ПИСЬМА В РЕДАКЦИЮ

PACS 42.65.Ky; 42.55.Sa; 42.60.Da

Увеличение эффективности генерации второй гармоники в микролазере

И.И.Золотоверх, Н.В.Кравцов, Е.Г.Ларионцев

Показано, что при внутрирезонаторной ГВГ в микролазерах в случае малых параметров нелинейности использование резонатора на удвоенной частоте позволяет значительно повысить эффективность ГВГ.

Ключевые слова: внутрирезонаторные нелинейные эффекты, самоудвоение частоты, эффективность генерации.

Успехи в миниатюризации лазеров выдвигают на повестку дня задачу создания столь же миниатюрных преобразователей частоты лазерного излучения. Традиционные схемы, использующиеся для повышения эффективности нелинейных оптических процессов, оказываются в случае микролазеров либо недостаточно эффективными, либо неосуществимыми при малых размерах лазерной системы.

Рассмотрим, например, удвоение частоты. В традиционных схемах, когда отсутствуют ограничения на длины резонатора и нелинейного элемента, эффективная ГВГ достигается либо при помещении нелинейного кристалла внутрь резонатора лазера [1-3], либо при инжекции лазерного излучения с частотой ω во внешний резонатор, имеющий высокую добротность для излучения на частоте ω [4, 5] или на частотах ω и 2 ω [6, 7].

Весьма привлекательными с точки зрения миниатюризации являются схемы с нелинейными кристаллами внутри резонатора лазера [1-3], особенно схемы с самоудвоением частоты в само́й активной среде [8-10]. В таких схемах обычно ограничиваются лишь одним высокодобротным резонатором (резонатором самого лазера на частоте ω), а резонатор для излучения второй гармоники отсутствует, поскольку зеркала резонатора (или одно из них) имеют коэффициент пропускания, близкий к единице.

При таких условиях в микролазерах, к сожалению, получить высокий коэффициент преобразования во вторую гармонику не удается. Выход из этого положения может быть найден при использовании двойного высокодобротного резонатора, т. е. резонатора, имеющего высокую добротность на частотах ω и 2 ω .

Рассмотрим, например, микролазер с самоудвоением частоты в активном элементе с селективными зеркалами на его торцах. При этом одно из зеркал будем считать глухим как для частоты ω , так и для частоты 2ω . Второе зеркало имеет на этих частотах коэффициенты отражения r_{ω} и $r_{2\omega}$. Для простоты будем считать, что распределенными линейными потерями на частоте второй гармоники можно пренебречь.

НИИ ядерной физики им. Д.В.Скобельцына при МГУ им. М.В.Ломоносова, Россия, 119899 Москва, Воробьевы горы

Поступило в редакцию 30 марта 2000 г.

Динамика генерации лазера с двойным резонатором может быть описана следующей системой скоростных уравнений:

$$\dot{a}_1 = \frac{a_1}{2T_c} [k_1(N-1) - \sqrt{\varepsilon} a_2 \sin \psi], \tag{1}$$

$$\dot{a}_2 = -\frac{k_2}{2T_c}a_2 + \frac{\sqrt{\varepsilon}}{2T_c}a_1^2\sin\psi,$$
(2)

$$\dot{\psi} = \frac{\sqrt{\varepsilon}}{2T_{\rm c}} \left(\frac{a_1^2}{a_2} - 2a_2 \right) \cos \psi, \tag{3}$$

$$\dot{N} = \frac{1}{T_1} \left[(1+\eta) - N \left(1 + a_1^2 \right) \right].$$
(4)

Здесь $\psi = 2\varphi_1 - \varphi_2$; $a_{1,2} = (I_{1,2}/I_s)^{1/2}$ – безразмерные амплитуды полей внутри резонатора на основной частоте и частоте второй гармоники соответственно; $\varphi_{1,2}$ – их фазы; I_{1,2} – интенсивности этих полей; I_s – интенсивность насыщения активной среды; $k_{1,2}$ – коэффициенты линейных потерь в двойном резонаторе; Т_с – время обхода светом резонатора; $\varepsilon = \chi l^2 I_s$ – параметр нелинейности; χ – коэффициент нелинейности; *l* – длина активного (нелинейного) элемента; T₁ – время релаксации инверсной населенности; N – отношение инверсной населенности к пороговой; 1 + η – отношение мощности накачки к пороговой. При записи уравнений (1)-(4) мы полагали, что отстройка основной частоты от центра линии усиления мала, а собственные частоты резонатора на основной частоте ω_{1c} и частоте второй гармоники ω_{2c} удовлетворяют условию $\omega_{2c} = 2\omega_{1c}$.

Теоретические исследования внутрирезонаторной ГВГ (ВРГВГ) в лазере с двойным резонатором проводились в работах [11–13], где были рассмотрены стационарные режимы генерации и их устойчивость. Однако детальный анализ влияния добротности двойного резонатора на эффективность ВРГВГ не проводился.

Система уравнений (1)–(4) имеет два стационарных решения. В соответствии с (3) одно решение имеет место при $\cos \psi = 0$, другое – при $a_1^2 = 2a_2^2$. В первом случае внутрирезонаторные амплитуды полей определяются формулами

$$a_1^2 = \frac{-B + \left(B^2 + 4A\eta\right)^{1/2}}{2A}, \quad a_2^2 = \varepsilon \left(\frac{a_1^2}{k_2}\right)^2, \tag{5}$$

где $A = \varepsilon/k_1k_2$; B = 1 + A. Во втором случае справедливы следующие выражения:

$$a_2^2 = \left(\eta - \frac{k_2}{2k_1}\right) \left(2 + \frac{k_2}{k_1}\right)^{-1}, \quad a_1^2 = 2a_2^2.$$
 (6)

Второе решение всегда устойчиво и существует при

$$\eta - \frac{k_2}{2k_1} > 0, \quad \frac{k_2}{\sqrt{\varepsilon}} > 2a_2. \tag{7}$$

В области параметров, определяемой неравенствами (7), первое решение (формулы (5)) оказывается неустойчивым. Решения (5) и (6) имеют общую границу устойчивости, на которой, как показывает анализ, существует бистабильность. Исследование бистабильных режимов будет проведено в дальнейшем.

На основе полученных выше формул была проанализирована зависимость эффективности ГВГ $q = P_2/P$ от $k_2 (P_2 - выходная мощность излучения на частоте второй$ гармоники, <math>P – мощность накачки). Эта зависимость показана на рисунке при разных k_1 и P/P_{th} (P_{th} – пороговая мощность накачки рассматриваемого микролазера на Nd³⁺: LiNbO₃ при потерях на основной частоте 1 %). Расчеты выполнены для Nd³⁺: LiNbO₃-лазера при $\varepsilon = 10^{-7}$, что соответствует длине активного элемента 0.5 мм. КПД накачки считался равным 50 %.

Из рисунка видно, что при использовании высокодобротного резонатора на частоте 2ω можно в десятки раз увеличить интенсивность второй гармоники (в отсутствие резонатора на частоте $2\omega r_{2\omega} = 0$ и $q \ll 0.1$). Этот выигрыш объясняется тем, что в отсутствие резонатора на второй гармонике генерация на частоте 2ω происходит не в оптимальных условиях и поэтому ее эффективность оказывается малой. Оптимальный выбор добротности резонатора на частоте 2ω позволяет сделать ВРГВГ более эффективной.

Следует отметить, что указанный выигрыш при малом ε может быть получен только при относительно высокой добротности резонатора на основной частоте. В реальных условиях добротность ограничена рядом неустранимых полностью потерь (распределенные потери в активном элементе, потери на зеркалах, потери, связанные с наличием границ раздела внутри резонатора). Если предельные потери k_1 превышают ε , т. е. не выполнено условие оптимальной генерации $k_1 = \varepsilon$ [14], то применение высокодобротного резонатора на частоте второй гармоники позволяет заметно повысить эффективность ГВГ.

Зависимость эффективности ГВГ q от коэффициента пропускания двойного резонатора на частоте второй гармоники $k_2 = 1 - r_{2\omega}$ при коэффициенте потерь на основной частоте $k_1 = 0.1$ (l, 2) и 0.5 % (3, 4) для мощностей накачки $P = 1.5P_{\text{th}}$ (l, 3) и $10P_{\text{th}}$ (2, 4).

Таким образом, при ВРГВГ в микролазерах (при малом ε) использование двойного резонатора позволяет существенно увеличить интенсивность излучения второй гармоники. Оптимальные характеристики конкретных преобразователей частоты на основе микролазеров с двойным резонатором могут быть рассчитаны с помощью полученных формул.

Работа выполнена при поддержке РФФИ (гранты № 99-02-16054 и 00-02-16041).

- Дмитриев В.Г., Тарасов Л.В. Прикладная нелинейная оптика (М., Радио и связь, 1982).
- Geusic J.E., Levinstein H.G., Singh S., Smith R.G., Uitert L.G. Appl.Phys.Letts, 12, 306 (1968).
- 3. Fan T.Y., Dixon G.J., Byer R.L. Optics Letts, 11, 204 (1986).
- Ахманов С.А., Дмитриев В.Г., Моденов В.П., Радиотехника и электроника, 10, 649 (1965).
- Kozlovsky W.J., Nabors C.D., Byer R.L. Optics Letts, 12, 1014 (1987).
- Ахманов С.А., Хохлов Р.В. Проблемы нелинейной оптики (М.,ВИНИТИ, 1964).
- Sizmann A., Horowicz R.J., Wagner G., Leuchs G. Optics Comms, 80,138 (1990).
- Дмитриев В.Г., Раевский Е.В., Рубинина Н.М., Рашкович Л.Н., Силичев О.О., Фомичев А.А. *Письма в ЖТФ*, 5, 1400 (1979).
- Chen Y.F., Wang S.C., Kao C.F., Hang T.M. *IEEE Photon.Technol. Letts*, 8, 1313 (1996).
- Кравцов Н.В., Лаптев Г.Д., Морозов Е.Ю., Наумова И.И., Фирсов В.В. Квантовая электроника, 29, 95 (1999).
- Дмитриев В.Г., Зенкин В.А., Корниенко Н.Е., Рыжков А.И., Стрижевский В.Л. Квантовая электроника, 5, 2416 (1978).
- 12. Горбачев В.Н., Ползик Е.С. ЖЭТФ, 96, 1984 (1989).
- 13. Walls D.F., Collet M.J., Lane A.S. Phys. Rev. A, 42, 4366 (1990).
- 14. Smith R.G. IEEE J.Quantum Eletcron., 6, 215 (1970).

I.I.Zolotoverkh, N.V.Kravtsov, E.G.Lariontsev. Enhancement of the efficiency of second-harmonic generation in a microlaser.

It is shown that the use of a doubly resonant cavity provides a considerable increase in the intracavity SHG efficiency in microlasers in the case of small nonlinearity parameters.