ФИЗИЧЕСКИЕ ОСНОВЫ КВАНТОВОЙ ЭЛЕКТРОНИКИ

PACS 03.75.Fi,05.30.Jp

Функция распределения и флуктуации числа частиц захваченного в ловушку идеального бозе-газа

В.А.Алексеев

Найдена функция распределения $w_0(n_0)$ числа частиц n_0 в конденсате захваченного в ловушку идеального бозе-газа. Показано, что при температуре выше критической ($T > T_c$) она имеет обычную форму $w_0(n_0) = (1 - e^{\mu})e^{\mu n_0}$, где $\mu -$ химпотенциал в единицах температуры. При $T < T_c$ это распределение почти скачком перестраивается и принимает гауссову форму, которая лишь параметрически зависит от потенциала ловушки. С понижением температуры центр этой функции перемещается в сторону увеличивающихся значений n_0 , а ширина стремится к нулю, что соответствует подавлению флуктуаций.

Ключевые слова: конденсат Бозе – Эйнштейна, функция распределения.

Концепция статистической независимости ансамблей частиц, находящихся в различных квантовых состояниях [1], приводит к факторизации распределения $W(n_0, n_1, ...)$ чисел частиц n_k в состояниях с энергиями $E_0 < E_1 \leq E_2...$:

$$W(n_0, n_1, ...) = \prod_k w_k(n_k), \quad w_k(n_k) = Q_k e^{(\mu - \varepsilon_k)n_k}, \qquad (1)$$

где $\varepsilon_k = E_k/T$; T – температура в энергетических единицах; μ – химпотенциал в единицах температуры; Q_k – нормирующий множитель (в обозначениях [1], формула (37.4), $Q_k = \exp(\Omega_k/T)$, Ω_k – термодинамический потенциал). В случае статистики Бозе – Эйнштейна вероятность различных значений n_k должна быть нормирована условием

$$\sum_{n_k=0}^N w_k(n_k) = 1,$$

где N-полное число частиц
 газа. При $N\to\infty$ отсюда следует

$$w_k(n_k) = (1 - e^{\mu - \varepsilon_k})e^{(\mu - \varepsilon_k)n_k}.$$
(2)

После этого химпотенциал μ определяется требованием, чтобы сумма соответствующих (1), (2) средних значений

$$\langle n_k \rangle = \tilde{n}_k = \sum_{n_k=0}^{\infty} n_k w_k(n_k)$$

была равна полному числу частиц N:

$$\sum_{k} \tilde{n}_{k} = N, \quad \tilde{n}_{k} = (e^{\varepsilon_{k} - \mu} - 1)^{-1}.$$
(3)

Поступила в редакцию 14 ноября 2000 г.

Энергию E_k можно отсчитывать от энергии основного состояния. В этом случае $\varepsilon_0 = 0$, и из (2) и (3) получаем

$$w_0(n_0) = (1 - e^{\mu})e^{\mu n_0}, \quad \tilde{n}_0 = (e^{-\mu} - 1)^{-1}.$$
 (4)

При низкой температуре, по крайней мере в случае системы с дискретным спектром, распределение (1), (2) становится внутренне противоречивым. При $T \to 0$ получаем $\varepsilon_{k\neq0} \to \infty$ и $\tilde{n}_{k\neq0} \to 0$. Это означает, что при T = 0 все частицы должны с определенностью находиться в основном состоянии, т. е. распределение числа частиц в основном состоянии должно иметь вид

$$w_0(n_0) = \delta_{n_0,N}, \quad T = 0.$$
 (5)

Из (3) и (4), однако, в этом случае следует $\tilde{n}_0 = N$, $\mu = -\ln(1 + 1/N) \simeq -1/N$, и распределение принимает вид

$$w_0(n_0) = N^{-1} \mathrm{e}^{-n_0/N},\tag{6}$$

радикально отличающийся от (5). Это приводит к флуктуационной катастрофе, что обсуждалось в [2] вне связи с противоречием между (5) и (6). Из (1), (2) следует известное выражение для среднеквадратичной флуктуации $\langle \Delta n_k^2 \rangle = \tilde{n}_k (\tilde{n}_k + 1)$ (см. [1], §113), что при T = 0, когда $\tilde{n}_0 = N$, дает заведомо неправильный результат $\langle \Delta n_0^2 \rangle = N(N+1)$.

В настоящей статье будет показано, что (1), (2) правильно описывают распределение числа частиц только в возбужденных состояниях. Распределение (4) числа частиц в основном состоянии применимо только при температуре, большей критической T_c , когда $\langle n_0 \rangle \ll N$. При $T < T_c$ оно перестраивается и в случае системы с дискретным спектром (газ в ловушке) принимает гауссову форму. При этом флуктуационная катастрофа устраняется. Фактически такая перестройка связана с необходимостью выполнения точного соотношения

$$\sum_{k} n_k = N,\tag{7}$$

Физический институт им. П.Н.Лебедева РАН, Россия, 117924 Москва, Ленинский просп., 53; эл. почта: valeks@sci.lebedev.ru

а не (3), выполняющегося только для средних величин. При $T < T_c$ это становится существенным и обуславливает статистическую зависимость ансамблей частиц, находящихся в разных квантовых состояниях.

Функция распределения $w_0(n_0)$ находится суммированием распределения Гиббса:

$$w_0(n_0) = \sum_{n_1+n_2+\ldots=N-n_0} W(n_0, n_1, \ldots)$$

= $S^{-1} \sum_{n_1+n_2+\ldots=N-n_0} e^{-\varepsilon_0 n_0 - \varepsilon_1 n_1 - \ldots}$, (8)

где S – нормирующий множитель. Суммирование в (8) выполняется по всем положительным $n_1, n_2, ...,$ удовлетворяющим написанному под знаком суммы условию (7). Это условие можно выполнить автоматически, если записать сумму (8) в виде

$$w_{0}(n_{0}) = S^{-1} e^{-\varepsilon_{0}n_{0}} \sum_{n_{1},n_{2}...} e^{-\varepsilon_{1}n_{1}-\varepsilon_{2}n_{2}-...}$$

$$\times \frac{1}{2\pi i} \oint z^{(-N+n_{0}-1)+n_{1}+n_{2}+...} dz. \qquad (9)$$

Контур интегрирования в (9) имеет вид окружности с центром в точке z = 0. Только при выполнении условия (7) подынтегральное выражение имеет полюс кратности единица и интеграл равен $2\pi i$. В остальных случаях он равен нулю, что позволяет в (9) выполнить суммирование по всем положительным $n_1, n_2,...$ без каких-либо ограничений; необходимо только обеспечить сходимость всех возникающих сумм. Это будет выполнено, если радиус окружности, который удобно записать в виде $|z| = e^{\mu}$, ограничить условием $e^{\mu-\varepsilon_0} < 1$. После этого можно положить $\varepsilon_0 = 0$ и потребовать выполнения условия $\mu < 0$.

Выполняя в (9) суммирование, получаем

$$w_0(n_0) = S^{-1} \frac{1}{2\pi i} \oint z^{-N+n_0-1} e^{G(z)} dz,$$
(10)

$$e^{G(z)} = \prod_{k \neq 0} (1 - z e^{-\varepsilon_k})^{-1}, \ G(z) = -\sum_{k \neq 0} \ln(1 - z e^{-\varepsilon_k}).$$

Функция G(z) внутри окружности $|z| = e^{\mu} < 1$ не имеет особенностей, поэтому $w_0(n_0 = N) = S^{-1}e^{G(0)} = S^{-1}$. При $n_0 = N - 1$ получаем, что вероятность

$$w_0(n_0 = N - 1) = S^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}z} \mathrm{e}^{G(z)}\right)_{z=0} = S^{-1} \sum_{k \neq 0} \mathrm{e}^{-\varepsilon_k}$$

при $T \to 0$ экспоненциально мала и убывает с дальнейшим уменьшением n_0 . Это означает, что при $T \to 0$ можно ограничиться двумя величинами:

$$w_0(n_0 = N) = 1 - \sum_{k \neq 0} e^{-\varepsilon_k}, \ w_0(n_0 = N - 1) = \sum_{k \neq 0} e^{-\varepsilon_k}.$$
 (11)

При T = 0 из (11) получаем (5). Естественно, соответствующая (5) флуктуация $\langle \Delta n_0^2 \rangle = 0$.

С ростом температуры величины $\varepsilon_{k\neq0}$ убывают и получить распределение столь простым способом не удается, поэтому поступим следующим образом. Произведя в (10) замену $z = e^{\mu + ix}$, получим

$$w_0(n_0) = S^{-1} e^{\mu n_0} \int_{-\pi}^{\pi} e^{-i(N-n_0)x + F(x)} dx,$$

$$F(x) = -\sum_{k \neq 0} \ln(1 - e^{\mu + ix - \varepsilon_k}).$$
(12)

В (12) мы отбросили все не зависящие от n_0 множители, которые «поглощаются» нормировкой *S*, определяющейся самим соотношением (12).

Напишем три первых члена разложения функции *F*(*x*):

$$F(x) = F(0) + iAx - Dx^{2},$$
(13)

где

$$F(0) = -\sum_{k \neq 0} \ln(1 - e^{\mu - \varepsilon_k}); \ A = \sum_{k \neq 0} \tilde{n}_k; \ D = \frac{1}{2} \sum_{k \neq 0} (\tilde{n}_k + \tilde{n}_k^2).$$

Первый член этого разложения при подстановке в (12) «поглощается» нормировкой и его можно опустить.

Выберем теперь параметр μ , потребовав выполнения условия

$$A = \sum_{k \neq 0} \tilde{n}_k = N - \tilde{n}_0, \tag{14}$$

совпадающего с (3), и рассмотрим зависимость величин A и D от температуры.

При $T \to 0$ получаем $\varepsilon_{k\neq 0} \to \infty$, откуда следует, что $\tilde{n}_{k\neq 0} \to 0$, $\tilde{n}_0 \to N$, $\mu \to -1/N$; поэтому $A \to 0$ и $D \to 0$. С ростом температуры величины $\varepsilon_{k\neq 0}$ убывают, а величины $\tilde{n}_{k\neq 0}$ и, следовательно, A и D растут и при $T > T_*$, где T_* – некоторая характерная температура, зависящая от числа частиц N и потенциала ловушки, становятся порядка N, т. е. очень большими. При этом важно, что в случае большого числа частиц N значения A и D уже очень велики, когда $\tilde{n}_0 = N - A$ все еще очень близко к N, а $\mu = -1/\tilde{n}_0$ еще очень мало, т. е. температура T_* заведомо много меньше критической (например, при N = 1000 и при A = 100, $D \ge 50$ получаем $\tilde{n}_0 = 900$).

С дальнейшим ростом температуры величины $\varepsilon_{k\neq 0}$ продолжают убывать и условие (14) можно выполнить лишь при достаточно больших $|\mu|$. При этом величина \tilde{n}_0 становится малой, т. е. конденсатная фракция исчезает, а A и D достигают своих максимальных значений A = N, $D \ge N/2$.

Таким образом, начиная с температур $T > T_*$, еще гораздо более низких, чем критическая, вещественная часть F(x) становится большой уже при $|x| \ll 1$. Это позволяет подставить разложение (13) в (12) и устремить пределы интегрирования в бесконечность. С учетом (14) получаем

$$w_0(n_0) = S^{-1} e^{\mu n_0} e^{-(n_0 - \tilde{n}_0)^2/4D}, \quad \mu = -\ln(1 + 1/\tilde{n}_0).$$
 (15)

Распределение (15) имеет универсальную форму, поскольку зависит от потенциала ловушки и числа частиц Nтолько через входящие в него параметры \tilde{n}_0 и D. Оно имеет качественно разный вид при больших и малых \tilde{n}_0 , т. е. при температурах выше и ниже критической.

В широком диапазоне температур ниже критической, когда выполняются условия

$$\tilde{n}_0^2 \gg D, \quad N - \tilde{n}_0 \gg 1,$$
(16)

Рис.1. Функция распределения (15) числа частиц в конденсате захваченного в ловушку бозе-газа при разных температурах и N = 10000. Величины \tilde{n}_0 и *D* вычислены по формуле (17).

функция распределения (15) экспоненциально мала в двух своих крайних точках $n_0 = N$ и $n_0 = 0$ (второе неравенство (16) эквивалентно условию $D \gg 1$ и одновременно обеспечивает применимость (15)), т.е. фактически имеет гауссову форму. С уменьшением температуры \tilde{n}_0 растет, а D убывает и распределение (15) сужается, а центр его перемещается в сторону больших n_0 . При вычислении статсуммы S можно перейти от суммирования к интегрированию в бесконечных пределах, что дает $S = 2\sqrt{\pi D} \exp((\mu n_0 + \mu^2 D)), \mu = -1/\tilde{n}_0$. Вычисление средних значений сводится к дифференцированию S по μ , и мы находим среднее число частиц в конденсате $\langle n_0 \rangle =$ $\tilde{n}_0(1-2D/\tilde{n}_0^2)$, которое слабо отличается от \tilde{n}_0 (но не совпадает с ним), и среднеквадратичную флуктуацию $\langle \Delta n_0^2 \rangle = 2D$, убывающую вместе с D при понижении температуры.

С ростом температуры величина \tilde{n}_0 уменьшается, перестает выполняться первое из условий (16) и распределение (15) все больше прижимается к своей левой границе $n_0 = 0$. Наконец, при $\tilde{n}_0 \ll D$ (однако все еще может выполняться $\tilde{n}_0 \gg 1$) главным в распределении (15) становится множитель е μn_0 и оно принимает вид (4).

Аналогично (10) можно написать и совместное распределение

$$S^{-1} e^{-\varepsilon_i n_i} \frac{1}{2\pi i} \oint z^{-N-1+n_0+n_i} e^{G(x)} (1-z e^{-\varepsilon_i}) dz.$$

Производя те же операции, что и при получении распределения (15), находим, что функция распределения возбужденных частиц

$$w_{i \neq 0} = \sum_{n_0=0}^N w_{0, i \neq 0}(n_0, n_i)$$

 $w_{0,i\neq 0}(n_0,n_i) =$

при всех температурах совпадает с (1), (2).

В случае параболической ловушки при температуре $T_* < T < T_c + \Delta T$, где $T_* = T_c N^{-1/3}$, а $\Delta T \ll T_c$, величины \tilde{n}_0 и *D* вычисляются точно [3]:

$$\tilde{n}_0 = \frac{1}{2} N \Big\{ 1 - t^3 + \left[(1 - t^3)^2 + 4\gamma t^3 / N \right]^{1/2} \Big\},$$

$$D = \gamma t^3 N/2, \quad t = T/T_c, \quad \gamma \simeq 1.37. \tag{17}$$

Из (17) видно, что в этом случае переход распределения (15) от гауссовой формы к виду (4) происходит в узкой окрестности критической температуры $|T - T_c| \le 1/\sqrt{N}$, т. е. при больших *N*, практически скачком. Можно показать [4], что этот переход сопровождается скачком теплоемкости на $\Delta(dE/dT) \simeq -6.75N$. Качественное изменение формы функции распределения (15) в окрестности критической температуры показано на рис.1.

Работа частично поддержана Государственной научно-технической программой «Метрология».

- Ландау Л.Д., Лифшиц Е.М. Статистическая физика (М., Наука, 1995, §§ 37, 54, 113).
- 2. Holthaus M., Kalinowski E., Kirsten K. Cond-mat/9804171.
- Алексеев В.А., Крылова Д.Д. Квантовая электроника, 30, 441 (2000).
- 4. Алексеев В.А. ЖЭТФ, 119, № 4 (2001).