PACS 42.62.Fi; 42.55.Rz

Малогабаритные внутрирезонаторные лазерные спектранализаторы

А.Н.Колеров

Приведены основные характеристики малогабаритных внутрирезонаторных лазерных спектранализаторов и зарегистрированные с их помощью спектры исследованных веществ.

Ключевые слова: внутрирезонаторная лазерная спектроскопия, лазерное приборостроение, твердотельные лазеры.

Практически все имеющиеся к настоящему времени внутрирезонаторные лазерные спектранализаторы (ВРЛС) характеризуются значительными габаритами, весом и энергопотреблением. Это обстоятельство в определенной мере тормозит их широкое практическое использование.

Созданные нами малогабаритные ВРЛС предназначены для исследования сред, находящихся в различных агрегатных состояниях, – газа, жидкости, твердого тела и гетерогенной плазмы.

Принципиальная схема ВРЛС приведена на рис.1. В качестве источников излучения были использованы лазеры на стекле с ионами неодима [1], ГСГГ:Сг³⁺[2], BeAl₂O₄:Сг³⁺[3], Al₂O₃:Ті³⁺[4], KZnF₃:Сг³⁺[5], LiF: F_2^+ : F_2^- [6] и NaF: F_2^+ : F_2^- [7] с ламповой и лазерной накачкой. В последнем случае для когерентного возбуждения активных сред использовались неодимовый ($W \le 40$ Дж, $\lambda = 1.06$ мкм) и рубиновый ($W \le 8$ Дж, $\lambda = 0.69$ мкм) лазеры, работающие в режиме «длинного импульса» ($\tau \sim 2$ мс).

При ламповой накачке активных сред применялись неохлаждаемые квантроны с плотной упаковкой, поэтому интервал между импульсами генерации составлял 30 –90 с. Изменением энергии и скорости накачки (за счет изменения LC разрядного контура) длительность импульса квазинепрерывного излучения регулировалась от десятков микросекунд до нескольких миллисекунд. Это позволило изменять чувствительность ВРЛС χ в широком динамическом диапазоне, составляющем $10^{-4}-10^{-8}$ см⁻¹ (лазеры на кристаллах LiF: $F_2^+:F_2^-$ [6]) и $10^{-4}-10^{-9}$ см⁻¹ (лазеры на стекле с неодимом и на NaF: $F_2^+:F_2^-$). При использовании других лазеров чувствительность ВРЛС была порядка 10^{-8} см⁻¹ [2–5, 8, 9].

При создании «многоцветных» ВРЛС была исследована возможность возбуждения F_2^+ -центров окраски (ЦО) в кристаллах LiF и NaF, полосы поглощения которых ($\Delta \lambda = 620 - 820$ нм) перекрываются с диапазоном излучения лазеров на кристаллах ГСГГ:Cr³⁺ ($\lambda = 740 - 850$ нм), BeAl₂O₄: Cr³⁺ ($\lambda = 700 - 820$ нм), KZnF₃:Cr³⁺ ($\lambda = 750 - 900$ нм) и Al₂O₃:Ti³⁺ ($\lambda = 680 - 950$ нм). Лазе-

ГП «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений», Россия, 141570 Менделеево, Моск. обл.

Рис.1. Принципиальная схема ВРЛС:

I – зеркала резонатора; *2* – активная среда; *3* – лампа накачки; *4* – зеркальный отражатель; *5* – поворотные зеркала для измерения длины резонатора; *6* – призма-крыша; *7* – электроды плазменного источника; *8* – катушки соленоида; *9* – фотоприемник; *10* – полихроматор; *11* – ПЗС-регистратор; *12* – световолоконные диссекторы; *13* – блок ФЭУ и усилители ($k ≤ 10^6$); *14* – лазер накачки; *15* – мишень; *16* – линза; *17* – лазер ($\lambda \sim 1.06$ мкм, $E \sim 100$ Дж); *18* – светоэрозионный плазменный факел; *19* – герметичный корпус.

ры накачки работали в импульсном квазинепрерывном режиме, который обеспечивался конфокальной конфигурацией резонатора. В таблице приведены основные характеристики «многоцветных» ВРЛС.

При внутрирезонаторном возбуждении F_2^+ -ЦО, которое достигалось при размещении пластин NaF с F_2^+ -,

Тип лазера	τ _{max} (мкс)	W _{max} (Дж)	Δλ (нм)	χ (см ⁻¹)	Е _р (Дж)
ГСГГ:Cr ³⁺	600	3.0	780 - 800	10 ⁻⁸	_
BeAl ₂ O ₄ :Cr ³⁺	600	2.5	750 - 770	10^{-8}	-
KZnF3:Cr ³⁺	550	2.0	820 - 840	10^{-8}	_
Al ₂ O ₃ :Ti ³⁺	750	2.0	790-850	10^{-8}	-
$\text{LiF}:F_2^+$	560	_	910-930	10^{-8}	1.5 - 1.8
NaF: F_2^+	670	_	1110-1140	10-8	$0.5 \!-\! 0.6$

Примечание: τ_{max} — максимальная длительность импульса излучения; W_{max} — максимальная энергия импульса; $\Delta \lambda$ — ширина спектра генерации; E_p — энергия импульса накачки; χ определялось по 20 %ному провалу линии поглощения. F_2^{+*-} , F_2^{+**-} ЦО толщиной до 5 мм в резонаторах широкополосных лазеров накачки [16], наблюдалось изменение кинетики импульса генерации: лазеры генерировали цуг или отдельный импульс малой длительности (10^{-6} – 10^{8-} с), т. е. реализовывался режим модуляции добротности. Проведенные эксперименты продемонстрировали возможность возбуждения ЦО в кристаллах LiF и NaF излучением широкополосных перестраиваемых лазеров, что обеспечивает чувствительность обнаружения коэффициента поглощения $\chi \sim 10^{-8}$ см⁻¹ одновременно в разных спектральных диапазонах.

Для исследования спектров поглощения (или эмиссии) используются высокоразрешающие полихроматоры, обеспечивающие разрешение $R \sim 10^6$ и обратную линейную дисперсию $D \sim 0.5 - 1$ Å/мм [3, 4, 17]. При $\lambda > 1$ мкм спектры поглощения (или эмиссии) регистрировались прямым фотографированием с последующей обработкой ИК фотопленок на микрофотометре с помощью линейки ПЗС, при $\lambda < 1$ мкм – с последующей обработкой данных на ЭВМ с помощью световолоконных диссекторов [17] (входная аппертура отдельного диссектора $\sim 0.01 \times 10$ мм) в сочетании с ФЭУ. В последнем случае динамический диапазон измерительного тракта составлял $10^8 - 10^9$ (погрешность измерения не более 15 %).

Созданные спектранализаторы позволили провести исследования спектров поглощения и эмиссии сред, находящихся в различных агрегатных состояниях.

Технические газы, используемые для приготовления рабочих смесей CO₂-, He-, Ar-, N₂-, Kr- и Хе-лазеров, были исследованы на наличие примесей O₂. Во всех случаях кислород фиксировался на уровне 0.1-1%. Фрагменты спектра поглощения примесного кислорода при различных условиях приведены на рис.2. Чувствительность использованного ВРЛС на александрите [3] для молекулярного кислорода была не хуже 10^{-3} мм рт. ст., поэтому примеси O₂ в технических газах регистрировались на уровне 10^{-2} мм рт. ст. (рис.2, δ).

Исследовалась также сорбирующая способность элементов разрядной трубки CO₂-лазера. В откачанном до давления ~ 10^{-3} мм рт. ст. разрядном промежутке линии O₂ были практически не видны (рис.2,*в*). Однако после 10минутного горения тлеющего разряда наблюдались линии O₂, содержание которого соответствовало давлению

Рис.2. Фрагмент спектра поглощения примесного O₂ при давлении 1 (*a*), 10^{-2} (*б*) и 2·10⁻³ мм рт. ст. (*в*).

Рис.3. Фрагмент спектра поглощения паров H_2O в атмосферном воздухе (1), а также в бензине A-76 (2), A-92 (3), A-95 (4) и Б-100 (5); в скобках после длин волн указана оптическая сила поглощения.

 $(\sim 1-5)\cdot 10^{-2}$ мм рт. ст. После трех-четырехкратного отжига трубки лазера содержание O₂ уменьшилось примерно на порядок (отжиг производился при непрерывной откачке), а интенсивность генерации лазера возросла на 20-30%. Такие исследования могут использоваться при контроле состава среды технологических лазеров [10-11] и реализации оптимальных условий их работы.

ВРЛС использовались также для обнаружения примеси воды в коммерческом бензине и бытовом газе. На рис.3 приведены фрагменты спектров поглощения H₂O, зарегистрированных с помощью ВРЛС на основе лазера на NaF: F_2^+ : F_2^- [7] в бензине разных марок. Исследовался участок спектра с сильными и примерно равными по эквивалентной ширине линиями поглощения. Пары бензина с примесью воды из пробоотборника объемом ~10 см³ при температуре ~ 20 °С испарялись в вакуумированную кювету ВРЛС до давления насыщенных паров. Характер и интенсивность линий поглощения, приведенных на рис. 3, свидетельствуют о том, что 0.5-1.5 % примеси воды содержится во всех исследованных марках бензина (кроме специально очищенного бензина Б-100). Исследование бытового газа показало, что в нем примесь воды не превышает 1.5-2%.

Тщательное изучение спектров поглощения водяного пара (использовалась дважды перегнанная дистиллированная вода) в диапазоне длин волн 1097.0–1136.0 нм с помощью ВРЛС на F_2^+ -ЦО позволило зафиксировать несоответствие наших результатов данным, приведенным в атласе солнечного спектра [12]. Нам удалось идентифицировать четыре линии водяного пара ($\lambda = 1130.842$, 1131.076, 1131.479 и 1131.501 нм), ранее приписанные в [12] циану и кремнию.

С помощью ВРЛС на Al₂O₃:Ti³⁺ ($\chi \approx 10^{-7} - 10^{-8}$ см⁻¹) изучались спектры (полосы) поглощения в твердом теле. Объектами исследования служили клиновидные пластины из стекла, легированного ионами неодима [13].

Рис.4. Спектры поглощения ионов неодима в твердотельной матрице при толщине пластины $d \approx 1$ мм и концентрации ионов неодима $c \approx 10^{16}$ см⁻³ (*a*) и при d = 10 мм, $c \approx 10^{18}$ см⁻³ (*b*).

Толщина пластин изменялась от 1 до 10 мм, а концентрация неодима от 10^{16} до $8 \cdot 10^{17}$ см⁻³. Зафиксированные с помощью ВРЛС и спектрофотометра полосы поглощения приведены на рис.4. Видно, что ВРЛС позволяет определять наличие примеси неодима в твердотельных матрицах при ее концентрации $10^{13} - 10^{14}$ см⁻³, что значительно превышает чувствительность промышленных спектрофотометров.

С помощью ВРЛС на основе ГСГГ:Сг³⁺ исследовались спектры поглощения ионизированной гетерогенной среды – факела электроразрядной дуги (ток $J \leq 30$ A) с примесями фуллерена С₆₀, порошок которого набивался в отверстие одного из угольных электродов. Появление в факеле дуги возбужденных частиц фуллерена приводит к значительным изменениям спектров поглощения и эмиссии, схожим с «конденсацией спектра излучения» [14, 15].

На этой же установке и при тех же условиях исследовалась плазма факела дуги, в один из электродов которой добавлялись соли церия $Ce(NO_3)_3$ или окислы металлического церия. Полученные спектры приведены на рис.5. Характер спектров факела гетерогенной плазмы дуги с добавками C_{60} и $Ce(NO_3)_3$ позволяет предположить, что на возбужденных переходах фуллерена (или металлоуглеродов) можно реализовать инверсную среду и получить вынужденное излучение. Экспериментальные исследования и поиск возможных условий возникновения вынужденного излучения на возбужденных переходах молекулярных кластеров будет продолжен.

Рис.5. Спектры гетерогенной плазмы факела электрической дуги с добавками фуллерена $C_{60}(2-5)$ и соединения церия (7–10), а также в отсутствие плазмы в резонаторе ВРЛС (1, 6).

Автор выражает благодарность Л.А. Чернозатонскому за предоставленную пробу фуллерена С₆₀ и полезные дискуссии.

- Пахомычева А.А., Свириденков Э.А., Сучков А.Ф. и др. Письма в ЖЭТФ, 12, 60 (1970).
- Жариков Е.В. Колеров А.Н., Лаптев В.В. и др. ДАН СССР, 285, 92 (1985).
- 3. Колеров А.Н. ЖПС, **45**, 135 (1986).
- 4. Колеров А.Н. ЖПС, 44, 363 (1986).
- 5. Дубинский М.А., Колеров А.Н., Митягин М.В. и др. Квантовая электроника, **13**, 2543 (1986).
- Врацкий В.А, Колеров А.Н., Кузьмина Е.Е. Квантовая электроника, 10, 1464 (1983).
- Врацкий В.А., Колеров А.Н. Квантовая электроника, 12, 1089 (1985).
- Севастьянов Б.К., Федоров Е.А., Колеров А.Н. и др. ДАН СССР, 282, 1357 (1985).
- 9. Колеров А.Н., Грачев Н.М., Епихина Г.Е. Изв. АН СССР. Сер.физическая, **54**, 1531 (1990).
- 10. Юрышев Н.Н. Квантовая электроника, 23, 583 (1996).
- 11. Карелин А.В. Квантовая электроника, 25, 619 (1998).
- Swenson J.W. et al. The solar spectrum from λ7498 nm to λ12016 nm (Liege, 1970).
- 13. Колеров А.Н. Оптика и спектроскопия, 62, 709 (1987).
- 14. Колеров А.Н. Квантовая электроника, 15, 512 (1988).
- 15. Колеров А.Н. Письма в ЖТФ, 13, 227 (1987).
- Дроздова О.Н., Колеров А.Н., Коляго С.С. и др. В сб. Методы исследования спектральных и релаксационных характеристик атомов и ионов (М., изд-е ВНИИФТРИ, 1990, с.113).
- 17. Врацкий В.А., Колеров А.Н. ЖПС, 41, 561 (1984).

A.N.Kolerov. Miniature intracavity laser spectrum analysers

The basic parameters of miniature intracavity laser spectrum analysers are reported and the spectra of some substances detected with their help are demonstrated.