмы поглощения энергии гамма-квантов плазмой достаточно сложны, но феноменологически вероятность этого процесса можно оценить величиной

$$\eta = \sigma_a n_0 L \leqslant 1,\tag{1}$$

где $\sigma_a = \sigma_a(n,T,t)$ – эффективное сечение поглощения гамма-квантов в зоне реакции с характерным размером *L*, учитывающее все виды этих процессов (взаимодействие с электронными оболочками ионов и атомов, со свободными электронами плазмы и др.), протекающих во времени в плазме с концентрацией ядер n_0 и температурой *T*. Знание η необходимо для определения нормировочной константы n^* (см. формулу (13) в [1]):

Рис.1.

$$n^* = \frac{2\sigma}{\pi\eta} \frac{S}{V} \left(\frac{\hbar\omega_0}{k}\right)^4 \frac{\tau_0}{\hbar\omega_{\rm mg}},\tag{2}$$

где σ – постоянная Стефана; k – постоянная Больцмана; τ_0 – характерное время перехода; $\hbar\omega_{mg}$ - энергия метастабильного состояния; $\hbar\omega_0$ – энергия триггерного перехода; V и S объем и площадь поверхности зоны реакции соответственно. Можно принять, что до начала реакции горения плазма состоит целиком из метастабильных изомерных ядер, т. е. $n = n_0$.

Нормированная температура плазмы $\theta = kT/\hbar\omega_0$ зависит от n/n^* . Эта S-образная зависимость показана на рис.2. Критическая точка, за которой наступает цепная реакция, имеет на этой кривой координаты $n/n^* = 0.21$ и $\theta = 0.25$.

Иными словами, цепная реакция способна стартовать, лишь если

$$\frac{n}{n^*} \equiv a > 0.21,\tag{3}$$

т.е.если

$$n_0 = an^* = an_1^* \frac{S}{V\eta},\tag{4}$$

где $n_1^* = n^*$ при $\eta = 1$ и V/S = 1 см. С учетом (1) получаем

$$n_0 L_0 = \left(\frac{a n_1^*}{\sigma_a}\right)^{1/2},\tag{5}$$

где

$$L_0 = \left(\frac{VL}{S}\right)^{1/2} \tag{6}$$

- характерный линейный размер плазменного образования. Так, для плазменной сферы радиусом R имеем $L_0 = R/\sqrt{3}$. Для $n_1^* = 0.8 \cdot 10^{19}$ см⁻³ (см. [1]) при a = 0.4 > 0.21 и $\sigma_a = 10^{-21}$ см² получаем $n_0L_0 = 0.58 \cdot 10^{20}$ см⁻².

Исследуемая триггерная ядерная реакция характеризуется сложной динамикой возникающего плазменного образования. Его относительно кратковременная устойчивость может обеспечиваться как инерционностью самой плазмы, так и внешним магнитным удержанием. Проблема устойчивости выходит за рамки настоящего рассмотрения, и далее предполагается, что время существования плазменного образования достаточно велико для полноценного протекания реакции.

2. Энергия поджига

Стартовым условием реакции служит повышение температуры в зоне реакции от T_1 до T_2 , при котором происходит переход изображающей точки (см. рис.2) со стабильной нижней ветви S-образной кривой (точка 1) на неустойчивую ветвь, определяющую порог реакции (точка 2). Этому переходу соответствуют разность температур

$$\Delta T = T_2 - T_1 = \frac{\hbar\omega_0}{k} (\theta_2 - \theta_1),$$
(7)

где

$$\theta_2 - \theta_1 < 0.25,\tag{8}$$

и энергетический вклад

$$\Delta W = \chi \Delta T n_0 V = \frac{\hbar \omega_0}{k} \chi (\theta_2 - \theta_1) n_0 V < \frac{\hbar \omega_0}{4k} \chi n_0 V, \qquad (9)$$

где $\chi = \chi(n_0, T, t)$ – некоторая эффективная теплоемкость зоны реакции, отнесенная к единичной частице плазмы и сложным образом зависящая от концентрации *n*, температуры *T*, времени *t* и других факторов. При дальнейших грубых оценках эти зависимости остаются нераскрытыми и принимается, что $\chi = \text{const.}$ Численный пример: $\Delta W < 4 \text{ кДж/см}^3$ при $\hbar\omega_0 = 1 \text{ кэB}$, $n_0 = 10^{19} \text{ см}^{-3}$ и $\chi = 10k$.

Из соотношения (2) вытекает, что энергия поджигающего триггерного фотона $\hbar\omega_0$ зависит от многих параметров и не может определяться только выбором изомера с произвольной структурой уровней. Как уже отмечалось, условием возможности протекания цепной реакции служит неравенство (3), из которого (с учетом (1) и (6)) следует, что

$$\hbar\omega_0 < k \left[\frac{\pi\sigma_a}{2a\sigma} (n_0 L_0)^2 \frac{\hbar\omega_{\rm mg}}{\tau_0} \right]^{1/4}.$$
(10)

Таким образом, энергия триггерного фотона пропорциональна $n_0^{1/2}$. Если оставить вне рассмотрения известные из экспериментов по инерциальному термоядерному синтезу возможности сжатия плазмы, то за наибольшее n_0 можно принять твердотельную концентрацию, возникающую на начальном этапе образования плазмы из конденсированной мишени. Тогда $\hbar\omega_0 < 3$ кэВ, если принять, что $n_0 = 3 \cdot 10^{22}$ см⁻³, $L_0 = 1$ см, $\sigma_a = 10^{-21}$ см², $\hbar\omega_{\rm mg} = 500$ кэВ и $\tau_0 = 100$ нс.

3. Оценка длительности импульсной реакции горения

Импульсная реакция горения протекает во времени в соответствии с уравнением энергетического баланса [1]

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\sigma(T^4 - T_0^4)S + w_{\mathrm{mtg}}\hbar\omega_{\mathrm{mg}}nV\eta, \qquad (11)$$

которое следует дополнить уравнением для концентрации *n* метастабильного изомера в зоне реакции, истощающейся в процессе горения,

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -nw_{\mathrm{mtg}} = -\frac{\pi n}{2\tau_0} \left(\exp\frac{\hbar\omega_0}{kT} - 1 \right)^{-1},\tag{12}$$

а также зависимостью температуры T от аккумулированной в зоне реакции энергии Q:

$$T = Q/\chi n_0 V, \tag{13}$$

где T_0 – температура наружной оболочки, окружающей зону реакции; w_{mtg} – вероятность антистоксова перехода $m \rightarrow t \rightarrow g[1]$.

В безразмерных переменных

$$\theta = \frac{kT}{\hbar\omega_0}, \quad \theta_0 = \frac{kT_0}{\hbar\omega_0}, \quad \varkappa = \frac{t}{t_0}$$
(14)

эти уравнения имеют вид

$$\frac{\mathrm{d}\theta}{\mathrm{d}\varkappa} = b\frac{n^*}{n_0} \left[-\left(\theta^4 - \theta_0^4\right) + \frac{n/n^*}{\exp(1/\theta) - 1} \right],\tag{15}$$

$$\frac{\mathrm{d}n}{\mathrm{d}\varkappa} = -\frac{\pi}{2}n \big[\exp(1/\theta) - 1\big]^{-1},\tag{16}$$

где

$$b = \frac{\pi k}{2} \frac{\hbar \omega_{\rm mg}}{\hbar \omega_0} \eta. \tag{17}$$

Исключение времени \varkappa из системы уравнений (15), (16) дает уравнение траектории точки, отображающей импульс горения на диаграмме $\theta(n/n^*)$ (см. рис.2):

$$\frac{\mathrm{d}\theta}{\mathrm{d}n} = \frac{2b}{\pi n_0} \left\{ \frac{n^*}{n} \left(\theta^4 - \theta_0^4 \right) \left[\exp(1/\theta) - 1 \right] - 1 \right\}.$$
(18)

Грубую оценку длительности импульса горения можно получить, положив $\chi = \text{const}$ и приняв, что время относительной стабильности плазменного образования не уступает продолжительности реакции горения. Общий характер траектории точки, отображающей импульс горения, очевиден (пунктир на рис.2): она стартует в начальной точке 2 на средней неустойчивой ветви S-образной кривой $\theta(n/n^*)$ и поднимается вверх, отклоняясь от вертикали, чему соответствует увеличение температуры θ и уменьшение концентрации *n* выгорающих метастабильных ядер; это – этап нагрева.

Траектория достигает максимума температуры в точке 3, лежащей на верхней устойчивой ветви S-образной кривой, где производные $d\theta/d\varkappa = dn/d\varkappa = 0$. Затем наступает этап охлаждения, когда траектория попадает в область, где $d\theta/d\varkappa < 0$.

Численная оценка суммарной длительности обоих этапов дает продолжительность импульса горения порядка нескольких характерных времен перехода τ_0 .

Другой способ оценки продолжительности импульса горения состоит в вычислении времени полного выгорания изомерных ядер Δt , в течение которого вероятность того, что в каждом метастабильном ядре произойдет антистоксов триггерный гамма-переход, окажется равной единице:

$$w_{\rm mtg}\Delta t = 1,\tag{19}$$

где

$$w_{\rm mtg} = \frac{\pi}{2\tau_0} \left(\exp \frac{\hbar\omega_0}{kT} - 1 \right)^{-1} \tag{20}$$

– вероятность триггерного перехода в единицу времени в поле равновесного излучения с температурой T (см. формулу (9) из [1]). Из (19), (20) следует зависимость нормированной температуры плазмы θ от $\Delta t/\tau_0$ (рис.3):

Видно, что время полного выгорания Δt составляет несколько характерных времен перехода τ_0 при температуре плазмы, не превышающей энергию триггерного фотона ($\theta < 1$). Попытка дальнейшего уменьшения времени полного выгорания бесперспективна, т. к. требует неоправданно значительного повышения температуры плазмы θ .

Очевидно, что длительность относительной устойчивости плазменного образования не должна уступать оцененной продолжительности импульса горения. Это налагает ограничения на выбор изомера, для которого τ_0 определяется возможностями удержания плазмы.

Следует отметить, что здесь оставлены вне рассмотрения иные (нерадиационные) каналы возбуждения ядер в плотной горячей плазме (например, электронным ударом, обратной электронной конверсией и др.), которые могут заметно повысить вероятность триггерных переходов.

Отметим, что модель с равновесным излучением чер-

ного тела дает достаточно грубое приближение, поскольку спектральный состав излучения плазмы может быть далек от равновесного, в частности может содержать характеристические рентгеновские линии ионов плазмы с интенсивностями, существенно превыщающими непрерывный фон. Если эти линии излучения ионов, которые могут быть намеренно введены в состав плазмы, окажутся совпадающими с изомерным триггерным переходом [4], то эффективность антистоксова процесса может быть существенно повышена.

Заключение

Подводя итоги, отметим, что задача контролируемого освобождения ядерной энергии, запасенной в долгоживущих метастабильных изомерных состояниях, методологически близка к проблемам инерциального термоядерного синтеза и создания гамма-лазера. В то же время встречающиеся при решении этой задачи собственные, присущие только ей трудности отчасти искупаются отсутствием двух главных затруднений упомянутых смежных проблем: изомерная цепная реакция не требует ни глубокого охлаждения ядерной среды, необходимого для создания гамма-лазера [5], ни сверхсжатия мишени, нужного для инерциального термоядерного синтеза.

Можно указать на три главные узловые задачи, подлежащие дальнейшему рассмотрению: выбор оптимального изомера, исследование динамики плазменной зоны реакции и разработка системы ее относительной стабилизации, а также разработка эффективного способа поджига реакции. С умеренной долей оптимизма можно надеяться на их успешное решение.

Настоящая работа выполнена при частичной поддержке INTAS (грант № 97-31566).

- 1. Ривлин Л.А. Квантовая электроника, 30, 551 (2000).
- 2. Collins C.B. et al. *Phys. Rev.C*, **37**, 2267 (1988).
- 3. Collins C.B. et al. Phys. Rev. Letts, 82, 695 (1999).
- 4. Летохов В.С. Квантовая электроника, 4, 125 (1973).
- 5. Ривлин Л.А. Квантовая электроника, 27, 189 (1999).

L.A.Rivlin. Self-sustaining exothermic reaction of anti-Stokes gamma transitions in long-lived isomeric nuclei. 2.

The conditions for the combustion chain reaction in a system of long-lived metastable isomers and a quasi-equilibrium high-temperature plasma radiation are considered. Estimates are presented for the ignition energy, the combustion pulse duration, the reaction zone dimensions etc.