PACS 52.50.Jm; 52.40.Nk

Влияние угла воздействия на эффективность образования многозарядных ионов лазерной плазмы

М.Р.Бедилов, Х.Б.Бейсембаева, Т.Г.Цой, Т.Б.Сатыбалдиев, М.С.Сабитов

Масс-спектрометрическим методом исследована закономерность эмиссии и характеристики многозарядных ионов плазмы, образующейся при малых углах воздействия лазерного излучения ($\alpha \sim 20^\circ$), а также при углах, соответствующих скользящему падению ($\alpha \sim 85^\circ$). Установлено, что при скользящем падении лазерного излучения на мишень эффективность образования многозарядных ионов падает по сравнению с эффективностью при $\alpha \sim 20^\circ$. Однако лазерное излучение при такой геометрии воздействия на твердое тело можно с успехом использовать для элементного анализа поверхностных слоев образца.

Ключевые слова: многозарядные ионы, лазерная плазма, элементный анализ.

Известно, что при определенных параметрах лазерного излучения и геометрии его взаимодействия с мишенью возникает сильное электрическое поле за счет резонансных колебаний электронов плазмы [1, 2]. Многофотонные эффекты – ионизация, эмиссия заряженных частиц [3], зависящие от угла падения излучения относительно поверхности, также вносят вклад в образование приповерхностных электрических полей. Все эти явления влияют на скорость, динамику разлета и число ионов, ускоряемых в этих полях.

Отметим, что до настоящего времени исследования закономерностей эмиссии заряженных частиц из плазмы ограничивались, в основном, двумя случаями: исследованиями при острой фокусировке лазерного излучения на поверхность мишени и при относительно малом угле падения лазерного излучения ($\alpha < 45^{\circ}$). Лишь в некоторых работах (см., напр., [4]), посвященных масс-спектрометрическому анализу веществ при многофотонной ионизации продуктов испарения, лазерный пучок направляли вдоль поверхности мишени, т.е. перпендикулярно направлению разлета ионов. Для повышения надежности и чувствительности послойного элементного анализа вещества и определения состава пленок, адсорбированных на поверхности мишени, необходимо увеличить ионнооптическую светосилу источника ионов масс-спектрометра. Для этого нужно изменить параметры воздействующего излучения либо геометрию эксперимента.

Цель настоящей работы – экспериментальное исследование закономерностей эмиссии и характеристик ионов плазмы, образующейся при наклонном (близком к скользящему вдоль поверхности мишени) падении лазерного излучения.

1. Экспериментальная часть

Исследования проводились на установке с лазерным источником ионов, состоящей из времяпролетного масс-

Поступила в редакцию 12 января 2000 г.

Рис.1. Схема масс-спектрометра с лазерным источником ионов при скользящем падении лазерного излучения на мишень.

спектрометра, совмещенного с электростатическим анализатором. Длина дрейфа ионов равнялась 150 см, разрешающая способность по массам – примерно 100. Плазма создавалась излучением Nd-лазера в режиме модуляции добротности. Длительность импульса ($\tau = 80$ нс) и энергия в импульсе (E = 2 Дж) поддерживались постоянными в течение всего эксперимента. Угол падения излучения ограничивался касанием образующей конуса светового канала с поверхностью образцов, как показано на рис.1. Была предусмотрена возможность изменения ориентации плоскости поляризации относительно нормали к мишени.

Лазерное излучение фокусировалось линзой с фокусным расстоянием f = 300 мм. В результате фокусировки излучения с гауссовым распределением по сечению, диаметром пучка 15 мм и расходимостью $\theta = 10^{-3}$ рад, падающего на образец под углом к нормали $\alpha \sim 85^{\circ}$, на его поверхности возникало овальное пятно длиной $l \sim 5$ мм и шириной $d \sim 0.5$ мм.

Образцами служили прокатанные пластины из вольфрама и таблетки высокотемпературной сверхпроводя-

Институт ядерной физики АН РУ, Узбекистан, 702132 Ташкент, пос. Улугбек

щей керамики YBa₂Cu₃O_{7-x}, имеющие форму диска диаметром 25 или 10 мм. Мишень закреплялась на коаксиальном электроде, причем имелась возможность изменения места воздействия излучения на поверхность образца. С фронтальной стороны мишени коаксиально располагался коллектор в виде цилиндра длиной 50 мм и диаметром 30 мм, нагруженный на безындукционный резистор с сопротивлением R = 4.3 Ом. Одновременно с регистрацией ионного сигнала на выходе масс-спектрометра измерялся импульс тока, генерируемого лазерной плазмой.

В системе поддерживалось давление $p \le 1.3 \cdot 10^{-5}$ Па. Для выяснения роли угла падения излучения на мишень исследования проводились при $\alpha \sim 85$ и $\sim 20^{\circ}$ и постоянных прочих условиях.

2. Результаты

Данные, полученные при наклонном падении сфокусированного на поверхности мишени излучения с плоскостью поляризации, перпендикулярной плоскости мишени, значительно отличались от результатов, наблюдающихся при традиционных (близких к нормальному) углах падения излучения на образец. В соответствии с условиями фокусировки при $\alpha \sim 20^{\circ}$ на поверхности мишени образуется практически круглая лунка, диаметр которой не превышает поперечного сечения пятна фокусировки, а при $\alpha \sim 85^{\circ}$ образуется овальное пятно длиной 5 мм с максимальной шириной 0.5 мм и значительно (на порядок и больше) меньшей глубиной, чем при малом угле к нормали.

Масс-спектры ионов лазерной плазмы, образующейся при $\alpha \sim 85^\circ$, более полно отражают элементный состав слоя, адсорбированного на поверхности образца вольфрама (рис.2). При этом максимальная кратность заряда $Z_{\rm max}$ многозарядных ионов, соответствующих матрице образца, всегда меньше, чем $Z_{\rm max}$ при $\alpha \sim 20^\circ$.

При последовательном воздействии импульсов лазерного излучения на образец под углом $\alpha \sim 85^{\circ}$ уменьшаются как число, так и интенсивность ионных сигналов элементов-примесей. Одновременно возрастают амплитуда сигнала ионов вольфрама и кратность его заряда. Например, в приводимом примере после первого импульса лазера в масс-спектрах регистрируются линии ионов примесных элементов O⁺, O²⁺, C⁺, N⁺, Na⁺, K²⁺, S⁺, S²⁺, Co⁺, Co²⁺, а зарядность ионов W не превышает 3. После третьего импульса Z_{max} для ионов W доходит до 4, а из примесных элементов регистрируются лишь ионы C и O. В случае же $\alpha \sim 20^{\circ}$ на протяжении десяти импульсов масс-спектры практически идентичны; при этом для ионов вольфрама $Z_{\text{max}} = 5$.

Энергетические распределения многозарядных ионов существенно зависят от угла воздействия излучения на мишень. При падени, близком к скользящему, диапазон энергетического распределения существенно меньше, чем при острых углах падения. Например, как видно из рис.3, энергия $E_{\rm max}$ ионов W⁺ и W⁴⁺, образующихся при $\alpha \sim 85^{\circ}$, не превышает 500 эВ и ~1 кэВ соответственно, в то время как при $\alpha \sim 20^{\circ} E_{\rm max}$ этих ионов достигает ~4 кэВ.

Аналогичные изменения наблюдаются в энергетических спектрах ионов элементов, составляющих основу ВТСП-керамики. Например, $E_{\rm max}$ ионов кислорода, образующихся при $\alpha \sim 85^{\circ}$, не превышает ~ 100 эВ, а при

Рис.2. Зарегистрированные с помощью осциллографа масс-спектры поверхностного слоя, адсорбированного на поверхности образца вольфрама, для первого (*a*), второго (*б*), третьего (*b*) и четвертого (*c*) импульсов лазерного излучения при угле падения $\alpha \sim 85^{\circ}$ и масс-спектр, соответствующий $\alpha \sim 20^{\circ}$, при десяти актах воздействия лазерного излучения (*d*).

 $\alpha \sim 20^{\circ}$ достигает ~ 500 эВ. На рис.3 видны и существенные изменения самих энергетических спектров: при $\alpha \sim 85^{\circ}$ спектр имеет лишь один максимум, а при малом α наблюдаются дополнительные рекомбинационные максимумы. Это свидетельствует о более высоком первоначальном заряде плазмы.

Мы регистрировали также токи, генерируемые плазмой. В отличие от данных работы [1] измерения прово-

Рис.3. Энергетические спектры ионов вольфрама при углах воздействия лазерного излучения $\alpha \sim 20$ (штриховые кривые) и 85° (сплошные кривые), $E = 2 \text{ Дж}, \tau = 80 \text{ нс}, Z = 1$ (*I*) и 4 (2).

дились с помощью цилиндрического коллектора с малоиндуктивной омической нагрузкой, расположенного вблизи мишени [5]. При разных углах токи сильно различаются. Так, например, при скользящем падении ($\alpha \sim 85^{\circ}$) ток в импульсе $I_{\rm max}$ достигает ~ 100 A, при $\alpha \sim 20^{\circ}$ ток $I_{\rm max} \leq 45$ A.

3. Обсуждение результатов

Таким образом, качественный вид и количественные характеристики масс-спектров, а также энергетические распределения многозарядных ионов и генерируемые плазмой токи существенно зависят от угла воздействия лазерного излучения на мишень. Обнаруженные эффекты можно объяснить следующим образом. Если излучение падает на поверхность мишени в направлении, близком к нормали к поверхности или под острым углом к ней, то при его интенсивности $q = 10^9 - 10^{10}$ Вт/см² и длительности $\tau \sim 10^{-8}$ с слой материала в течение очень малого времени получает энергию, намного превышающую теплоту испарения материала [6]. Образующийся перегретый слой действует на основу мишени подобно взрывчатому веществу. В глубину образца со скоростью $\upsilon \leq 10^5$ см/с распространяется ударная волна, приводящая к испарению материала (волна разгрузки).

Увеличение температуры пара приводит к его ионизации и быстрому росту коэффициента поглощения. В итоге поверхность мишени экранируется, при этом внутренняя энергия образующейся плазмы возрастает. Образование слоя плазмы занимает очень малое время и поэтому весь ход процесса контролируется, в основном, взаимодействием лазерного излучения с плазмой. В процессе гидродинамического разлета горячая плазма также нагревает и испаряет вещество мишени. В конечном счете в точке фокусировки образуется лунка определенных размеров.

При наклонном (под углом $\alpha \ge 80^{\circ}$) падении излучения из-за увеличения площади взаимодействия с мишенью интенсивность излучения уменьшается. Упрощенный расчет показывает, что при $\alpha \ge 80^{\circ}$ интенсивность *q* уменьшается примерно на два порядка, т. е. до $10^7 - 10^8$ BT/cm². Однако эффект не сводится только к уменьшению энерговклада. Если при $\alpha \sim 20^{\circ}$ расфокусировать пучок так, чтобы площадь пятна была близка к площади кратера, образующегося при наклонном ($\alpha \sim 80^{\circ}$) падении излучения на поверхность образца, то интенсивность излучения не превысит 10^8 BT/cm². При этом для ионов вольфрама $Z_{max} \le 2$, т. е. меньше, чем при скользящем падении. В масс-спектре регистрируются сигналы ионов примесных элементов (Na, S, Co), которые не регистрировались при более высоких $q > 10^9$ Вт/см². Однако число регистрируемых пиков и их интенсивность при $\alpha \sim 20^\circ$ гораздо меньше, нежели при $\alpha \sim 85^\circ$.

Более высокое зарядовое состояние ионов W и увеличение числа обнаруживаемых примесных элементов, регистрируемых при $\alpha \sim 85^{\circ}$, объясняется, по-видимому, следующим. При углах падения излучения на мишень $\alpha \ge 85^{\circ}$ происходят десорбция адсорбированных газов, содержащихся в поверхностном слое примесных элементов (в частности, ионов щелочных металлов), и испарение некоторого количества основного материала мишени. Ионы, нейтральные частицы и кластеры, вылетевшие с поверхности мишени, попадают в поле более интенсивного лазерного излучения ($q \ge 10^9$ BT/см²), существующего в объеме каустики линзы, и ионизируются до состояния высокотемпературной плазмы.

Таким образом, при скользящем падении лазерное излучение вызывает в основном удаление поверхностных примесей без существенной эрозии самого материала мишени.

Значительно большие интенсивности и число ионных пиков примесных элементов, регистрируемые при скользящем падении излучения на мишень, объясняются, повидимому, во-первых, более эффективным фотоэффектом (при совпадении вектора напряженности поляризованного лазерного излучения с направлением преимущественного вылета частиц с поверхности мишени) и, вовторых, тем, что испаряемые с поверхности примесные элементы попадают в поле излучения высокой интенсивности. В случае расфокусированного лазерного излучения (при α ~ 20°) область максимальной интенсивности излучения ($q \ge 10^9$ BT/см²) удалена от мишени на расстояние, примерно в 3 раза превышающее длину каустики использованной линзы. В нашем случае это расстояние составляет ~15 мм. Так как скорость вылета испаренного лазерным пучком вещества не превышает 10⁵ см/с [1], то в течение длительности лазерного импульса $(\tau \sim 80 \text{ нс})$ испаренные частицы не попадают в поле лазерного излучения максимальной интенсивности. Вследствие этого бо́льшая, чем при $\alpha \sim 85^{\circ}$, часть испаренного вещества ос-тается в виде нейтральных частиц или слабоионизованных атомов. Это объясняет, почему масс-спектр образующейся при этом плазмы содержит меньшее число пиков примесных элементов.

- 1. Быковский Ю.А., Неволин В.Н. Лазерная масс-спектрометрия (М., Энергоатомиздат, 1985).
- 2. Бедилов М.Р., Холбаев А. Квантовая электроника, 15, 223 (1988).
- 3. Wagli P., Dohaldson T.P. Phys. Rev. Letts, 40, 875 (1978).
- Летохов В.С. Лазерная фотоионизационная спектроскопия (М., Наука, 1987).
- 5. Аскарьян Г.А., Раевский И.М. *Письма в ЖТФ*, 8, 472 (1982).
- Крохин О.Н., Склизков Г.В., Шиканов А.С. Труды ФИАН, 85,143 (1976).

M.R.Bedilov, Kh.B.Beisembaeva, T.G.Tsoi, T.B.Satybaldiev, M.S.Sabitov. Effect of irradiation angle on the efficiency of formation of multiply charged ions in a laser-produced plasma.

Mass spectrometry is used to investigate the emission behaviour and the characteristics of multiply charged ions in a plasma produced at small angles of incidence of laser radiation ($\alpha \sim 20^{\circ}$) and also at grazing incidence ($\alpha \sim 85^{\circ}$). It was determined that grazing incidence of the laser radiation onto a target involves a reduction in the efficiency of production of multiply charged ions in comparison with that for ($\alpha \sim 20^{\circ}$). However, this geometry of laser irradiation of solids can be validly used for the elemental analysis of surface layers of a sample.