Особенности отражения света от границы раздела полубесконечного нелинейного кристалла в условиях двухфотонного возбуждения биэкситонов

К.Д.Ляхомская, Л.Ю.Надькин, П.И.Хаджи

Изучены особенности отражения излучения от торца полубесконечного полупроводника в условиях двухимпульсного двухфотонного возбуждения биэкситонов из основного состояния кристалла. Показано, что функция отражения имеет сложное мультистабильное поведение в зависимости от амплитуд полей падающих импульсов. Предсказано возникновение уединенных замкнутых участков либо рогообразных структур.

Ключевые слова: самоотражение, экситон, биэкситон, диэлектрическая функция, распределенная обратная связь.

Введение

Плоскопараллельная пластинка нелинейного полупроводника при определенных условиях характеризуется мультистабильными функциями отражения и пропускания лазерного излучения [1-4]. Это обусловлено тем, что при отражении от заднего торца в пластинке рождается обратная волна, которая в результате нелинейной интерференции с прямой волной создает условия для мультистабильного пропускания (отражения). С другой стороны, в ряде работ [1, 5-9] было показано, что в приближении медленно меняющейся в пространстве огибающей амплитуды распространяющейся волны граница раздела полубесконечного полупроводника в большинстве случаев характеризуется однозначной нелинейной либо бистабильной функцией отражения. В указанном приближении в полубесконечной оптически-однородной нелинейной среде обратная волна, как правило, не возникает.

Вместе с тем отражение и преломление ограниченных в поперечном сечении пучков характеризуется дополнительными особенностями. Так, в [10] показано, что в поперечных профилях отраженных пучков формируются узкие провалы, обусловленные оптически нелинейным пробоем полупроводника узкой «струей», отходящей от границы раздела полубесконечной среды, в области максимума падающего пучка, что обуславливает возможность гистерезисного отражения. В [11] показано, что в области полного отражения от нелинейной среды проходящий пучок разбивается на ряд независимых самосфокусированных пучков, число и направление распространения которых определяются интенсивностью падающего излучения.

Наиболее полно исследование гистерезисных явлений в распределенных нелинейных системах выполнено в [12], где изучены эффекты продольной и поперечной структуры полей, кинетика пространственного гистерезиса и формирование пространственно-временных структур излучения. Теоретически бистабильность и гистерезис при отражении плоской монохроматической волны от поверхности проводника предсказаны в [13]. Оказывается, что при больших интенсивностях возбуждения поле в проводнике имеет колебательный характер, который на большом расстоянии от торца сменяется апериодическим пространственным затуханием. В результате возникает многопетлевая зависимость коэффициента отражения от интенсивности падающей волны.

В ряде работ [14-20] показано, что отход от приближения медленно меняющихся огибающих приводит к дополнительным особенностям функции отражения излучения от полубесконечной оптически-однородной нелинейной среды. Физически это обусловлено отражением света на резких градиентах нелинейного показателя преломления в кристалле при больших интенсивностях возбуждения, что вызывает возникновение обратной волны и, как следствие, нелинейную интерференцию прямой и обратной волн, а также мультистабильность функции отражения. Эта возможность отмечалась также в [10-13].

Возникновение обратной волны на резких градиентах показателя преломления в системе двухуровневых атомов было детально изучено в [14–18] и названо самоотражением. В [19, 20] показано, что аналогичное явление имеет место и в системе экситонов и биэкситонов при учете экситон-фотонного взаимодействия, оптической экситон-биэкситонной конверсии и одноимпульсного двухфотонного возбуждения биэкситонов из основного состояния кристалла. Представляет интерес исследование этого явления и при других механизмах нелинейности.

1. Постановка задачи и основные уравнения

Рассмотрим нелинейную функцию отражения границы раздела полубесконечного оптически-однородного и изотропного полупроводника в условиях двухфотонного двухимпульсного возбуждения биэкситонов из основного состояния кристалла. Известно [2, 21], что двухфотонное возбуждение биэкситонов характеризуется гигантской силой осциллятора по отношению к экситонному переходу, а полоса двухфотонного поглощения света

Приднестровский государственный университет, Молдавия, 278000 Тирасполь, ул. 25 Октября, 128

Поступила в редакцию 8 июня 2000 г., после доработки – 31 октября 2000 г.

имеет узкую δ-образную форму. По этой причине нерезонансные взаимодействия дают исчезающе малый вклад по сравнению с резонансным, и эффект Штарка в гамильтониане взаимодействия биэкситонов с фотонами можно не учитывать.

Пусть на плоскую границу раздела вакуум – полупроводник нормально падают два импульса монохроматического лазерного излучения с огибающими напряженностей электрических полей E_{i1} и E_{i2} и частотами фотонов ω_1 и ω_2 соответственно. Считаем, что частоты фотонов каждого из импульсов не попадают в резонанс ни с переходом в экситонной области спектра, ни с переходом из экситонного состояния в биэкситонное в области *M*полосы, обусловленной оптической экситон-биэкситонной конверсией [22], однако суммарная энергия обоих фотонов совпадает с энергией возбуждения биэкситона из основного состояния кристалла.

В общем случае, когда $\omega_1 \neq \omega_2$, возможно только двухфотонное возбуждение биэкситонов одновременно фотонами обоих импульсов, но не фотонами каждого из них в отдельности. Часть излучения падающих импульсов проходит в среду и распространяется в ней, возбуждая биэкситоны и взаимодействуя с ними. Другая часть отражается. Задача состоит в определении амплитуд отраженных импульсов E_{r1} и E_{r2} либо коэффициентов отражения торца кристалла в зависимости от амплитуд E_{i1} и E_{i2} падающих импульсов.

Гамильтониан взаимодействия биэкситонов с полями обоих импульсов имеет вид [2, 21]

$$H_{\rm int} = -\hbar\mu (b^+ E_1^+ E_2^+ + b E_1^- E_2^-), \tag{1}$$

где μ – константа двухфотонного возбуждения биэкситона [19, 25]; b – амплитуда биэкситонной волны; $E_{1,2}^+(E_{1,2}^-)$ – положительно(отрицательно)-частотные компоненты амплитуд распространяющихся в среде импульсов. Используя (1), легко получить гайзенберговское (материальное) уравнение движения для амплитуды b:

$$\mathbf{i}b = \Omega_0 b - \mathbf{i}\gamma b - \mu E_1^+ E_2^+,\tag{2}$$

где Ω_0 – собственная частота возбуждения биэкситона из основного состояния кристалла; γ – феноменологическая константа, описывающая затухание биэкситонного состояния.

Решения для всех волн в стационарном режиме берем в виде $E_1^+ \sim \exp[-i\omega_1 t], E_2^+ \sim \exp[-i\omega_2 t], b \sim \exp[-i(\omega_1 + \omega_2)t]$. Тогда из (2) можно найти выражение для стационарной амплитуды биэкситонной волны b, затем определить поляризации, после чего комплексные диэлектрические функции ε_1 и ε_2 каждой из волн будут описываться следующими выражениями:

$$\varepsilon_1 = \varepsilon_1' + i\varepsilon_1'' - \frac{4\pi\hbar\mu^2}{\varDelta + i\gamma} |E_2|^2, \qquad (3)$$

$$\varepsilon_2 = \varepsilon_2' + i\varepsilon_2'' - \frac{4\pi\hbar\mu^2}{\varDelta + i\gamma} |E_1|^2, \tag{4}$$

где $\varepsilon_{1,2}', \varepsilon_{1,2}'' -$ действительная и мнимая компоненты фоновых диэлектрических функций на частотах каждого из импульсов; $\Delta = \omega_1 + \omega_2 - \Omega_0$ – резонансная расстройка между суммарной частотой обоих импульсов и частотой перехода. Из (3) и (4) следует, что диэлектрическая функция для частот первого импульса определяется полем

второго импульса и наоборот, т. е. диэлектрические функции для частот каждого из импульсов содержат керровские кросс-модуляционные нелинейные поправки.

Простоты ради введем далее нормированные величины

$$F_{1,2} = \alpha E_{1,2}, \ F_{1,2} = \alpha E_{1,2}, \ F_{r1,2} = \alpha E_{r1,2},$$
 (5)

где $\alpha^2 = 4\pi \hbar \mu^2 / \gamma$. Тогда пространственное распределение полей F_1 и F_2 в среде в стационарном режиме определяется из решений волновых уравнений

$$\frac{d^2 F_1}{dx^2} + \left(\varepsilon_1' + i\varepsilon_1'' - \frac{\delta - i}{\delta^2 + 1} |F_2|^2\right) F_1 = 0, \tag{6}$$

$$\frac{d^2 F_2}{dx^2} + s^2 \left(\varepsilon_2' + i\varepsilon_2'' - \frac{\delta - i}{\delta^2 + 1} |F_1|^2 \right) F_2 = 0,$$
(7)

где $x = k_1 z$; $k_1 = \omega_1/c$; $\delta = \Delta/\gamma$; $s = \omega_2/\omega_1$; z – ось в направлении распространения света. В качестве граничных условий в точке z = 0 (торец полубесконечного кристалла) используем условия непрерывности тангенциальных компонент электрического и магнитного полей обоих импульсов, которые можно записать в виде

$$F_{i1} + F_{r1} = F_1|_{x=0}, \ F_{i1} - F_{r1} = -i\frac{\mathrm{d}F_1(x)}{\mathrm{d}x}\Big|_{x=0},$$
 (8)

$$F_{i2} + F_{r2} = F_2|_{x=0}, \ s(F_{i2} - F_{r2}) = -i \frac{\mathrm{d}F_2(x)}{\mathrm{d}x}\Big|_{x=0}.$$
 (9)

Поскольку кристалл является полубесконечным и в нем имеет место поглощение света, то единственно физическими решениями уравнений (6), (7) являются решения, для которых $F_1(x) \rightarrow 0$ и $F_2(x) \rightarrow 0$ при $x \rightarrow \infty$.

Получить точные аналитические решения системы нелинейных уравнений (6) и (7) в общем случае не представляется возможным, поэтому далее мы используем численные методы. Из (8), (9) следует, что начинать численное интегрирование уравнений (6), (7) с точки x = 0 невозможно, т.к. неизвестны амплитуды отраженных волн.

Мы поступим следующим образом: будем считать, что в некоторой точке $x = x_0$ в глубине кристалла нормированные амплитуды полей исчезающе малы, т.е. $|F_{1,2}(x_0) \ll 1$. Такая точка всегда существует, т.к. имеет место поглощение света при его распространении. Тогда нелинейные слагаемые в (6), (7) обращаются в нуль и решения представляют собой только распространяющиеся вперед волны вида

$$F_1(x) = F_1(x_0) \exp\left[i(\varepsilon_1' + i\varepsilon_1'')^{1/2}(x - x_0)\right],$$
(10)

$$F_2(x) = F_2(x_0) \exp\left[is(\varepsilon_2' + i\varepsilon_2'')^{1/2}(x - x_0)\right],\tag{11}$$

причем $x = x_0 -$ это точка, с которой мы начинаем интегрирование уравнений (6), (7), двигаясь в обратном направлении.

В соответствии с (8)–(11) поля и производные от них в точке $x = x_0$ известны и они определяют решение уравнений (6), (7), начиная с точки $x = x_0$. При уменьшении xот x_0 до нуля решения дают пространственное распределение комплексных функций $F_1(x)$ и $F_2(x)$ и амплитуды падающих (F_{i1} и F_{i2}) и отраженных (F_{r1} и F_{r2}) полей. Из (10), (11) видно, что в линейном пределе модули амплитуд полей обеих волн экспоненциально убывают с расстоянием, причем скорости пространственных изменений профилей полей при $\varepsilon'_{1,2} < 0$ много больше, чем при $\varepsilon'_{1,2} > 0$. Быстрое экспоненциальное убывание амплитуд полей при $\varepsilon'_{1,2} < 0$ обусловлено как чисто диссипативным поглощением, так и бездиссипативным непропусканием.

2. Обсуждение результатов

Рассмотрим численное интегрирование системы уравнений (6)–(9). Результаты вычисления коэффициентов отражения $R_1 = |F_{r1}|^2/|F_{i1}|^2$ и $R_2 = |F_{r2}|^2/|F_{i2}|^2$ в зависимости от амплитуд F_{i1} и F_{i2} полей падающего излучения представлены на рис.1. Видно, что коэффициенты отражения R_1 и R_2 существенно определяются параметрами $\varepsilon'_{1,2}$, $\varepsilon''_{1,2}$, *s* и расстройкой резонанса δ . При исчезающе малых интенсивностях возбуждения, когда нелинейные поправки к ε_1 и ε_2 в (3), (4) обращаются в нуль, получаем

$$R_{1,2} = \left[(n_{1,2} - 1)^2 + \kappa_{1,2}^2 \right] \left[(n_{1,2} + 1)^2 + \kappa_{1,2}^2 \right]^{-1}, \qquad (12)$$

где

$$n_{1,2} = \left(\frac{r_{1,2} + \varepsilon_{1,2}'}{2}\right)^{1/2}; \ \kappa_{1,2} = \left(\frac{r_{1,2} - \varepsilon_{1,2}'}{2}\right)^{1/2};$$
$$r_{1,2} = \left[(\varepsilon_{1,2}')^2 + (\varepsilon_{1,2}'')^2\right]^{1/2}.$$
(13)

В этом пределе коэффициенты отражения не зависят от уровня возбуждения.

Вообще говоря, зависимость $R_1(F_{i1}, F_{i2})$ либо $R_2(F_{i1}, F_{i2})$ представляет собой сложную поверхность в пространстве переменных F_{i1} и F_{i2} , причем при малых F_{i1} и F_{i2} эта поверхность является плоскостью, которая при удалении от начала координат постепенно приобретает все возрастающую кривизну. Из-за невозможности наглядно представить ее мы дадим лишь ряд графиков зависимости $R_1(F_{i1})$ и $R_2(F_{i1})$ при $F_{i2} = \text{const}$, т. е. кривые, которые являются сечениями этой сложной поверхности для ряда значений $F_{i2} = \text{const}$.

Рис.1. Зависимости коэффициентов отражения R_1 (a, δ) и R_2 (s, c) от амплитуды поля падающего излучения F_{i1} при $\varepsilon'_1 = -15$, $\varepsilon''_1 = 1.5$, $\varepsilon'_2 = -10$, $\varepsilon''_2 = 1.5$, s = 1.1, $\delta = -15$ и амплитудах поля падающего излучения $F_{i2} = 10$ (I), 20 (2), 30 (3) (a, s) и 50 (δ, c).

Из рис.1 видны характерные особенности поведения этих кривых. Функция $R_1(F_{i1})$ при разных $F_{i2} = \text{const}$ имеет различные координаты при $F_{i1} = 0$ (рис.1,*a*), тогда как функции $R_2(F_{i1})$ (рис.1,*b*) при $F_{i1} = 0$ имеют одно и то же значение. Это обусловлено тем, что при $F_{i1} > 0$ диэлектрическая функция ε_1 определяется амплитудой поля F_2 , которая отлична от нуля, тогда как F_1 практически равно нулю и, следовательно, $\varepsilon_2 = \text{const.}$ Коэффициент отражения R_2 в этом случае выражается формулой (12). Приближенно квадрат амплитуды поля F_2 в среде у торца кристалла равен $(1 - R_2)|F_{i2}|^2$. Тогда коэффициент отражения R_1 торца кристалла можно представить в виде

где

$$N_{1} = \left(\frac{\tilde{\rho}_{1} + \tilde{\epsilon}_{1}'}{2}\right)^{1/2}; \quad Q_{1} = \left(\frac{\tilde{\rho}_{1} - \tilde{\epsilon}_{1}'}{2}\right)^{1/2};$$
$$\tilde{\rho}_{1} = \left[\left(\tilde{\epsilon}_{1}'\right)^{2} + \left(\tilde{\epsilon}_{1}''\right)^{2}\right]^{1/2};$$
$$\tilde{\epsilon}_{1}' = \epsilon_{1}' - \frac{\delta(1 - R_{2})|F_{i2}|^{2}}{\delta^{2} + 1}; \quad \tilde{\epsilon}_{1}'' = \epsilon_{1}'' + \frac{\delta(1 - R_{2})|F_{i2}|^{2}}{\delta^{2} + 1}$$

 $R_{1} = \left[(N_{1} - 1)^{2} + Q_{1}^{2} \right] \left[(N_{1} + 1)^{2} + Q_{1}^{2} \right]^{-1},$

Таким образом, при $F_{i1} \rightarrow 0$ коэффициент отражения R_2 является постоянным, а R_1 зависит от амплитуды падающей волны F_{i2} и расстройки резонанса δ . При малых F_{i2} ($F_{i2} = 10$) функция $R_1(F_{i1})$ проявляет особенности в виде слабого провала (рис.1,*a*, кривая *I*). С ростом F_{i2} ($F_{i2} = 20$) график функции $R_1(F_{i1})$ существенно изменяется – возникают две петли мультистабильности (рис.1,*a*, кривая *2*).

Далее с ростом F_{i2} ($F_{i2} = 30$) эта структура еще более усложняется – число петель мультистабильности увеличивается, более того, в области первой петли появляется дополнительная структура в виде самопересечения кривой $R_1(F_{i1})$ (рис.1,*a*, кривая 3). В этой области F_{i1} при циклическом изменении F_{i1} возникает сложное гистерезисное поведение функции $R_1(F_{i1})$, причем скачки этой функции фактически имеют место только при уменьшении F_{i1} , тогда как при увеличении F_{i1} скачки R_1 практически отсутствуют. В области второй (и далее) петли скачки $R_1(F_{i1})$ при циклическом изменении F_{i1} являются такими же, как и у мультистабильной кривой отражения традиционного резонатора Фабри – Перо [1-3].

Качественно новое дополнительное усложнение в поведении функции $R_1(F_{i1})$ возникает при $F_{i2} = 50$: в области первой петли образуется овал сложной формы, который отрывается от основной, мультистабильной кривой (рис.1, δ). С дальнейшим увеличением F_{i2} область существования этого овала быстро уменьшается и затем он исчезает, однако при других значениях F_{i2} возникает новый овал либо сразу несколько овалов, которые затем уменьшаются в размерах и постепенно, один за другим, исчезают, уступая место другим овалам. Последовательно образующиеся овалы располагаются в окрестности петель все более высокого порядка.

Что касается зависимостей $R_2(F_{i1})$ (рис.1,6 и ϵ), то видно, что они также характеризуются все более усложняющейся по мере увеличения F_{i2} структурой, возникновением петель мультистабильности, самопересечений петель и образованием одного или нескольких овалов.

Рис.2. Зависимость коэффициента отражения R_1 от амплитуд полей падающего излучения F_{i1} и F_{i2} при $\varepsilon'_1 = 1$, $\varepsilon''_1 = 15$, $\varepsilon'_2 = -2$, $\varepsilon''_2 = 1$, $\delta = -15$, s = 1.1.

Возникновение независимых овалообразных кривых наряду с мультистабильной кривой зависимости $R_1(F_{i1})$ и $R_2(F_{i1})$ при F_{i2} = const имеет простое физическое истолкование. В пространстве F_{i1} , F_{i2} функции $R_1(F_{i1}, F_{i2})$ и $R_2(F_{i1}, F_{i2})$ представляют собой сложные многозначные поверхности, которые характеризуются появлением острых рогообразных структур. Рогообразные отростки располагаются в тех областях F_{i1} и F_{i2} , где традиционные (плоские) мультистабильные кривые имеют петли многозначности. В пространственной версии мультистабильного отражения эти петли преобразуются в рогообразные отростки. Сечения такой поверхности при различных $F_{i2} = \text{const}$ дают не только мультистабильные участки, но и участки рогообразных отростков, которые и отображаются в виде овалов, с ростом F_{i2} постепенно отрывающихся от достаточно сложных профилей мультистабильных кривых.

На рис.2 представлена поверхность зависимости коэффициента отражения R_1 от амплитуд падающих полей F_{i1} и F_{i2} в более простом случае. Видно, что поверхность характеризуется областями однозначности и трехзначности. В области трехзначности в сечениях этой поверхности при F_{i1} = const либо F_{i2} = const имеются бистабильные участки функций отражения. Если положить F_{i2} = const, то с увеличением F_{i1} имеет место скачок с нижней ветви гистерезисной кривой $R_1(F_{i1})$ на верхнюю, тогда как при F_{i1} = const с увеличением F_{i2} скачок происходит с верхней ветви гистерезисной кривой $R_1(F_{i1})$ на нижнюю.

Отметим также, что при $F_{i1} = \text{const}$ скачок с увеличением F_{i2} возникает гораздо раньше, чем скачок по F_{i1} при $F_{i2} = \text{const}$, что обусловлено параметрами $\varepsilon'_{1,2}$, $\varepsilon''_{1,2}$, s и δ . При принятом выборе параметров отсутствуют рогообразные структуры, хотя в области малых F_{i1} и F_{i2} имеется область крутого изгиба поверхности $R_1(F_{i1}, F_{i2})$.

Описанные особенности поведения коэффициентов отражения торца кристалла в зависимости от интенсивности возбуждения обусловлены перенормировкой энергетического спектра полупроводника при больших интенсивностях возбуждения, что проявляется также в пространственном распределении амплитуд полей $|F_1|$ и $|F_2|$ в среде.

На рис.3 представлены зависимости $|F_1|$ и $|F_2|$ от координаты. Видно, что в глубине кристалла оба распределения характеризуются наличием экспоненциальных хвостов, которые по мере приближения к торцу преобразуются в неэкспоненциально изменяющиеся функции, осциллирующие на определенных участках пространст-

Рис.3. Пространственные распределения амплитуд полей $|F_1|$ и $|F_2|$ в среде при s = 1.1 и $\varepsilon_1' = 1$, $\varepsilon_1'' = 15$, $\varepsilon_2' = -2$, $\varepsilon_2'' = 1$, $\delta = -15$ (*a*) и $\varepsilon_1' = -2$, $\varepsilon_1'' = 15$, $\varepsilon_2' = -1$, $\varepsilon_2'' = 17$, $\delta = -5$ (*b*).

ва. Экспоненциальные хвосты обусловлены непропусканием и поглощением света в среде. При больших амплитудах полей эффект непропускание перестает действовать и остается только нелинейное поглощение.

Осцилляционная структура пространственного распределения полей обусловлена действием нелинейной дисперсии. Существенная неоднородность распределения полей в пространстве определяет пространственную неоднородность нелинейных коэффициентов преломления, экстинкции и внутреннего отражения. В результате в среде формируются узкие участки с большими градиентами показателя преломления среды, на которых возникают обратные волны.

Сложная нелинейная интерференция прямых и обратных волн приводит к рассмотренной выше стационарной структуре пространственных профилей полей. Узкий участок с большим градиентом нелинейного показателя преломления и соответствующим ему резким пиком внутреннего коэффициента отражения свидетельствует о возникновении индуцированного полем накачки резонатора Фабри–Перо, отражение от которого и обуславливает мультистабильность. Отсутствие такого резонатора приводит только к однозначной нелинейной функции отражения.

Заключение

Таким образом, при непосредственном учете самоотражения света, т. е. при учете генерации обратных волн в процессе распространения двух волн накачки, коэффициенты отражения торца полубесконечной среды имеют чрезвычайно сложную зависимость от интенсивности волн накачки. В частности, мы предсказываем возможность существования сложной, многозначной поверхности коэффициента отражения $R_{1,2}$ в пространстве F_{i1} , F_{i2} , $R_{1,2}$, проекции которой при $F_{i2} = \text{const на плоскость } F_{i1}$, $R_{1,2}$ приводят к возникновению замкнутых уединенных овалообразных кривых функции отражения.

В связи с полученными результатами обсудим возможность экспериментального обнаружения изученного явления. В [23] самоотражение в системе двухуровневых атомов было обнаружено путем наблюдения за доплеровским сдвигом частоты самоотраженной волны, обусловленным движением границы раздела между областями с высоким и низким поглощением. Не будучи экспериментаторами, мы, тем не менее, предложим дополнительный способ экспериментального обнаружения указанных явлений и наблюдения нового физического эффекта – двулучеотражения.

Пусть на полубесконечный кристалл нормально падает мощная электромагнитная волна накачки, которая на некотором расстоянии от торца формирует узкую область с резким градиентом показателя преломления. Под некоторым углом к нормали запустим пучок слабого, зондирующего излучения. При падении на границу раздела этот пучок частично отразится (в точке падения), а частично, преломившись, пройдет в среду. Угол падения можно подобрать таким, чтобы прошедший в среду зондирующий пучок попал на границу раздела областей с высоким и низким поглощением, т. е. в область с резким градиентом показателя преломления, от которой он частично отразится и затем выйдет из кристалла в вакуум на определенном расстоянии от точки падения. Этот продольный сдвиг между падающим и вышедшим из среды пучком может существенно превышать известный сдвиг Гуса-Хэнхена [24], что будет свидетельствовать о его отражении от внутренней области кристалла.

Изменяя интенсивность возбуждения кристалла мощным пучком, можно перемещать внутреннюю границу раздела с резким градиентом показателя преломления, что в свою очередь приведет к изменению продольного смещения вышедшего из среды зондирующего пучка. Поскольку зондирующий пучок «отражается» в двух удаленных друг от друга точках, то данное явление можно назвать двулучеотражением. В зависимости от того, является пик коэффициента внутреннего отражения узким (резким) либо широким (пространственно распределенным в направлении распространения мощного пучка), можно будет наблюдать два отраженных пучка или широкое пространственное распределение отраженного пучка на всей длине продольного смещения.

В [25] было показано, что вероятность двухфотонного поглощения с образованием биэкситона больше вероятности экситонного поглощения при плотности фотонов падающего излучения свыше 10¹⁵ см⁻³. Впервые прямая двухфотонная генерация биэкситонов в CuCl наблюдалась в [26] при возбуждении кристалла импульсами лазерного излучения с длительностью 25 пс и пиковой интенсивностью 1 ГВт/см².

Оценим интенсивность, необходимую для наблюдения самоотражения, по формуле

$$P = \frac{c^2 E}{8\pi} = \frac{c F^2 \gamma}{2(4\pi\mu)^2 \hbar}$$

Полагая затухание биэкситонного состояния $\gamma = 10^{10} \text{ c}^{-1}$ и беря $\mu = 10^{17}$ ед. СГСЭ [22, 25], для нормированного поля F = 1 получаем $P = 5 \text{ кBt/cm}^2$. Тогда нормированной амплитуде поля накачки, например F = 30, соответствует интенсивность $P = 4.5 \text{ MBt/cm}^2$, что вполне достижимо в эксперименте. Интенсивность зондирующего импульса должна быть на 1-2 порядка меньше.

Конкурирующим механизмом при экспериментальном наблюдении самоотражения в случае больших расстроек резонанса является экситон-фотонное взаимодействие, которое в настоящей статье не рассматривается. Это означает, что расстройки резонанса должны быть меньше половины энергии связи биэкситона, что для кристалла CuCl составляет 15–20 мэВ. Кроме того, при больших концентрациях биэкситонов в среде необходимо учесть биэкситон-биэкситонное взаимодействие. Однако для кристалла CuCl при радиусе экситона порядка 7 Å (радиусе биэкситона 14 Å) концентрации, при которых эти взаимодействия становятся актуальными, составляют примерно 3·10²⁰ см⁻³.

- Гиббс Х. Оптическая бистабильность. Управление светом с помощью света (М., Наука, 1988).
- Хаджи П.И., Шибаршина Г.Д., Ротару А.Х. Оптическая бистабильность в системе когерентных экситонов и биэкситонов в полупроводниках (Кишинев, Штиинца, 1988).
- Chen W., Mills D.L. Phys. Rev. B, 35, 524 (1987); Phys. Rev. B, 36, 6269 (1987).
- 4. Miller D.A.B. IEEE J. Quantum Electron., 17, 306 (1981).
- 5. Бойко Б.Б., Петров Н.С. Отражение света от усиливающих и нелинейных сред (Минск, Наука и техника, 1988).
- 6. Каплан А.Е. *Письма в ЖЭТФ*, **24**, 132 (1976); *ЖЭТФ*, **72**, 1710 (1977).
- Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия с веществом (М., Наука, 1977).
- Smith P.W., Hermann J.P., Tomlinson W.J., Maloney P.J. Appl. Phys. Letts, 35, 846 (1979).
- 9. Smith P.W., Tomlinson W.J., Maloney P.J., Hermann J.P. *IEEE J. Quantum Electron.*, **17**, 340 (1981).
- Розанов Н.Н. Письма в ЖТФ, 3, 583 (1977); 4, 74 (1978); Оптика и спектроскопия, 47, 606 (1979).
- Колоколов А.А., Суков А.И. Изб.бузоб.Сер.Радиофизика, 21, 1309 (1978); 21, 1459 (1978).
- 12. Розанов Н.Н. Оптическая бистабильность и гистерезис в распределенных нелинейных системах (М., Наука, 1997).
- 13. Силин В.П. ЖЭТФ, 53, 1662 (1967).
- Roso-Franco L. Phys. Rev. Letts, 55, 2149 (1985); J.Opt.Soc.Amer.B, 4, 1878 (1987).
- 15. Malyshev V., Jarque E.C. J.Opt.Soc.Amer. B, 12, 1868 (1995).
- Малышев В.А., Харке Э.К. Оптика и спектроскопия, 82, 630 (1997).
- 17. Jarque E.C., Malyshev V. Opt. Comms, 142, 66 (1997).
- Forysiak W., Flesch R.G., Moloney J.V., Wright E.M. *Phys.Rev.* Letts, **76**, 3695 (1996).
- Хаджи П.И., Ляхомская К.Д. Квантовая электроника, 29, 43 (1999).
- 20. Ляхомская К. Д., Хаджи П. И., Марков Д.А. *Письма в ЖТФ*, **26**, 18 (2000).
- Хаджи П.И. Нелинейные оптические процессы в системе экситонов и биэкситонов в полупроводниках (Кишинев, Штиинца, 1994).
- Хаджи П.И. Кинетика рекомбинационного излучения экситонов и биэкситонов в полупроводниках (Кишинев, Штиинца, 1977).
- Schülzgen A., Peyghambarian N., Hughes S. *Phys.Stat.Sol.(b)*, 206, 125 (1995).
- 24. Борн М., Вольф Э. Основы оптики (М., Наука, 1973).
- 25. Hanamura E. Sol.State Comms, **12**, 951 (1973); J.Phys.Soc.Japan, **39**, 1516 (1975).
- 26. Gale G.M, Mysyrowicz A. Phys.Letts A, 54, 321 (1975).