## Эффективность селективной ИК многофотонной диссоциации молекул в импульсном газодинамическом потоке, взаимодействующем с твердой поверхностью

Г.Н.Макаров\*, А.Н.Петин\*\*

Впервые исследована изотопически-селективная ИК многофотонная диссоциация молекул (SF<sub>6</sub>, CF<sub>3</sub>I) в импульсном газодинамическом потоке, взаимодействующем с твердой поверхностью. Обнаружено значительное (в несколько раз) увеличение выхода продуктов (по сравнению со случаем возбуждения молекул в невозмущенном потоке) без существенного уменьшения селективности процесса. Обсуждаются причины наблюдаемого эффекта.

**Ключевые слова**: изотопически-селективная ИК диссоциация молекул, газодинамически охлажденный молекулярный поток, взаимодействие потока с поверхностью.

Применение газодинамически охлажденных молекулярных струй и потоков [1] для повышения селективности ИК многофотонной диссоциации (МФД) молекул [2, 3] давно и хорошо известно (см., напр., [4–6]). Из-за сильного охлаждения газа происходит резкое сужение полос ИК поглощения молекул, в результате чего увеличивается селективность возбуждения и диссоциации. Однако в струях и потоках низка эффективность фотохимических процессов. Из-за малой концентрации молекул и низкой температуры газа скорости химических реакций, в том числе приводящих к образованию целевых продуктов, малы.

Экспериментальная установка, использованная в работе, подробно описана в публикациях [5, 7]. Молекулярный поток в ней формировался с помощью импульсного сопла типа «токовая петля» [8] с диаметром отверстия 0.75 мм. Длительность импульса открывания сопла была равна примерно 100 мкс, давление газа над соплом могло изменяться в диапазоне 0.1–3 атм. Число молекул, истекающих из сопла за один импульс, зависело от давления газа над соплом и в данных экспериментах изменялось от ~  $10^{16}$  до ~  $10^{17}$  мол./имп. Средняя скорость молекул в потоке измерялась времяпролетным методом [9] и составляла  $420 \pm 20$  м/с для SF<sub>6</sub> и  $400 \pm 20$  м/с для CF<sub>3</sub>I.

На расстоянии ~ 50-150 мм от сопла перпендикулярно направлению потока располагалась твердая поверхность (использовались пластинки из кристаллов KBr или CaF<sub>2</sub>). Молекулы в падающем потоке возбуждались импульсом TEA CO<sub>2</sub>-лазера перед поверхностью, на различных расстояниях  $\Delta x$  от нее. Лазерный пучок был направлен перпендикулярно потоку и фокусировался в область взаимодействия цилиндрической линзой, фокусное расстояние которой в случае возбуждения SF<sub>6</sub> составляло 12 см, а при возбуждении CF<sub>3</sub>I – 25 см. Ось линзы была параллельна поверхности.

<sup>\*</sup>Институт спектроскопии РАН, Россия, 142190 Троицк Моск. обл. <sup>\*\*</sup>Троицкий институт инновационных и термоядерных исследований, Россия, 142190 Троицк Моск. обл.

Поступила в редакцию 16 марта 2000 г.

Исследовалась диссоциация молекул в потоке, взаимодействующем с поверхностью, а также в невозмущенном потоке (при отсутствии поверхности на его пути). В экспериментах с SF<sub>6</sub> измерялась интенсивность HF\*люминесценции ( $\lambda \simeq 2.5$  мкм). Эта люминесценция сопровождает диссоциацию SF<sub>6</sub> в присутствии H<sub>2</sub> или CH<sub>4</sub>, а ее интенсивность является мерой выхода диссоциации SF<sub>6</sub> [4]. Измерялись также выход продукта SF<sub>4</sub> и коэффициент обогащения его изотопом <sup>34</sup>S. HF\*-люминесценция детектировалась с помощью ИК приемника на основе PbS с приемной площадкой 1 × 1 см. Люминесценция наблюдалась в направлении, параллельном потоку. Коэффициент обогащения в SF4 определялся по спектрам ИК поглощения колебания v<sub>6</sub> молекулы (728 см<sup>-1</sup>), в котором изотопический сдвиг для <sup>32</sup>SF<sub>4</sub> и <sup>34</sup>SF<sub>4</sub> составляет  $\sim$  12.3 см<sup>-1</sup> [10]. В экспериментах с СF<sub>3</sub>I измерялся выход продукта C<sub>2</sub>F<sub>6</sub> и коэффициент обогащения в нем изотопом <sup>13</sup>С. Метод измерения описан в [5].

На рис.1 приведена типичная осциллограмма импульса HF\*-люминесценции, которая наблюдается при возбуждении SF<sub>6</sub> в смеси с CH<sub>4</sub> (SF<sub>6</sub>:CH<sub>4</sub>=1:1) в потоке, взаимодействующем с поверхностью. Расстояние от сопла до поверхности составляло 114 мм, расстояние от зоны возбуждения до поверхности  $\Delta x = 68$  мм. Суммарное давление газа над соплом p = 0.7 атм. Молекулы возбуждались на частоте 947.74 см<sup>-1</sup> (линия 10*P*(16) CO<sub>2</sub>-



Рис.1. Типичная осциллограмма импульса  $HF^*$ -люминесценции при возбуждении SF<sub>6</sub> в смеси с CH<sub>4</sub> (SF<sub>6</sub>: CH<sub>4</sub> = 1:1) в молекулярном потоке, взаимодействующем с поверхностью.



Рис.2. Зависимости интенсивности HF<sup>\*</sup>-люминесценции на линии 10P(18) CO<sub>2</sub> от плотности энергии при возбуждении SF<sub>6</sub> в смеси с CH<sub>4</sub> (SF<sub>6</sub>: CH<sub>4</sub> = 1 : 1, общее давление 2.4 атм) в невозмущенном потоке (*1*) и в потоке, взаимодействующем с поверхностью (*2*).

лазера). Усредненная плотность энергии возбуждения  $\Phi_{\rm av} \simeq 12 \ \text{Дж/cm}^2$ . Время задержки между импульсом открывания сопла и импульсом излучения лазера  $\tau_{\rm d} = 250$  мкс. При такой задержке лазерный импульс возбуждал молекулы, находящиеся в наиболее плотной части потока.

Видно, что импульс HF\*-люминесценции состоит из двух пиков. Первый пик связан с диссоциацией молекул в зоне возбуждения, второй – с диссоциацией молекул в зоне взаимодействия потока с поверхностью. При увеличении (уменьшении) расстояния  $\Delta x$  временная задержка между пиками увеличивалась (уменьшалась). При  $\Delta x \leq$ 20 мм эти пики не разрешались во времени (полоса пропускания ИК приемника составляла ~16 кГц), однако наблюдалась сильная зависимость интенсивности HF\*люминесценции от того, была поверхность на пути потока или нет.

На рис.2 приведены зависимости интенсивности HF<sup>\*</sup>люминесценции от усредненной по объему взаимодействия плотности энергии  $\Phi_{av}$  в случае возбуждения SF<sub>6</sub> в смеси с CH<sub>4</sub> (SF<sub>6</sub>:CH<sub>4</sub> = 1:1) в невозмущенном потоке и потоке, взаимодействующем с поверхностью. Суммарное давление газа над соплом составляло 2.4 атм, расстояние от сопла до поверхности – 52 мм,  $\Delta x = 2.5$  мм. Видно, что в потоке, взаимодействующем с поверхностью, интенсивность HF<sup>\*</sup>-люминесценции значительно (в 4–5 раз) больше, чем в невозмущенном потоке. При этом отличие тем больше, чем меньше плотность энергии.

В таблице приведены результаты исследований выхода продуктов и коэффициентов обогащения в них при диссоциации SF<sub>6</sub> и CF<sub>3</sub>I в невозмущенном потоке и в потоке, взаимодействующем с поверхностью. Расстояние от сопла до поверхности составляло 52 мм,  $\Delta x = 2.5$ мм. Видно, что выход как SF<sub>4</sub>, так и C<sub>2</sub>F<sub>6</sub> во втором случае существенно больше, чем в первом, в то время как селективности (коэффициенты обогащения в продуктах) лишь незначительно меньше. Отметим, что в данной работе мы не ставили целью получение максимальной селективности.

Обсудим кратко причины наблюдаемого эффекта. Увеличение выхода продуктов в потоке, взаимодействующем с поверхностью, связано, в основном, с увеличением выхода диссоциации молекул. При многофотонном ИК возбуждении формируется ансамбль высоковозбужденных молекул с довольно широким распределением по колебательным уровням [6]. В результате часть молекул диссоциирует радиационно, а часть – за счет столкновений высоковозбужденных молекул между собой [2, 6]. В невозмущенном потоке имеет место только радиационная диссоциация, в то время как из-за дефицита столкновений отсутствует столкновительная диссоциация высоковозбужденных молекул, вклад которой в суммарный выход диссоциации обычно весьма велик (см., напр., [2, 6]).

При взаимодействии сверхзвукового молекулярного потока с твердой поверхностью перед ней формируется скачок уплотнения [11, 12], в котором плотность молекул, а также температура газа существенно выше, чем в падающем потоке. Предельная плотность газа  $\rho_2$  в прямом скачке уплотнения определяется соотношением [11, 12]

$$\frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{\gamma - 1}$$

где  $\rho_1$  – плотность газа в падающем потоке;  $\gamma = c_p/c_V$  – отношение удельных теплоемкостей газа. Для SF<sub>6</sub>  $\gamma \simeq 1.1$ [13], поэтому  $\rho_2/\rho_1 \simeq 21$ . Для CF<sub>3</sub>I  $\gamma \simeq 1.13$  [13], а  $\rho_2/\rho_1$ ≈ 16.5. Увеличение температуры газа в скачке уплотнения определяется соотношением [11, 12]  $\Delta T = v^2/2c_p$ , где v – скорость потока. В случае SF<sub>6</sub> при  $v \simeq 420$  м/с и  $c_p \simeq$ 665 Дж/кг·К [13] имеем  $\Delta T \simeq 130$  К, поэтому если поступательная температура молекул в падающем потоке  $T_1 \simeq 30 - 40$  К [14], то температура в скачке уплотнения  $T_2 = T_1 + \Delta T \simeq 160 - 170$  К. Благодаря высокой плотности и повышенной температуре газа высоковозбужденные молекулы, попадающие в скачок уплотнения, сталкиваются между собой, в результате чего увеличивается выход диссоциации. Селективность процесса остается довольно высокой, поскольку она формируется при возбуждении молекул в падающем охлажденном потоке.

Увеличение выхода продуктов может быть связано также с увеличением концентрации радикалов и скорости химических реакций в скачке уплотнения. Так, в [15] на примере  $CF_3I$  было показано, что увеличение концентрации радикалов  ${}^{13}CF_3$  в потоке приводит к сильному (почти квадратичному) увеличению выхода  $C_2F_6$ , а так-

Выход продуктов (SF<sub>4</sub> и  $C_2F_6$ ) и коэффициенты обогащения в них при диссоциации SF<sub>6</sub> и CF<sub>3</sub>I соответственно в невозмущенном потоке и в потоке, взаимодействующем с поверхностью.

| Молекула          | Давление над<br>соплом (атм) | Линия лазера     | Плотность энер-<br>гии (Дж/см <sup>2</sup> ) | Выход продуктов (отн. ед.) |                | Коэффициент обогащения<br>в продуктах |                |
|-------------------|------------------------------|------------------|----------------------------------------------|----------------------------|----------------|---------------------------------------|----------------|
|                   |                              |                  |                                              | без поверхности            | с поверхностью | без поверхности                       | с поверхностью |
| $SF_6$            | 1.26                         | 10 <i>P</i> (16) | 12                                           | $1\pm0.2$                  | $2.7\pm0.5$    | _                                     | _              |
|                   | 1.26                         | 10 <i>P</i> (36) | 10                                           | _                          | _              | $17\pm5$                              | $15\pm3$       |
| CF <sub>3</sub> I | 1.5                          | 9 <i>R</i> (10)  | 1.4                                          | $1\pm0.2$                  | $2.4\pm0.3$    | _                                     | _              |
|                   | 1.5                          | 9 <i>P</i> (22)  | 2.6                                          | —                          | _              | $22\pm3$                              | $20\pm3$       |

же к существенному увеличению коэффициента обогащения его изотопом <sup>13</sup>С.

Итак, эффективность селективной ИК МФД молекул в импульсном газодинамическом потоке может быть существенно повышена за счет формирования скачка уплотнения при взаимодействии потока с твердой поверхностью.

Авторы выражают благодарность В.Н.Лохману и С.А.Мочалову за техническую помощь. Работа выполнена при финансовой поддержке РФФИ (грант № 00-03-33003-а).

- Anderson J.B. In: Gasdynamics, molecular beams and low density gasdynamics (N.Y., Marcel Dekker, 1974, v.4, p.1).
- 2. Амбарцумян Р.В., Летохов В.С., Рябов Е.А., Чекалин Н.В. Письма в ЖЭТФ, 20, 597 (1974).
- Амбарцумян Р.В., Горохов Ю.А., Летохов В.С., Макаров Г.Н. Письма в ЖЭТФ, 21, 375 (1975).
- Алимпиев С.С., Баронов Г.С., Караваев С.М., Марцынкьян В.А., Мерзляков А.В., Никифоров С.М., Сартаков Б.Г., Хохлов Э.М., Штарков Л.А. Квантовая электроника, 10, 376 (1983).
- Макаров Г.Н., Лохман В.Н., Малиновский Д.Е., Огурок Д.Д. Квантовая электроника, 25, 545 (1998).
- 6. Bagratashvili V.N., Letokhov V.S., Makarov A.A., Ryabov E.A. Multiple photon infrared laser photophysics and photochemistry (Har-

wood, N.Y., Academic, 1985).

- Макаров Г.Н., Малиновский Д.Е., Огурок Д.Д. ЖТФ, 69, 35 (1999).
- 8. Gentry W.R., Giese C.F. Rev. Sci. Instr., 49, 595 (1978).
- Apatin V.M., Dorozhkin L.M., Makarov G.N., Pleshkov G.M. *Appl. Phys. B*, **29**, 273 (1982).
- Christe K.O., Curtis E.C., Schack C.J., Cyvin S.J., Brunvoll J., Sawodny W. Spectrochim. Acta, 32A, 1141 (1976).
- 11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика (М., Наука, 1986).
- Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений (М., Наука, 1966).
- CRC handbook of chemistry and physics (London, Tokio, CRC Press, 1993-1994).
- 14. Апатин В.М., Макаров Г.Н. ЖЭТФ, 84, 15 (1983).
- 15. Макаров Г.Н. *Письма в ЖТФ*, **24**, 35 (1998).

G.N.Makarov, A.N.Petin. Efficiency of selective IR multiphoton dissociation of molecules in a pulsed gas-dynamic flow interacting with a solid surface.

Isotopically selective IR multiphoton dissociation of molecules  $(SF_6, CF_3I)$  in a pulsed gas-dynamic flow interacting with a solid surface was studied for the first time. A noticeable (several-fold) increase in the yield of products (in comparison with excitation of molecules in an unperturbed flow) without a substantial decrease in the selectivity of the process was observed. Possible reasons of the effect are discussed.