PACS 81.40.Ef; 68.55.Ng; 61.80.Ba

Влияние поляризованного лазерного излучения на окисление пленок титана при термическом отжиге

А.М.Чапланов, А.Н.Шибко

Исследовано влияние лазерного облучения пленок Ti, находящихся в нагретом состоянии, на изменение их фазового состава. Установлено, что облучение пленок титана пучком линейно поляризованных фотонов c hv = 1.96 эВ при отжиге в вакууме подавляет реакцию окисления.

Ключевые слова: лазерное облучение, пленки титана, окисление, термический отжиг.

При термическом отжиге в поликристаллических тонких металлических пленках протекают процессы рекристаллизации, в результате которых пленка переходит в термодинамически более равновесное состояние [1]. Однако отжиг поликристаллических геттерных пленок в вакууме приводит, как правило, к их окислению, что затрудняет использование этих пленок для изготовления элементов микроэлектроники [2]. В последнее время широко исследуются происходящие в тонких пленках фотохимические процессы, вызванные лазерным воздействием [3-5]. Это обусловлено тем, что облучение во время отжига пучком фотонов с определенной энергией [6,7] позволяет влиять на кинетику окисления металлических пленок, а также на последовательность образования и роста оксидных фаз. Однако необходимо отметить, что физические аспекты происходящих при этом структурных и фазовых превращений полностью пока не выяснены.

В настоящей работе исследованы структурные и фазовые превращения, происходящие в тонких пленках титана при стационарной термической обработке и одновременном воздействии непрерывного поляризованного лазерного излучения с энергией кванта hv = 1.96 эВ.

Пленки титана толщиной 100 нм получали методом термического осаждения в вакууме (остаточное давление $p \sim 0.3 \text{ мПа}$) на подложку, в качестве которой использовался свежесколотый монокристалл NaCl при температуре 373 К. Известно, что титан – хороший геттер, поэтому для уменьшения в получаемых пленках концентрации атомов остаточных газов осаждение пленок проводилось со скоростями порядка 100 А/с. Перед осаждением подложки закрывались заслонкой. После стабилизации процесса испарения (через 10-15 с) заслонка открывалась и происходило осаждение пленок нужной толщины. Предварительное испарение материала также способствовало повышению вакуума и, следовательно, снижению в пленках концентрации примесей атомов остаточных газов. Для отделения полученных пленок титана от кристаллов NaCl последние растворялись в дистиллированной воде.

Отделенные от подложки пленки титана помещались на молибденовые сеточки диаметром 3 мм для дальнейших исследований на установке, схема которой приведена на рис.1. Термическая обработка пленок осуществлялась в вакууме ($p \sim 0.05$ мПа) при температуре $T = 500^{\circ}$ С и времени $\tau = 1$ и 5 мин. Лазерное облучение проводилось лазером ЛГН-215 с $\lambda = 0.63$ мкм; мощность излучения, сфокусированного на поверхности образца, составляла 35 мВт, диаметр лазерного пучка был равен 5 мм. Обработанные таким образом пленки исследовались методами электронной микроскопии и электронографии с помощью электронного микроскопа JEM-120. Для идентификации электронограмм использовались таблицы ASTM [8] и оригинальные работы.

Предварительные исследования показали, что $T = 500^{\circ}$ С и $\tau = 1$ и 5 мин наиболее интересны с точки зрения выяснения процессов, происходящих в тонких пленках титана при мощности лазерного излучения 35 мВт. Отметим, что лазерное излучение такой мощности не вызывает прироста температуры облучаемой поверхности образца. Мощность лазерного излучения контролировалась с помощью измерителя мощности ИМО-2 в течение всего процесса обработки.

Облучение производилось до нагрева пленки, во время нагрева и в процессе ее полного остывания. Для чистоты эксперимента на печи в вакуумной установке находились два образца. Один проходил только термообработку, второй – комбинированную обработку, т. е. термообработку с одновременным воздействием непрерывного поляризованного лазерного излучения. Параметры термообработки образцов были одинаковыми. Для из-

Рис.1. Схема лазерной установки для обработки пленок: *I* – лазер ЛГН-215; *2* – измеритель мощности лазерного излучения ИМО-2; *3* – полупрозрачное зеркало; *4* – призма Глана; *5* – пластинка λ/4; *6* – фокусирующая линза; *7* – вакуумная установка; *8* – печь для нагрева образцов; *9* – исследуемый образец.

Институт электроники НАНБ, Белоруссия, 220090 Минск, Логойский тракт, 22

Поступила в редакцию 14 января 1999 г., после доработки – 1 ноября 1999 г.

Рис.2. Электронограммы пленок титана – исходный образец (без обработки) (*a*) и образцы, подвергнутые термическому отжигу при T = 500 °C в течение 1 и 5 мин соответственно без лазерного облучения (*б*, *в*), при облучении с круговой (*c*, *d*) и линейной поляризацией (*e*, *ж*).

менения поляризации лазерного излучения применялась призма Глана, а для получения круговой поляризации – пластинка λ/4.

Исходные пленки являлись поликристаллическими и мелкодисперсными, средний размер зерна составлял 20–30 нм (рис.2,*a*).Как показали исследования, при термическом отжиге пленок титана в вакууме в них происходит окисление, увеличиваются размеры зерен, появляются и растут зародыши оксидов. Электронограммы образцов, отожженных при $T = 500^{\circ}$ и $\tau = 1$ мин, свидетельствуют о наличии Ti₃O₅ и Ti₂O₃ (рис.2,*6*; таблица). С увеличением времени отжига до 5 мин на электронограммах появляются следы Ti₃O (твердый раствор кислорода в титане) и Ti₂O₃ (рис.2,*6*; таблица). Образование оксидов титана обусловлено взаимодействием титана с кислородом, адсорбированным пленкой при осаждении и диффундирующим из окружающей среды. Размер зерен оксидных фаз составляет 50–80 нм.

Фазовый состав пленок Ті после термического отжига и лазерного облучения ($\lambda = 0.63$ мкм) с различной поляризацией.

Межплос- костное расстояние (нм)	Без лазерной обработки		Линейная поляризация		Круговая поляризация	
	1 мин	5 мин	1 мин	5 мин	1 мин	5 мин
0.354	Ti ₃ O ₅	_	_	_	_	_
0.346	Ti_3O_5	_	_	_	_	_
0.271	Ti_2O_3	$Ti_2O_3 \\$	_	_	Ti_2O_3	_
0.268	Ti_3O_5	_	_	_	_	_
0.257	$Ti_2O_3 \\$	$Ti_2O_3 \\$	_	_	Ti_2O_3	_
0.239	_	Ti ₃ O	_	_	-	Ti ₃ O
0.235	Ti	_	Ti	Ti	Ti	Ti
0.233	_	Ti ₃ O	_	_	_	Ti ₃ O
0.224	Ti	_	Ti	Ti	Ti	Ti
0.218	_	Ti ₃ O	_	_	_	Ti ₃ O
0.173	Ti	_	Ti	Ti	Ti	Ti
0.170	$Ti_2O_3 \\$	$Ti_2O_3 \\$	_	_	Ti_2O_3	_
0.148	_	_	Ti	Ti	Ti	Ti
0.142	-	Ti ₃ O	-	_	_	Ti ₃ O

5 Квантовая электроника, т.30, № 6

В пленках геттерных материалов, к которым относится и титан, при осаждении происходит растворение остаточного кислорода. При этом процесс растворения определяется способностью металла-растворителя ионизировать атомы растворяемых элементов. Катионы легких элементов возникают в решетке металлов при переходе их валентных электронов в коллективизированные состояния. При термическом отжиге атомы кислорода, адсорбированные пленкой, диффундируют в объем зерна и взаимодействуют с атомами титана с образованием оксидов Ti_3O_5 и Ti_2O_3 . В результате отжига катионы кислорода перераспределяются по тетрапорам и образуется упорядоченный твердый раствор кислорода в титане Ti_3O .

При термической обработке пленок титана и одновременном лазерном облучении излучением с круговой поляризацией происходят термодинамическая стабилизация структуры пленки, миграция межзеренных границ, рекристаллизация и увеличение размеров зерен. Следует отметить, что кольца на электронограмме очень тонкие и текстурированные. Это свидетельствует о том, что под действием термического отжига и лазерного облучения в пленках прошли процессы собирательной рекристаллизации, в результате которых размеры зерна увеличились. Зерна со средним размером 80-100 нм, как правило, имеют многоугольную форму. Исследования показали, что в пленках титана, облучаемых лазерным пучком с круговой поляризацией, при стационарном термическом отжиге с $T = 500^{\circ}$ С в течение 1 и 5 мин происходит окисление, приводящее к формированию оксидных фаз Ti₃O и Ti₂O₃ (рис.2,*г*, *д*; таблица).

Иная ситуация наблюдается в пленках титана, отожженных при тех же условиях, но облучаемых в процессе отжига лазерным пучком с линейной поляризацией. Соответствующие электронограммы представлены на рис.2, е, ж. Как следует из анализа электронограмм, на них присутствуют лишь кольца, соответствующие титану. Таким образом, при отжиге пленок титана в вакууме с одновременным облучением линейно поляризованным пучком фотонов с энергией 1.96 эВ процессы окисления подавляются. Это является следствием как теплового так и фотохимического действия излучения: при T =500°С лазерное излучение инициирует реакцию подавления окисления пленки; при T < 500°С данный эффект не наблюдается.

В работе [9] разработана «квазиоптическая» теория диффузии легких примесей в металлах, свидетельствующая о существенном влиянии электромагнитного излучения и, в частности, поляризованного света на перераспределение примесей. Облучение поляризованным светом приводит к анизотропному перераспределению примесей при переходе из одного равновесного положения в другое. Такое анизотропное перераспределение, в данном случае кислорода, по окта- и тетрапорам титана должно, по-видимому, существенно сказываться как на диффузии кислорода, так и на кинетике образования оксидных фаз.

Эксперименты по облучению пленок титана пучком фотонов с энергией 1.96 эВ показали, что фазовый состав пленок существенно меняется в зависимости от плотности потока [5, 10]. Причем это наблюдается при достаточно высоких температурах отжига, когда диффузия кислорода в титан протекает весьма активно. Электронографические исследования фазового состава отожженных пленок показывают, что при воздействии на пленки титана лишь линейно поляризованного лазерного излучения процессы окисления подавляются, а в пленках, облучаемых при отжиге лазерным пучком с круговой поляризацией, происходит образование и рост оксидных фаз.

Были проведены также эксперименты по исследованию влияния на окисление пленок титана при термическом отжиге поляризованного лазерного излучения с другими длинами волн. В частности, применялись газовые лазеры ЛГ-126 ($\lambda = 1.15$ и 3.39 мкм) и ЛГ-106М-1 ($\lambda = 0.46-0.52$ мкм). В этом случае подавления реакции окисления в пленках титана не наблюдалось (см. [10–12], а происходили образование и рост в основном оксидов Ti₃O₅ и Ti₂O₃. Влияние интенсивности излучения на фазовый состав пленок титана рассмотрено в работе [10]. Полученный результат косвенно подтверждает положение квазиоптической теории диффузии об анизотропном характере миграции катионов кислорода в титановой матрице.

Таким образом, подавление окисления в пленках титана при термическом отжиге с одновременным облучением пучком фотонов обусловлено, прежде всего, линейно поляризованным падающим лазерным излучением.

- 1. Точицкий Э.И. Кристаллизация и термообработка тонких пленок (Минск, Наука и техника, 1976).
- 2. Тонкие пленки. Взаимная диффузия и реакции (М, Мир, 1982).
- Бонч-Бруевич А.М., Либенсон М.Н. Изв. АН СССР.Сер.физич., 46, 1104 (1982).
- Бункин Ф.В., Кириченко Н.А., Лукьянчук Б.С. УФН, 138, 45 (1982).
- Чапланов А.М., Шибко А.Н. Изв. АН СССР.Сер.физич., 53, 111 (1989).
- Алимов Д.Т., Тюгай В.К., Хабибулаев П.К. Журн.физ.химии, 61, 3065 (1987).
- Алимов Д.Т., Тюгай В.К., Хабибулаев П.К. ДАН Уз.ССР, 4, 23 (1985).
- Powder diffraction file JCPDS (USA,Swartmore, Pensylvania, 1982).
 Flynn C.P., Stoneham A.M. *Phys. Rev. B*, 1, 3966 (1970).
- 10. Чапланов А.М., Шибко А.Н. Квантовая электроника, 20, 191 (1993).
- 11. Чапланов А.М., Шибко А.Н. *ЖТФ*, **67**, 96 (1997).
- 12. Чапланов А.М., Шибко А.Н. *Неорганические материалы*, **31**, 1211 (1995).

A.M.Chaplanov, A.N.Shibko. Effect of polarised laser radiation on the oxidation of titanium films under thermal annealing.

The effect of laser irradiation of Ti films found in a heated state on the change of their phase composition is studied. The exposure of Ti films to a beam of linearly polarised photons with hv = 1.96 eV during their annealing in vacuum was found to suppress the oxidation reaction.