Теория генерации субдесятифемтосекундных импульсов излучения в непрерывном твердотельном лазере с полупроводниковым пассивным затвором и самофокусировкой в условиях когерентного взаимодействия

В.Л.Калашников, Д.О.Кример, И.Г.Полойко

На основе теории самосогласованного поля показано, что в отсутствие синхронизации мод за счет самофокусировки излучения в твердотельном лазере с когерентным полупроводниковым затвором возможна генерация солитоноподобных УКИ и субдесятифемтосекундной длительности. Синхронизация мод в результате самофокусировки приводит к формированию импульса sech-формы предельно короткой длительности; при этом снимается ограничение на минимальную глубину модуляции пассивного полупроводникового затвора, обеспечивающего самостарт генерации УКИ.

Ключевые слова: когерентное взаимодействие, субдесятифемтосекундные импульсы.

Введение

Стремительный прогресс в развитии методов генерации УКИ за последнее десятилетие привел к получению импульсов субдесятифемтосекундной длительности [1], что близко к теоретическому пределу, определяемому периодом колебания волны в видимом диапазоне. Технология получения таких импульсов основывается на использовании самофокусировки поля генерации в активной среде, что приводит к безынерционному «просветлению» дифракционных потерь [2], в сочетании с инерционным насыщением межзонных и экситонных переходов в полупроводниковом затворе [3] и «солитонным» механизмом синхронизации мод [4].

Полупроводниковые затворы являются необходимыми элементами современных фемтосекундных лазеров, обеспечивающими стабильность генерации и возможность самостарта синхронизации мод. В связи с этим следует принимать во внимание физику взаимодействия УКИ с полупроводниковыми структурами, что способно существенно изменить характеристики режима синхронизации мод [5–7]. Поскольку УКИ имеют длительность, меньшую характерных времен когерентности полупроводникового затвора, составляющих десятки фемтосекунд, среди важных факторов, влияющих на синхронизацию мод, особое место занимает когерентность взаимодействия импульса с полупроводниковой структурой.

Проблеме синхронизации мод в лазерах с когерентным поглотителем был посвящен ряд работ [8–11]. В частности, на основе теории самосогласованного поля было показано решающее значение динамического насы-

Поступила в редакцию 18 января 2000 г.

щения усиления на генерацию и стабилизацию солитоноподобных 2π -импульсов [8–10]. Однако динамическое насыщение усиления в пределах импульса генерации становится пренебрежимо малым при переходе в фемтосекундную область, где доминирующими нелинейными факторами становятся самофокусировка, фазовая самомодуляция и дисперсия групповой скорости.

Численный анализ динамики генерации УКИ в непрерывном твердотельном фемтосекундном лазере в отсутствие самофокусировки [11] показал возможность формирования самоиндуцированной прозрачности в полупроводниковом затворе, что определяющим образом влияет на лазерную динамику. Тем не менее, как показано в [12], пренебрежение вкладом самофокусировки в формирование УКИ не отвечает условиям, характерным для большинства непрерывных твердотельных лазерных систем.

В настоящей работе на основе теории самосогласованного поля исследуются характеристики стационарных УКИ в условиях когерентного взаимодействия с полупроводниковым затвором (ППЗ) в непрерывном твердотельном лазере, в том числе при наличии фазовой самомодуляции (ФСМ) и самофокусировки в активной среде. Исследуются устойчивость и возможность самостарта генерации солитоноподобного 2π-импульса в условиях формирования самоиндуцированной прозрачности в ППЗ.

1. Модель

В качестве исходной модели лазерной генерации нами была выбрана распределенная модель (см., напр., [5]), учитывающая усиление медленно меняющегося поля генерации *a* в квазидвухуровневой активной среде с насыщаемым полной энергией УКИ коэффициентом усиления α , линейные потери γ , дисперсию групповой скорости *d*, действие спектрального фильтра с обратной спектральной шириной t_f , ФСМ и «мгновенное» насыщение потерь за счет самофокусировки с коэффициентами β и σ

Международный лазерный центр при Белорусской государственной политехнической академии, Белоруссия, 220027 Минск, просп. Ф.Скорины, 65, корп.17; тел./факс: + 375 (0172) 32 62 86; эл. почта: vkal@ilc.unibel.by

соответственно, а также когерентное взаимодействие УКИ с ППЗ. Для поиска решения системы лазерных уравнений в аналитическом виде мы предполагали использовать двухуровневую энергетическую схему ППЗ, что достаточно хорошо соответствует реальным затворам на основе неполноразмерных полупроводниковых структур.

При длительности частотно-ограниченного УКИ, много меньшей времени поперечной релаксации в ППЗ $t_{\rm coh}$, и в отсутствие отстройки несущей частоты импульса от резонансной взаимодействие с затвором может быть описано на основе хорошо известной системы уравнений Блоха [13]:

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = qa(t)w(t),$$

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = 0,$$
(1)
$$\frac{\mathrm{d}w(t)}{\mathrm{d}t} = -qa(t)u(t),$$

где u, v и w – медленно меняющиеся огибающие квадратурных составляющих поляризации и разность населенностей соответственно; $q = \mu/\hbar$; $\mu = e \cdot 0.28$ Кл·нм – дипольный момент, который отвечает плотности энергии насыщения ППЗ на основе GaAs/AlGaAs-структуры $E_a = 50$ мкДж/см² и $t_{\rm coh} = 50$ фс; e – элементарный заряд. В таком затворе для малого некогерентного сигнала начальные потери $\gamma_a = 0.01$ при толщине полупроводникового слоя $z_a = 10$ нм и плотности носителей $N = 2 \cdot 10^{18}$ см⁻³.

С учетом взаимодействия с ППЗ лазерное уравнение примет вид

$$\frac{\partial a(z,t)}{\partial z} = \left[\alpha - \gamma + i\phi + \delta \frac{\partial}{\partial t} + (t_f^2 + id) \frac{\partial^2}{\partial t^2} + (\sigma - i\beta) |a(z,t)|^2 \right] a(z,t) - \frac{2\pi N z_a d\omega}{c} \sin[\psi(z,t)], \quad (2)$$

где ω – частота поля генерации; *с* – скорость света; *t* – локальное время; *z* – продольная координата, нормированная на длину резонатора, т. е. номер прохода по резонатору; $\psi(z, t) = q \int_0^t a(z, t') dt'$ – «площадь» импульса; δ и ϕ – временное и фазовое запаздывание импульса на периоде резонатора соответственно.

В дальнейшем будем рассматривать УКИ в условиях стационарного распространения, т. е. в отсутствие зависимости от *z*. Введем нормировки полей на *q*, а времён – на *t*_f. Тогда параметры β и σ должны быть нормированы на величину $2(qt_f)^2/nc\varepsilon_0 = 5 \cdot 10^{-12} \text{ см}^2/\text{Вт}$, где ε_0 – диэлектрическая постоянная; *t*_f = 2.5 фс для сапфир-титанового лазера. Для ППЗ с представленными выше характеристиками безразмерный параметр $\sigma = 0.14$ соответствует мощности насыщения эффективного затвора из-за самофокусировки 10^7 Вт при сечении моды генерации в активной среде 30 мкм, а безразмерный параметр $\beta = 0.26$ соответствует кристаллу сапфира с титаном толщиной 1 мм. Далее мы будем использовать безразмерные параметры *d*, β и σ и лишь на рисунках для наглядности приводить размерную длительность УКИ.

Кроме того, имеет смысл ввести практически важный параметр λ , который представляет собой либо отношение сечений моды генерации в активной среде и в ППЗ,

либо коэффициент отражения (по амплитуде) многослойного зеркала, под которым расположен ППЗ. Варьированию λ в реальном эксперименте отвечает изменение вклада ФСМ и насыщения эффективного затвора на основе самофокусировки во взаимодействие поля генерации с ППЗ. Переходя от нелинейного интегродифференциального уравнения относительно амплитуды поля к дифференциальному уравнению относительно площади УКИ, имеем

$$\begin{bmatrix} (\alpha - \gamma) \frac{d}{dt} + \delta \frac{d^2}{dt^2} + (1 + id) \frac{d^3}{dt^3} \\ + \frac{\sigma - i\beta}{\lambda^2} \left(\frac{d\psi(t)}{dt} \right)^2 \frac{d}{dt} \end{bmatrix} \psi(t) - \frac{\gamma_a}{t_{\rm coh}} \sin[\psi(\tau)] = 0.$$
(3)

2. Когерентный лазерный УКИ в отсутствие дисперсии групповой скорости и ФСМ

Для упрощения положим, что в системе отсутствует Φ CM, что справедливо при больших сечениях моды генерации в активной среде, а также что дисперсия групповой скорости равна нулю. В отсутствие лазерных факторов решением уравнения (3) является 2π -импульс вида $a(t) = a_0 \operatorname{sech}(t/t_p)$ (далее sech-импульс) [13] (где a_0 – амплитуда УКИ; t_p – его длительность), который, как нетрудно убедиться путем прямой подстановки, не представляет собой точного решения уравнения (3) в отсутствие самофокусировки ($\sigma = 0$).

Для исследования характера импульсных решений уравнения (3) сделаем замену: $\psi(t) = x, d\psi(t)/dt = y(x)$. Тогда в уравнении (3) может быть понижен порядок:

$$\left[\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)y + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 \delta \frac{\mathrm{d}y}{\mathrm{d}x} + (\alpha - \gamma)\right]y - \frac{\gamma_a}{t_{\mathrm{coh}}}\sin x = 0.$$
(4)

Среди численных решений уравнения (4) существуют 2π -импульсные решения, которые, однако, не имеют sech-формы (см. рис.1, где представлено одно из таких решений и для сравнения равное ему по амплитуде sech-решение уравнения (3) в отсутствие лазерных факторов, т. е. в отсутствие усиления, линейных потерь и частотно-го фильтрования).

Представляет интерес аналитическое исследование характеристик полученного солитоноподобного реше-

Рис.1. Огибающая УКИ в координатах поле – площадь импульса как результат численного решения уравнения (4) (сплошная кривая) и sech-профиль солитоноподобного УКИ (штриховая кривая) при $\gamma = 0.04, \gamma_a = 0.01, \delta = 0.042.$

Рис.2. Зависимости размерной длительности УКИ от безразмерной интенсивности накачки – два физических приближенных решения уравнения (4) (сплошные кривые) и результат коррекции на основе закона сохранения энергии (штриховые кривые) при $\alpha_{max} = 0.1, T_r = 3$ мкс, $T_{cav} = 10$ нс, $\tau = 6.25 \cdot 10^{-4}, \gamma = 0.01, \lambda = 1$, а также длительность УКИ sech-формы в условиях самофокусировки и когерентного взаимодействия с ППЗ при $\lambda = 0.5$ (штрих-пунктир).

ния. Для этого будем искать приближенные решения уравнения (4) на основе гармонической аппроксимации вида $y(x) = a_1 \sin(x/2) + a_2 \sin x + ...$. Ограничимся первым членом, что соответствует УКИ sech-формы. В отсутствие усиления, линейных потерь и частотного фильтрования sech-решению уравнения (3) соответствует решение $a_1 = 2(\gamma_a/t_{\rm coh}\delta)^{1/2}$. Присутствие же данных факторов, сохраняя связь между амплитудой импульса и его длительностью, делает их зависимыми от лазерных параметров (усиления, линейных потерь и, с учетом нормировки, от обратной ширины полосы частотного фильтра): $a_1 = 2[2(\alpha - \gamma)]^{1/2}, \delta = \gamma_a/[2(\alpha - \gamma)t_{\rm coh}]$. Обратная замена переменных позволяет определить безразмерную длительность УКИ: $t_p = 2/a_1$.

Фигурирующий в уравнениях (1)–(4) параметр α является коэффициентом усиления. Мы полагали, что снижение инверсной населенности в активной среде происходит под действием полной энергии УКИ. Коэффициент усиления α удобно выразить через безразмерную интенсивность накачки $P = \sigma_{14}T_{cav}I_p/hv$, где I_p – размерная интенсивность накачки; v–частота поля накачки; T_{cav} – период резонатора; σ_{14} – сечение поглощения на частоте накачки. Тогда для стационарной генерации УКИ в квазидвухуровневой активной среде справедливо соотношение

$$\alpha = \frac{P\alpha_{\max}}{P + \tau E + 1/T_{\mathrm{r}}},$$

где α_{\max} -усиление при полной инверсии; T_r -время релаксации, отнесенное к периоду резонатора; E-полная энергия УКИ; τ -безразмерная обратная энергия насыщения усиления. При выбранных нами параметрах и нормировках для сапфира с титаном $\tau = 6.25 \cdot 10^{-4}$.

На рис.2 представлена длительность УКИ для двух физических решений, получаемых с учетом насыщения усиления в зависимости от безразмерной интенсивности накачки (сплошные кривые). Видно, что с ростом интенсивности накачки длительность импульса генерации становится меньше 10 фс, что достаточно типично для систем с пассивным затвором (см., напр., [14]).

Однако полученный результат является приближенным. Тем не менее мы можем скорректировать полученные длительности импульса, основываясь на законе сохранения энергии. Умножение уравнения (2) на напряженность поля и интегрирование результата по времени в бесконечных пределах с учетом граничных условий дает закон сохранения энергии в виде

$$(\alpha - \gamma)E - \int_{-\infty}^{\infty} \left[\frac{\mathrm{d}a(t')}{\mathrm{d}t'}\right]^2 \mathrm{d}t = 0.$$

Вычисление последнего члена требует знания формы импульса. Предполагая, как это сделано ранее, что УКИ имеет sech-форму, из уравнения сохранения энергии можно получить выражение для скорректированной длительности импульса

$$t_{\rm p} = \frac{1}{\left[3(\alpha - \gamma)\right]^{1/2}},$$

что дает длительность, несколько меньшую полученной ранее (штриховые кривые на рис.2).

Обратим внимание на тот факт, что полученные для параметров УКИ выражения свидетельствуют о положительности суммарного насыщенного усиления; это накладывает определенные ограничения на стабильность импульсов, а именно: УКИ стабилен относительно лазерного шума тогда, когда суммарное насыщенное усиление перед ним и за ним отрицательно [2]: $\alpha - \gamma - \gamma_a < 0$. Данное условие ограничивает минимальные потери в ППЗ.

На рис.3 показаны зависимости минимальных необходимых для стабилизации УКИ просветляемых потерь в ППЗ от интенсивности накачки для двух физических решений рис.2 (штриховая кривая – пороговые потери, нижняя кривая соответствует решению с большими длительностями). Из рис.3 видно, что стабилизация УКИ возможна в заштрихованной области, т.е. стабильным относительно лазерного шума является решение с большей длительностью. При этом ширина области стабильности существенно уменьшается с уменьшением начальных потерь в ППЗ, в то время как расширение области стабильности требует роста начальных потерь, что сопровождается ростом порога генерации.

В качестве дальнейшего обобщения рассмотрим когерентный УКИ в лазере при наличии эффективного затво-

Рис.3. Необходимые для стабилизации УКИ минимальные начальные потери в ППЗ для двух приближенных решений уравнения (4) (сплошные кривые) и пороговые начальные потери в ППЗ (штриховая кривая) при тех же параметрах, что и на рис.2. Заштрихована область устойчивости.

ра на основе самофокусировки. Существенной особенностью данной ситуации является возможность формирования импульсов sech-формы при определенном соотношении между параметрами ППЗ и эффективного затвора на основе самофокусировки. Для параметров такого УКИ имеем

$$t_{\rm p} = \frac{1}{\left(\gamma - \alpha\right)^{1/2}}, \quad \delta = \frac{\gamma_{\rm a}}{t_{\rm coh}(\gamma - \alpha)}, \quad \sigma = \frac{\lambda^2}{2}.$$
 (5)

Необходимо отметить две особенности режима при наличии самофокусировки: 1) генерация УКИ имеет место при отрицательном суммарном усилении, что снимает ограничения минимальных начальных потерь в ППЗ, необходимых для стабилизации импульса генерации; 2) длительность УКИ определяется формулой, аналогичной формуле для мгновенного затвора (см., напр., [2]), что свидетельствует о преимущественном вкладе в процесс формирования УКИ именно самофокусировки. При этом длительность УКИ меньше, чем в случае отсутствия самофокусировки (штрихпунктир на рис.2), причем уменьшение длительности наиболее выражено в области малых и больших интенсивностей накачек.

Физический смысл ограничения соотношения параметров ППЗ и мгновенного затвора на основе самофокусировки заключается в следующем. По своей физической природе самофокусировка, в отличие от когерентного взаимодействия с ППЗ, не накладывает ограничений на площадь УКИ. Следовательно, когда в системе присутствуют оба перечисленных фактора, формирование УКИ определенной формы (в данном случае sech-формы) возможно только при определенной его площади (здесь мы рассматриваем 2π -импульсы, хотя возможно формирование стационарных импульсов с иной площадью, например с площадью π , или чирпированных импульсов с переменной площадью), откуда возникает дополнительное ограничение допустимых σ .

Как показано в [15], важнейшим фактором, препятствующим генерации УКИ, является автомодуляционная неустойчивость импульса генерации. Для оценки автомодуляционной устойчивости мы воспользуемся безаберрационным приближением, предполагающим неизменность формы УКИ при возможности изменения его параметров. В результате подстановки в лазерное уравнение импульса sech-формы с последующим разложением в ряд по *t* и приравниванием коэффициентов при одинаковых степенях *t* получаются следующие уравнения эволюции параметров УКИ:

$$\frac{\mathrm{d}a_0}{\mathrm{d}z} = 2 \frac{(\alpha - \gamma)\lambda^2 t_\mathrm{p}^2(z) - \lambda^2 + 4\sigma}{\lambda^2 t_\mathrm{p}^3(z)},$$

$$\frac{\mathrm{d}t_\mathrm{p}(z)}{\mathrm{d}z} = 4 \frac{\lambda^2 - 2\sigma}{a_0(z)\lambda^2 t_\mathrm{p}^2(z)},$$

$$\delta(z) = 2 \frac{\gamma_\mathrm{a} t_\mathrm{p}(z)}{t_{\mathrm{coh}} a_0(z)}.$$
(6)

При выборе σ , обеспечивающего генерацию УКИ, для эволюции длительности импульса мы имеем условие маргинальной устойчивости, т. е. нулевой инкремент затухания ее возмущений, в то время как условие затухания возмущений амплитуды $-4(\gamma - \alpha)^2 < 0$ (отрицательность производной по длительности правой части первого уравнения (6)) выполняется автоматически.

3. Когерентный лазерный УКИ при наличии дисперсии групповой скорости и ФСМ

Рассмотрим вначале влияние этих лазерных факторов на УКИ в отсутствие самофокусировки, ограничившись случаем наиболее интересных с практической точки зрения частотно-ограниченных импульсов. При этом действительный характер поля позволяет нам понизить порядок уравнения (3), применив указанную выше замену переменных:

$$y(x)\frac{\mathrm{d}y(x)}{\mathrm{d}x}\delta + \frac{\beta}{d}y^{3}(x) + \left(\alpha - \gamma - \frac{\phi}{d}\right)y(x) - \frac{\gamma_{\mathrm{a}}}{t_{\mathrm{coh}}}\sin x = 0.$$
(7)

Приближенное решение (7) в виде $y(x) = a_1 \sin(x/2)$ таково:

$$\phi = 3\beta a_1^2 + d(\alpha - \gamma), \ \delta = \frac{4\gamma_a}{a_1^2}, \ a_1 = 2[3(\alpha - \gamma)]^{1/2}.$$

Длительность УКИ $t_p = 2/a_1$. Учет насыщения усиления (как это было сделано ранее) приводит к несущественному росту длительности УКИ на устойчивой относительно шума ветви решения и к заметному уменьшению длительности на неустойчивой ветви.

При учете этих же факторов при наличии самофокусировки изменения параметров УКИ не происходит, однако, как это имеет место и в ее отсутствие, появляются фазовое запаздывание $\phi = -2\beta(\alpha - \gamma)/\lambda^2$, а также дополнительное ограничение дисперсии, необходимой для формирования частотно-ограниченного УКИ: $d = -2\beta/\lambda^2$.

Анализ автомодуляционной устойчивости, проведенный по описанной выше методике, показывает, что при выборе дисперсии $d = -2\beta/\lambda^2$, необходимой для компенсации чирпа, характер стабильности УКИ не отличается от описанного выше, за исключением появления дополнительной фазовой задержки $\phi = 2(d + 4\beta)/a_0(z)t_p^3(z)$.

4. Самостарт генерации УКИ

Одной из наиболее значимых с точки зрения практических приложений особенностей твердотельных лазеров с ППЗ является их способность к самопроизвольному формированию УКИ (самостарт генерации УКИ). Для анализа возможности самостарта генерации УКИ мы рассматривали эволюцию шумового выброса поля sech-формы с длительностью, много большей времени продольной релаксации возбуждения в ППЗ $T_a = 1$ пс. В этом случае действие ППЗ может быть описано как действие мгновенного затвора, а действием ФСМ и самофокусировки на начальных этапах генерации можно пренебречь. Удобно также изменить нормировки: времена нормировать на период резонатора, интенсивности – на E_a/T_{cav} , а энергию насыщения усиления – на E_a .

Тогда уравнение для эволюции выброса примет следующий вид:

$$\frac{\partial a(z,t)}{\partial z} = \left[\frac{P\alpha_{\max}T_{\mathrm{r}}}{1+2\tau T_{\mathrm{r}}a_{0}^{2}(z)t_{\mathrm{p}}(z)/\lambda^{2} + PT_{\mathrm{r}}} - \frac{\gamma_{\mathrm{a}}}{1+2a(z,t)T_{\mathrm{a}}} - \gamma + \frac{t_{\mathrm{f}}^{2}}{T_{\mathrm{cav}}^{2}}\frac{\partial^{2}}{\partial t^{2}}\right]a(z,t).$$

$$(8)$$

Рис.4. Область самостарта генерации УКИ на плоскости: начальная интенсивность выброса a_0^2 -его начальная длительность t_p . Самостарт при $P = 8.5 \cdot 10^{-4}$ (черная область) и при $P = 8.8 \cdot 10^{-4}$ (черная и заштрихованная области) для $T_a = 1$ пс, $\gamma = 0.01, \lambda = 1, t_f/T_{cav} = 2.5 \times 10^{-7}, \tau = 6.25 \cdot 10^{-5}$; остальные параметры те же, что и на рис.2.

В безаберрационном приближении мы, как это было сделано выше, можем получить уравнения для эволюции параметров выброса. Затухание выброса (рост длительности и уменьшение амплитуды) будет соответствовать отсутствию самостарта генерации УКИ, асимптотический рост его интенсивности, сопровождающийся уменьшением длительности, – самостарту генерации УКИ.

На рис.4 для безразмерной интенсивности накачки $P = 8.5 \cdot 10^{-4}$ черным цветом показана область начальных параметров выброса, соответствующая самостарту генерации УКИ. Уменьшение накачки ниже указанной препятствует самостарту генерации импульса, в то время как ее увеличение до $P = 8.8 \cdot 10^{-4}$ ведет к самостарту для параметров выброса, лежащих во всей области (черная вместе с заштрихованной).

Заключение

Таким образом, анализ генерации УКИ в непрерывном твердотельном лазере в условиях когерентного взаимодействия с ППЗ, выполненный на основе теории самосогласованного поля, позволяет сформулировать ряд выводов.

В отсутствие самофокусировки возможно формирование субдесятифемтосекундного 2π-импульса, который, однако, не имеет sech-формы. Требование устойчивости относительно лазерного шума накладывает ограничение на минимальные просветляемые потери в ППЗ. Просветление дифракционных потерь из-за самофокусировки радикальным образом сказывается на характере генерации УКИ: появляется возможность генерации автомодуляционно-устойчивых УКИ sech-формы при выборе определенного соотношения между параметрами ППЗ и самофокусировки; длительность УКИ может быть существенно уменьшена вплоть до предела, определяемого приближением медленно меняющихся амплитуд поля и поляризации; отсутствуют ограничения начальных потерь в ППЗ, что позволяет снизить порог генерации. В данном случае характеристики УКИ определяются режимом синхронизации мод за счет самофокусировки, в то время как ППЗ накладывает ограничения на площадь импульса. Учет ФСМ и дисперсии групповой скорости не ведет к существенному изменению характеристик УКИ, однако накладывает дополнительное ограничение на дисперсию, необходимую для формирования частотно-ограниченного УКИ. Наиболее существенной с точки зрения практических приложений является возможность самостарта генерации УКИ в непрерывном твердотельном лазере с ППЗ при определенной надпороговой интенсивности накачки.

Все математические вычисления в данной работе выполнены в среде Maple V, соответствующая программа с подробными комментариями представлена по адресу http://www.geocities.com/optomaplev. Авторы выражают признательность за финансовую поддержку Белорусскому республиканскому фонду фундаментальных исследований (грант № Ф97-256).

- Sutter D.H., Steinmeyer G., Gallmann L., Matuschek N., Morier-Genoud F., Keller U. Optics Letts, 24, 631 (1999).
- Haus H., Fujimoto J.G., Ippen E.P. *IEEE J. Quantum Electron.*, 28, 2086 (1995).
- Keller U., Weingarten K.J., Kartner F.X., Kopf D., Braun B., Jung I.D., Fluck R., Honninger C., Matuschek N., Au J.A. *IEEE J. Selected Topics in Quantum Electron.*, 2, 435 (1996).
- Kartner F.X., Jung I.D., Keller U. IEEE J. Selected Topics in Quantum Electron., 2, 540 (1996).
- Калашников В.Л., Полойко И.Г., Михайлов В.П. Оптика и спектроскопия, 85, 859 (1998).
- Kalashnikov V.L., Krimer D.O., Poloyko I.G., Mikhailov V.P. Optics Comms., 159, 237 (1999).
- Калашников В.Л., Полойко И.Г., Михайлов В.П. Квантовая электроника, 27, 149 (1999).
- 8. Козлов В.В., Фрадкин Э.Е. ЖЭТФ, 107, 62 (1995).
- 9. Козлов В.В. ЖЭТФ, 107, 360 (1995).
- Комаров К.П., Угожаев В.Д. Квантовая электроника, 11, 1167 (1984).
- 11. Kalosha V.P., Muller M., Herrmann J. J.Opt.Soc.Amer.B, 16, 323 (1999).
- Christov I.P., Stoev V.D., Murnane M.M., Kapteyn H.C. J.Opt.Soc. Amer.B., 15, 2631 (1998).
- Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемпосекундных лазерных импульсов (М., Наука, 1988, с. 98).
- Калашников В.Л., Калоша В.П., Полойко И.Г., Михайлов В.П. Оптика и спектроскопия, 81, 867 (1996).
- Калашников В.Л., Кример Д.О., Межид Ф., Полойко И.Г., Михайлов В.П. Квантовая электроника, 27, 47 (1999).

V.L.Kalachnikov, D.O.Krimer, I.G.Poloiko. Theory of generation of sub-10-ps pulses in a cw solid-state laser with a semiconductor passive switch and self-focusing in coherent-interaction conditions.

An analysis made on the basis of the theory of the self-consistent field shows the possibility of production of sub-10-fs soliton-like pulses in a solid-state laser with a semiconductor switch in the absence of the self-focusing mechanism of mode-locking. The self focusing mechanism of mode-locking leads to the formation of a sech-shaped pulse of limiting duration. In this case, restrictions imposed on the minimum modulation depth in a semiconductor switch that provides self-starting USP generation are lifted.