АКТИВНЫЕ СРЕДЫ

PACS 42.55.Vc; 52.50.Jm; 52.25.Nr

Моделирование кинетики активной среды рентгеновского лазера в условиях мощного пикосекундного нагрева

В.Ю.Политов, В.А.Лыков, М.К.Шинкарев

Проведено численное моделирование коэффициентов усиления на 3S-3P-переходах Ne-подобных ионов, возникающих в процессе нагрева веществ пикосекундными импульсами мощных лазеров. Исследованы зависимости этих коэффициентов от средних значений заряда ядра Z и интенсивности облучения. Сделаны прогнозы о предельно короткой длине волны рентгеновского излучения, которое можно получить из плазмы Ne-подобных ионов.

Ключевые слова: рентгеновский лазер, моделирование кинетики, пикосекундный нагрев.

Введение

За последнее десятилетие в области разработки рентгеновских лазеров (РЛ) со столкновительной накачкой Ne- или Ni- подобных ионов наметилось интересное направление, связанное с использованием для создания активной среды РЛ пикосекундных лазерных импульсов [1]. Расчетно-теоретические исследования, подтвержденные экспериментально [2], выявили важное достоинство такого способа формирования условий генерации рентгеновского излучения.

При резком возрастании температуры плазмы $T_{\rm e}$ за $10^{-12}-10^{-11}$ с основное состояние рабочих ионов не успевает обедниться вследствие ионизации. В то же время скорость накачки может увеличиваться пропорционально температурному фактору $\exp{(-\varepsilon_{\rm u}/T_{\rm e})/T_{\rm e}^{1/2}}$ ($\varepsilon_{\rm u}$ – энергия возбуждения верхнего уровня) вплоть до предельной. Все это ведет к достижению очень высоких инверсии и коэффициента усиления K на рабочих переходах.

Данные расчетов для Ne-подобных ионов некоторых веществ (Ті и Ge) со средними значениями заряда ядра Z, представленные в [3, 4], показали, что в области критической плотности плазмы, где поглощается греющий импульс (его длительность в этих расчетах полагалась равной 1 пс), максимальные K на переходах с $\lambda_{\rm g} \sim 300, 200~{\rm \AA}$ составляют $100-200~{\rm cm}^{-1}$. Если пренебречь рефракцией, то даже при небольших продольных размерах лазерной среды $L \sim 1~{\rm cm}$ становится возможной однопроходная генерация рентгеновского излучения в режиме глубокого насыщения. Общепринятый критерий порога насыщения $KL \geqslant 15~{\rm выполняется}$ в этом случае с почти 10-кратным запасом.

Очевидно, что при таких K столкновительная накачка рентгеновского лазера может быть эффективной для веществ не только со средними, но и с достаточно большими Z. Это позволяет надеяться на то, что использование пикосекундных лазеров для создания активных

Российский федеральный ядерный центр – Всероссийский НИИ технической физики, Россия, 456770 Снежинск Челябинской обл., а я 245

Поступила в редакцию 16 августа 2000г.

сред РЛ даст возможность получить насыщенное рентгеновское излучение в коротковолновой области спектра вплоть до «водяного окна», т.е. до $\lambda_0 \sim 45~\text{Å}$ (излучение с $\lambda_{\rm g} < \lambda_0$ считается перспективным для биологических исследований).

В настоящей работе с помощью численного моделирования изучаются пространственно-временные зависимости коэффициентов усиления на переходах Ne-подобных ионов в веществах с различными Z при разных амплитудах пикосекундного импульса.

1. Условия расчетов

Основу моделирования составляют расчеты газовой динамики лазерной мишени, разлетающейся под действием мощного оптического облучения, и кинетики образующейся при этом плазменной среды. В соответствии с рядом устоявшихся (с экспериментальной точки зрения) принципов считается, что облучающий профилированный во времени импульс фокусируется в линию на плоскую твердотельную мишень. Начальная продолжительная и относительно малоинтенсивная часть импульса служит для формирования оптимального для РЛ квазистационарного ионного состава плазмы, а вторая его часть – для ее быстрого нагрева.

Временная форма импульса облучения задавалась в виде пьедестала длительностью 1 нс и треугольного интенсивного пика с длительностью на полувысоте $t_0 = 10$ пс (в дальнейшем последний будем называть пикосекундным импульсом). Выбор t_0 диктовался следующими соображениями. При конечной скорости света существенное уменьшение t_0 (до ~ 1 пс) приводит к необходимости накачки РЛ в режиме бегущей волны, что является непростой технической проблемой. Кроме того, оно будет сопровождаться уменьшением энергии излучения РЛ. Увеличение t_0 также нежелательно, поскольку за время нагрева ионный состав начнет заметно смещаться в сторону более многозарядных (по сравнению с Ne-подобными) ионов и, следовательно, снизится К. Верхнюю границу длительности пикосекундного импульса можно оценить на основании условия

$$t_0 \leqslant 1/j_{\text{Ne}} \tag{1}$$

и интерполяционной формулы Лотца для скорости ионизации j_{Ne} основного Ne-подобного состояния [5]:

$$j_{\text{Ne}} = 6 \cdot 10^{-8} \text{Ry}^{3/2} m_0 \frac{N_e T_e^{1/2}}{\varepsilon_{\text{Ne}}^2 (1 + 0.4 T_e / \varepsilon_{\text{Ne}})} \exp\left(-\frac{\varepsilon_{\text{Ne}}}{T_e}\right). (2)$$

Здесь

$$N_{\rm e} = 6 \cdot 10^{23} \, \frac{\langle Z \rangle \rho}{A};$$

 $\varepsilon_{\rm Ne}=0.25{\rm Ry}(Z-6.6)^2$ – потенциал ионизации Ne-подобного состояния; $m_0=8$ – число эквивалентных электронов; A – атомный вес; ρ – плотность плазменной среды в г/см³; Ry = 0.0136 кэВ; $\langle Z \rangle$ – число свободных электронов в расчете на один ион, или средняя степень ионизации; $j_{\rm Ne}$ измеряется в с $^{-1}$; $T_{\rm e}$, $\varepsilon_{\rm Ne}$ – в кэВ; $N_{\rm e}$ – в см $^{-3}$. При желательных для эффективной столкновительной накачки температурах $T_{\rm e}\approx 0.5\varepsilon_{\rm Ne}$ и типичном соотношении $\langle Z \rangle/A \simeq 0.3$ из (1), (2) получаем

$$t_0 \le 1.5 \cdot 10^{-17} \, \frac{(Z - 6.6)^3}{\rho}.$$
 (3)

Отсюда следует, что в случае облучения первой гармоникой Nd-лазера при плотностях активной среды порядка критической ($\rho_{\rm cr}\approx 0.006~{\rm r/cm^3}$) для диапазона $20\leqslant Z\leqslant 50$ длительность пикосекундного импульса t_0 не должна превышать $10^{-11}-10^{-10}$ с.

2. Результаты газодинамического моделирования

Расчеты газовой динамики активных сред РЛ проводились по разработанной во ВНИИЭФ одномерной лагранжевой программе СС-9 [6], в которой реализована модель обратнотормозного поглощения облучающего импульса в плазменных слоях с $\rho \leqslant \rho_{\rm cr}$; вклад эффектов, приводящих к генерации быстрых электронов, в энергобаланс плазмы игнорируется. Перенос излучения рассматривается в спектрально-кинетическом приближении с учетом кинетики неравновесной ионизации вещества.

Результаты расчетов показывают, что на стадии длительного предымпульса реализуется так называемый самосогласованный режим разлета мишени [7]. При этом образуется достаточно протяженная изотермическая плазменная корона, полностью поглощающая лазерное излучение в докритической области. Интенсивность предымпульса $I_{\rm pr}$ подбиралась исходя из условия доминирования в ионном составе короны Ne-подобных ионов в основном состоянии (чем больше таких ионов, тем больше скорость заселения верхних лазерных уровней). Для

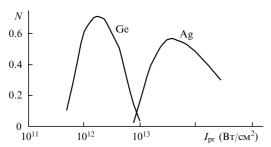


Рис. 1. Зависимости расчетных нормированных населенностей основного состояния Ne-подобных ионов в области критической плотности лазерной плазмы от интенсивности предымпульса для Ge и Ag.

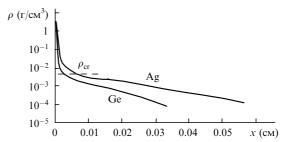


Рис.2. Одномерные пространственные профили плотности плазменных корон Ge и Ag на момент окончания предымпульсов (1 нс) с оптимальными интенсивностями $I_{\rm pr}=2\cdot 10^{12}$ (Ge) и $3\cdot 10^{13}$ BT/cм² (Ag) при $\lambda=1.06$ мкм.

анализируемых веществ (от титана до серебра) $I_{\rm pr}=2\times 10^{11}-3\cdot 10^{13}~{\rm BT/cm^2}.$ Пример зависимости населенности основного Ne-подобного состояния N от $I_{\rm pr}$ приведен на рис.1 для Ge и Ag.

Что касается распределения плотности в короне, то оно хорошо аппроксимируется экспоненциальной зависимостью $\rho \approx \rho_{\rm cr} \exp{(-x/L_{\rm n})}$, где x — текущая координата в направлении, нормальном к плоскости испарения мишени; $L_{\rm n}$ — длина неоднородности, меняющаяся для рассмотренных Z от 10 до 100—150 мкм. Характерные расчетные профили плотности изображены на рис.2. На момент окончания предымпульса длина неоднородности $L_{\rm n}$, а также температура короны $T_{\rm e0}$ зависят только от средней степени ионизации $\langle Z \rangle$:

$$L_{\rm n} \simeq 10^{-5} \langle Z \rangle^2, \quad T_{\rm e0} \simeq 10^{-3} \langle Z \rangle^2;$$
 (4)

при выбранной интенсивности предымпульса $\langle Z \rangle \simeq Z-11.$

На стадии поглощения мощного пикосекундного импульса объем и плотность плазменного образования не успевают измениться, происходит лишь резкое возрастание электронной температуры, создающее благоприятные условия для генерации излучения РЛ. Примеры пространственно-временных распределений $T_{\rm e}$ для Ge и Ag по окончании пикосекундного импульса с пиковой интенсивностью $I_{\rm m}=10^{15}~{\rm BT/cm^2}$ приведены на рис.3. Вследствие падения коэффициента поглощения лазерного излучения в короне по мере ее нагрева максимумы этих распределений смещаются в область критической плотности и достигают нескольких килоэлектронвольт. Соответствующие зависимости максимальных температур $T_{\rm em}$ от Z представлены на рис.4 для первой и третьей гармоник Nd-лазера и различных $I_{\rm m}$.

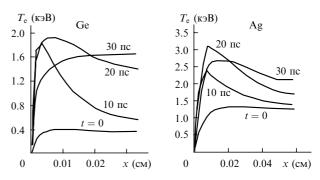


Рис.3. Пространственные зависимости электронной температуры в плазменных коронах Ge и Ag в различные моменты времени относительно начала 10-пикосекундного импульса с пиковой интенсивностью $I_{\rm m}=10^{15}~{\rm BT/cm^2}$ и $\lambda=1.06$ мкм.

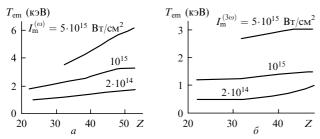


Рис. 4. Расчетные значения максимальной электронной температуры плазменной короны, нагреваемой 10-пикосекундным импульсом на частотах первой (a) и третьй (b) гармоник Nd-лазера, в зависимости от Z для трех значений амплитуды поглощаемой плотности потока.

Для анализа этих зависимостей необходимо обратиться к уравнению теплового баланса, согласно которому рост $T_{\rm e}$ ограничивается механизмом электронной теплопроводности, переносящей поглощаемую лазерную энергию в плотную холодную часть мишени с $\rho \geqslant \rho_{\rm cr}$ (энергетическими потерями плазмы за счет ионизации и переизлучения в рентгеновском спектре в течение пикосекундного импульса можно пренебречь).

Аналитически оценить долю энергии, идущую на прогрев вещества в закритической области, довольно трудно, поскольку распределение плотности в ней чрезвычайно неоднородно. Кроме того, при $I_{\rm m} \geqslant 10^{15}~{\rm Br/cm^2}$ на фронте тепловой волны происходит ограничение электронной теплопроводности, усложняющее функциональную связь теплового потока и температуры. В связи с этим более простым является рассмотрение баланса в точке с плотностью $\rho_* < \rho_{\rm cr}$, где происходит поглощение основной доли предымпульса и где роль теплопереноса не очень существенна. При самосогласованном режиме разлета плазменной короны эта точка близка к так называемой точке Жуге, в которой скорость звука совпадает со скоростью газодинамического движения вещества. Последующий нагрев ближайшей к ней области мощным пикосекундным импульсом приводит к увеличению $T_{\rm e}$ до значений, сравнимых с $T_{\rm em}$.

Уравнение для температуры идеальной электронной плазмы в точке Жуге в пренебрежении теплопроводностью получаем интегрированием исходного уравнения баланса по области короны с $0 \le \rho \le \rho_*$:

$$\frac{3}{2} N_A \frac{\langle Z \rangle \rho_* L_n}{A} \frac{\partial T_e}{\partial t}$$

$$= I(t) \left[1 - \exp\left(-L_{\rm n} \int_0^{\rho_*} \mathrm{d}\rho \frac{k_{\rm b}(\rho, T_{\rm e})}{\rho}\right) \right], \tag{5}$$

где I(t) – временной профиль интенсивности лазерного импульса; k_b – коэффициент обратного тормозного поглощения в см⁻¹; N_A – число ионов. Общепринятое для k_b выражение при плотностях, меньших критической (см., напр., [8]), с учетом (2) можно привести к виду

$$k_{\rm b} = \frac{4\sqrt{2}}{3\sqrt{\pi}} \frac{\langle Z \rangle e^6 N_{\rm e}^2 \lambda^2}{(m_{\rm e} T_{\rm e})^{3/2} c^3} \ln(\Lambda) \approx 10^6 \frac{\langle Z \rangle \rho^2 \lambda^2}{T_{\rm e}^{3/2}}.$$
 (6)

При этом температуру следует измерять в кэВ, длину волны лазерного излучения — в мкм, кулоновский логарифм положить равным $\ln{(\varLambda)}\approx 10$, а $\langle Z \rangle/A\approx 0.3$.

По определению точки с $\rho=\rho_*$ показатель экспоненты в (5) в момент начала пикосекундного импульса дол-

жен быть равен единице; в дальнейшем он будет только уменьшаться. Это позволяет разложить экспоненту в ряд с сохранением членов не выше первого порядка малости, что после интегрирования по ρ дает

$$\frac{\partial T_{\rm e}^{5/2}}{\partial t} = 0.026I(t)\langle Z \rangle \rho_* \lambda^2. \tag{7}$$

Плотность ρ_* находится из условия максимальности поглощенной энергии предымпульса, записываемого как $L_{\rm n}k_{\rm b}(\,\rho_*,\,T_{\rm e0})=2.$ Из этого выражения с учетом (4) получим

$$\rho_* \approx \frac{2.5 \cdot 10^{-3}}{\lambda}.\tag{8}$$

Решение уравнения (7) с учетом (8) в предположении, что $T_{\rm em}\gg T_{\rm e0}$, позволяет определить максимальную температуру как функцию $I_{\rm m},\,t_0,\,\lambda$ и $\langle Z \rangle$:

$$T_{\rm em} \approx (6.5 \cdot 10^9 t_0)^{2/5} (I_{\rm m} \cdot 10^{-14} \langle Z \rangle \lambda)^{2/5}.$$
 (9)

При принятой длительности импульса $t_0=10^{-11}{\rm c}$ значения $T_{\rm em}$, получаемые с помощью данной формулы, неплохо (в пределах $10-30\,\%$) согласуются с расчетными

3. Усилительные характеристики РЛ

Коэффициент усиления K для плазмы Ne-подобных ионов определялся по программе расчета поуровневой кинетики TAPAH [9]. Используя полученные в газодинамических расчетах пространственно-временные распределения плотности ($\rho(x,t)$), электронной ($T_{\rm e}(x,t)$) и ионной ($T_{\rm i}(x,t)$) температур, эта программа решает в лагранжевых ячейках, соответствующих одномерной пространственной сетке x(t), систему нестационарных кинетических уравнений для населенностей дискретных ионных состояний, через которые выражаются коэффициенты усиления K на лазерных переходах.

Заложенная в программу модель кинетики учитывает все наиболее существенные в плазме радиационно-столкновительные процессы: спонтанные радиационные распады, столкновительное возбуждение и девозбуждение, процессы ударной, фото- и диэлектронной рекомбинации, а также соответствующие им обратные процессы ионизации. Непрозрачность плазмы в резонансных линиях описывается в приближении вероятности вылета фотонов из среды без поглощения (приближение Бибермана – Холстейна). Профили линий предполагаются фойгтовскими, для случая плоского разлета учитывается также динамический эффект Доплера.

Для формирования кинетической матрицы конкретной задачи разработана специализированная база данных, в которой содержатся спектроскопические описания различных ионных состояний и переходов между ними, а также алгоритм выборки этих данных. Основная спектроскопическая информация — это потенциалы ионизации, статвеса, силы линий, сечения столкновений и т. д. По степени детализации энергетических спектров ионов состояния подразделяются на так называемые нерасщепленные, характеризуемые только главным квантовым числом возбуждаемого оптического электрона *п* и конфигурацией остова, и на расщепленные, для описания которых используются наборы всех квантовых чисел вплоть

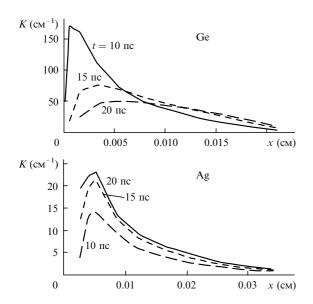


Рис.5. Расчетные пространственные профили коэффициентов усиления на наиболее сильном переходе 3S-3P для Ge и Ag при $I_{\rm m}=10^{15}$ Вт/см² для нескольких моментов времени относительно начала пикосекундного импульса.

до полных моментов ионов J. Нерасщепленные состояния описаны для всех Z с $n\leqslant 10$ — от голых ядер до «нейтралов». Что касается состояний тонкой структуры, то по ним на сегодняшний день подробные данные систематизированы для пяти типов ионов: H-, He-, Ne-подобных с $n\leqslant 4$ и Li-, Na- подобных с $n\leqslant 5$.

В расчетах, моделирующих кинетику столкновительной накачки РЛ, учитывался максимальный набор из 89 Ne-подобных расщепленных по J состояний с n = 2, 3, 4. Некоторые результаты кинетического моделирования представлены на рис.5 и 6. Прежде всего, это пространственные распределения коэффициентов усиления на наиболее сильном лазерном переходе из мультиплета 3S - 3P для Ge и Ag, облучаемых первой гармоникой Nd-лазера (в зависимости от Z этим переходом является либо $2\bar{P}_{1/2}3P_{1/2}(0)-2\bar{P}_{1/2}3S_{1/2}(1)$ либо $2\bar{P}_{3/2}3P_{1/2}(0)-2\bar{P}_{3/2}3S_{1/2}(1)$; для Z<30 сравнимы по силе также некоторые 3P - 3D-переходы, инвертируемые за счет реабсорбции на переходе 2P - 3D [4]). Они имеют место в течение 10-20 пс после максимума пикосекундного импульса. В области средних значений Z этого времени достаточно для реализации квазистационарного режима генерации насыщенного излучения РЛ, а для сравнительно больших Z по мере уменьшения K может уже потребоваться организация накачки активной среды РЛ в режиме бегущей волны.

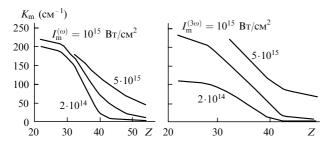


Рис.6. Расчетные зависимости максимальных коэффициентов усиления на 3S-3P-переходах Ne-подобных ионов веществ с различными Z для трех значений амплитуды поглощаемой плотности потока на частотах первой и третьей гармоник Nd-лазера.

На основе подобных распределений построены зависимости максимальных значений $K_{\rm m}$ от Z (рис.6), демонстрирующие предельные усилительные возможности плазмы Ne-подобных ионов. Однако развитие волны генерации должно происходить с существенно меньшими инкрементами. Дело в том, что в неоднородной лазерной короне лучи, вдоль которых распространяется рентгеновское излучение, рефрагируют и выходят из области максимального усиления. Кроме того, сказывается влияние конечности скорости света (расстояние в 1 см он проходит примерно за 30 пс, что сравнимо с указанным выше временем существования инверсии).

Определение эффективного коэффициента усиления производится путем расчета выходной энергии РЛ при разных длинах активной среды, при которых еще не наступает режим сильного насыщения. В этом случае интенсивность генерации нарастает с увеличением L по закону, близкому к экспоненциальному, и не оказывает заметного обратного влияния на пространственно-временные распределения К. Очевидно, что основная доля излучения переносится пучками, искривленные траектории которых касаются узкой области с $K \sim K_{\rm m}$ вблизи плоскости испарения. Проходя вдоль мишени расстояние L, каждый из них отклоняется в нормальном направлении на некоторое расстояние x_0 , которое, как правило, много меньше L. В приближении геометрической оптики степень отклонения пропорциональна градиенту плотности $\partial \rho/\partial x$ в короне и квадрату смещения оси пучка [10]. Тогда уравнение для лучевой траектории выглядит следующим

$$x(y) \approx \frac{\lambda_{\rm g}^2}{4\lambda^2} \frac{[y - L'(x_0)]^2}{L_{\rm n}} \exp\left(-\frac{x(y)}{L_{\rm n}}\right), \ x(L) = x_0, \ (10)$$

где $0 \le y \le L$; $L'(x_0)$ – координата захода траектории в область максимального усиления, определяемая x_0 (считаем, что отклонение x=0 в точке y=L').

Соответственно оценка выходной энергии в единицу телесного угла дается интегрированием интенсивности по координатам выхода лучей из лазерной короны и по времени:

$$E_{\rm g} = \int_0^{x_{\rm m}} \mathrm{d}x_0 \int_0^\infty \mathrm{d}t I_{\rm ray}(x_0, t),\tag{11}$$

где $x_{\rm m}$ соответствует лучу с L'=0. Формальное решение уравнения переноса вдоль каждого искривленного луча с учетом запаздывания излучения и условия $x_0\ll L$ можно записать в виде

$$I_{\text{ray}} = \int_{0}^{L} dy I_{\text{s}} \left[x(y), t - \frac{L - y}{c} \right]$$

$$\times \exp \left\{ \int_{y}^{L} dy' K \left[x(y'), t - \frac{L - y'}{c} \right] \right\}, \tag{12}$$

где $I_{\rm s}$ – интенсивность спонтанного излучения; c – скорость света. Из расчетов кинетики следует, что при быстрой пикосекундной накачке населенность верхнего лазерного уровня намного превышает населенность нижнего уровня. В результате зависимости $I_{\rm s}$ и K от пространственных координат близки друг к другу, что позволяет выразить лучевые интенсивности только через известные значения коэффициента усиления:

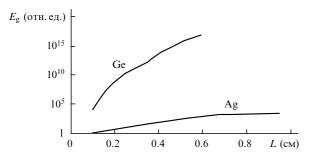


Рис.7. Зависимости интенсивности излучения РЛ от длины лазерной мишени с учетом рефракции и запаздывания излучения для Ge $(K_{\rm eff}\sim 50~{\rm cm}^{-1})$ и Ag $(K_{\rm eff}\sim 15~{\rm cm}^{-1})$.

$$I_{\text{ray}} \sim \exp\left\{ \int_{y}^{L} dy K \left[x(y), t - \frac{L - y}{c} \right] \right\} - 1.$$
 (13)

Численное интегрирование (11) с учетом (13) и конкретной траектории пучков (10) дает искомую энергию $E_{\rm g}$ как функцию от L. Для Ge подобная зависимость соответствует эффективному показателю роста $K_{\rm eff}\sim 50~{\rm cm}^{-1}$ (рис.7) при $K_{\rm m}\sim 150~{\rm cm}^{-1}$. В случае Ag с существенно более протяженной короной и более плавным распределением плотности $K_{\rm eff}\sim 15~{\rm cm}^{-1}$, что ненамного меньше максимального значения $\sim 20~{\rm cm}^{-1}$.

Итогом цикла моделирования является расчетная зависимость длины волны генерации $\lambda_{\rm g}$, для которой возможно достижение режима насыщения, от амплитуды пикосекундного облучающего импульса (рис.8). Ориентируясь на длины лазерных мишеней $L\sim 1$ см, в качестве критерия насыщения мы приняли условие $K_{\rm eff} \geqslant 15 \, {\rm cm}^{-1}$. Данная зависимость свидетельствует, что получение насыщенного излучения РЛ при $Z\geqslant 50$ с $\lambda_{\rm g}<70~{\rm \AA}$ возможно лишь для плотностей поглощаемого лазерного потока, не меньших $(3-5)\cdot 10^{15}$ Bт/см². С учетом отличного от единицы КПД преобразования исходного пикосекундного импульса в энергию тепловых электронов за счет обратнотормозного механизма (по оценкам оно составляет не более 50 % для расчетных температур и длин неоднородности) полная энергия облучения оценивается примерно в килоджоуль. Столь высокую энергию можно получить пока лишь на лазерных установках типа NOVA. Следовательно, достижение диапазона «водяного окна» по $\lambda_{\rm g}$ на 3S-3P-переходах Ne-подобных ионов представляется на сегодняшний день весьма затруднительным.

Есть, конечно, интересная возможность получения существенно более жесткого рентгеновского излучения на переходах 2S-2P этих же ионов [11], инвертируемых в результате сильного монопольного возбуждения пере-

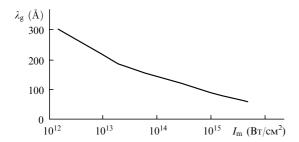


Рис. 8. Зависимость длины волны излучения РЛ, для которой на Neподобных ионах можно получить эффективный коэффициент усиления, превышающий $15~{\rm cm}^{-1}$, от пиковой интенсивности пикосекундного импульса.

хода 2S-3S. Например, для $\mathrm{Ag^{37}}^+$ переход $2\bar{S}_{1/2}3S_{1/2}(0)-2\bar{P}_{3/2}3S_{1/2}(1)$ соответствует $\lambda_{\mathrm{g}}=27$ Å. Однако, как показывают расчеты кинетики, максимальные коэффициенты усиления на этих переходах в силу существенно меньших значений инверсии и сил осцилляторов не превышают 3-5 см $^{-1}$ для любых режимов накачки и любых Z. Более перспективным подходом к уменьшению λ_{g} является, по-видимому, пикосекундная накачка плазмы Ni-подобных ионов с рабочими переходами 4P-4D.

Отметим также, что увеличение частоты облучающих квантов (переход от первой к третьей гармонике Ndлазера) не приводит к росту максимальных коэффициентов усиления в плазме Ne-подобных ионов. Конечно, более жесткое излучение прогревает более плотные области плазменной короны, однако пиковые температуры при этом падают, что очень критично для РЛ со столкновительной накачкой.

Заключение

Результаты представленной серии расчетов демонстрируют предельные усилительные возможности Neподобных ионов в зависимости от Z и параметров мощных оптических импульсов, создающих плазменную активную среду РЛ. Для веществ с $Z\sim20-30$ максимальные значения коэффициентов усиления в условиях пикоскундного нагрева могут достигать сотен обратных сантиметров. С учетом рефракции и запаздывания излучения более реальными являются оценки $K_{\rm eff}\sim40-50~{\rm cm}^{-1}$ при плотностях потока облучения $\sim10^{14}-10^{15}~{\rm Bt/cm}^2$. Такие коэффициенты усиления свидетельствуют о возможности генерации рентгеновского излучения в лазерных мишенях длиной $\sim1~{\rm cm}$ в режиме глубокого насыщения, что на примере Ne-подобного титана уже доказано экспериментально [12].

С увеличением Z активной среды РЛ требования к интенсивности облучения резко возрастают. Согласно расчетам, генерация насыщенного излучения РЛ при Z > 50 возможна лишь при $I_{\rm m} \geqslant (3-5) \cdot 10^{15}~{\rm BT/cm^2},$ что свидетельствует о необходимости использования для накачки РЛ пикосекундного импульса с $t_0 \geqslant 10^{-11}~{\rm c}$ и энергией несколько килоджоулей. Это связано прежде всего с тем, что максимально достижимые температуры в лазерной короне, определяющие эффективность накачки, сравнительно слабо зависят от интенсивности пикосекундного импульса ($T_{\rm em} \sim I_{\rm m}^{2/5}$), поскольку значительная часть энергии облучения бесполезно тратится на прогрев плотной и холодной закритической области короны.

Повысить КПД использования этой энергии, а значит, облегчить достижение «водяного окна» на переходах Ne-подобных ионов, можно путем изготовления лазерных мишеней в виде тонких фольг. После полного превращения таких мишеней в плазму на стадии предымпульса роль электронной теплопроводности будет подавлена. Аналогичное снижение тепловых потерь возможно также в случае, когда длина волны предымпульса в несколько раз меньше длины волны основного пикосекундного импульса (при таких условиях снижается плотность закритической для основного импульса области).

- Афанасьев Ю.В., Шляпцев В.Н. Квантовая электроника, 16, 2600 (1989).
- Nickles P.V., Shlyaptsev V.N., Schnurer M. et al. In: Proc. X-ray Lasers Conf. (Lund, Sweeden, 1996, № 151, p.84).
- 3. Healy S.B., Janulewicz K.A., Plowers J.A. et al. In: Proc. X-ray Lasers

- Conf. (Lund, Sweeden, 1996, № 151, p.94).
- 4. Nilsen J. Phys. Rev. A, 55, 3271 (1997).
- 5. Вайнштейн Л.А., Шевелько В.П. Структура и характеристики ионов в горячей плазме (М., Наука, 1986).
- 6. Воинов Б.А., Гаспарян П.Д., Кочубей Ю.К. и др. Вопросы атомной науки и техники. Сер. Теоретич. и приклад. физика, 2, 65 (1993).
- 7. Афанасьев Ю.В., Крохин О.Н. Физика высоких плотностей энергии. (М., Мир, 1974, с. 311–353).
- Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений (М., Наука, 1966).
- Politov V.Yu., Lykov V.A., Shinkarev M.K. In: Proc. SPIE Conf. Laser-Plasma Interactions (Shanghai, China, 1992, v.1928).

- 10. Lunney J.G. Appl. Phys. Letts, 48, 891 (1986).
- 11. Политов В.Ю., Шинкарев М.К. *Письма в ЖЭТФ*, **58**,794 (1993).
- 12. Dunn J., OsterheldA.L., Shepherd R. et al. In: *Proc. SPIE Meeting* (San Diego, California, 1997).

V.Yu.Politov, V.A.Lykov, M.K.Shinkarev. Simulation of the kinetics of the active medium of an X-ray laser upon high-power picosecond heating.

The gains appearing at the 3S-3P transitions of Ne-like ions during substance heating by high-power picosecond laser pulses are numerically simulated. The dependences of these gains on the average value of the nuclear charge Z and the irradiation intensity are studied. The minimal wavelength of X-rays that can be obtained from a Ne-like ion plasma is predicted.