Условия квазисинхронизма при одновременной генерации нескольких гармоник лазерного излучения в кристаллах с регулярной доменной структурой

С.Г.Гречин*, В.Г.Дмитриев**

Рассмотрены условия квазисинхронизма при одновременной генерации нескольких гармоник в квадратично-нелинейных кристаллах с регулярной доменной структурой.

Ключевые слова: преобразование частоты, кристаллы с доменной структурой, квазисинхронизм, генерация гармоник.

Нелинейно-оптические кристаллы с регулярной доменной структурой (РДС) позволяют реализовать ряд качественно новых вариантов преобразования частоты лазерного излучения. К их числу относятся: одновременная генерация нескольких оптических гармоник [1], ГВГ одновременно на трех типах взаимодействия [2], ГВГ при одновременной реализации синхронного и квазисинхронного взаимодействий [3] и т.п. В нашей работе [4] была отмечена взаимосвязь между взаимодействиями различных типов при ГВГ, генерации третьей (ГТГ) и четвертой (ГЧГ) гармоник.

В настоящей работе мы определим условия квазисинхронизма для одновременных ГВГ, ГТГ и ГЧГ, ограничившись случаем коллинеарных взаимодействий в РДС-кристалле с квадратичной нелинейностью. Учитывая, что четвертая гармоника может быть получена либо как суммарная частота первой (ω) и третьей (3ω) гармоник ($\omega + 3\omega = 4\omega$), либо как удвоение второй гармоники ($2\omega + 2\omega = 4\omega$), в общем случае четырех рассматриваемых процессов для суммарных волновых расстроек можно записать следующие выражения:

$$\Gamma \mathbf{B} \Gamma \qquad \omega + \omega = 2\omega,$$

$$\delta k_1 = k_{2i} - k_{1j} - k_{1k} + m_1 G_1 = \Delta k_1 + m_1 G_1, \qquad (1)$$

$$\Gamma T \Gamma \qquad \omega + 2\omega = 3\omega.$$

$$\delta k_2 = k_{3m} - k_{1k} - k_{2i} + m_2 G_2 = \Delta k_2 + m_2 G_2, \qquad (2)$$

$$\Gamma \Psi \Gamma$$
-1 $\omega + 3\omega = 4\omega$,

$$\delta k_3 = k_{4n} - k_{1j} - k_{3m} + m_3 G_3 = \Delta k_3 + m_3 G_3, \qquad (3)$$

$$\Gamma \Psi \Gamma - 2 \qquad 2\omega + 2\omega = 4\omega$$

$$\delta k_4 = k_{4n} - 2k_{2i} + m_4 G_4 = \Delta k_4 + m_4 G_4, \tag{4}$$

Поступила в редакцию 14 июня 2001 г.

где Δk_q – волновые расстройки для однородного кристалла (q = 1, 2, 3, 4); $k_{q\alpha}$ – волновые числа взаимодействующих волн; $\alpha = i, j, k, m, n$ – индексы, соответствующие различным типам взаимодействующих волн (о, е для одноосных и s, f для двухосных кристаллов); $G_q = 2\pi \Lambda_q^{-1}$ – волновое число (модуль псевдовектора) решетки доменной структуры с периодом Λ_q ; $m_q = 0, \pm 1, \pm 3, \pm 5, \ldots$ – порядки квазисинхронизма.

Выполнению условия квазисинхронизма для определенного процесса соответствует $\delta k_q = 0$ (при этом условию «традиционного» синхронизма для однородных кристаллов $\Delta k_q = 0$ соответствует $m_q = 0$), а одновременный квазисинхронизм для всех четырех процессов в одной и той же доменной структуре (т. е. при $G_1 = G_2 = G_3 = G_4$) может иметь место в общем случае для разных порядков квазисинхронизма, или, другими словами, для разных длин когерентности $L_{\rm coh}^{(q)} = \pi/\Delta k_q = \Lambda_q/(2m_q)$.

Предположим, что для ГВГ и ГТГ выполняются условия квазисинхронизма ($\delta k_1 = \delta k_2 = 0$) на одной доменной структуре ($G_1 = G_2$) и для одного порядка квазисинхронизма ($m_1 = m_2$). Тогда имеем соотношение

$$2k_{2i} = k_{1j} + k_{3m}. (5)$$

Из (3)–(5) следует, что в этом случае $\Delta k_3 = \Delta k_4$. Если при этом выполняется условие квазисинхронизма, например, для ГЧГ-1 ($\delta k_3 = 0$), то $\delta k_4 = m_4 G_4 - m_3 G_3$. Можно предположить, что выполнение условий квазисинхронизма для ГЧГ-2 ($\delta k_4 = 0$) будет обеспечено равенством $m_4 G_4 = m_3 G_3$ при одном и том же порядке синхронизма ($m_3 = m_4$) и, следовательно, на одной структуре ($G_3 = G_4$); при этом в общем случае $m_1 \neq m_3$, $G_1 \neq G_3$.

Сказанное выше иллюстрируется рис.1, где представлены зависимости длины когерентности $L_{\rm coh}^{(q)}$ от длины волны основного (лазерного) излучения для всех четырех коллинеарных процессов еее-типа при распространении излучения в плоскости *xy* стехиометрического кристалла LiNbO₃, для которого коэффициенты уравнения Селлмейера взяты из работы [5]. Как следует из рис.1, на длинах волн $\lambda_1 = 3579.54$ нм и $\lambda_2 = 4256.45$ нм наблюдается попарное равенство когерентных длин: на длине волны λ_1 имеем $L_{\rm coh}^{(1)} = L_{\rm coh}^{(2)} = 16.05$ мкм и $L_{\rm coh}^{(3)} = L_{\rm coh}^{(4)} = 13.62$ мкм, а на λ_2 имеем $L_{\rm coh}^{(1)} = L_{\rm coh}^{(2)} = 14.09$ мкм и $L_{\rm coh}^{(2)} = L_{\rm coh}^{(4)} = 15.85$ мкм.

^{*}Московский государственный технический университет им. Н.Э. Баумана, Россия, 107005 Москва, 2-я Бауманская ул., 5; e-mail: gera@mx.bmstu.ru

^{**}Федеральное государственное унитарное предприятие 'НИИ «Полюс» им. М.Ф.Стельмаха', Россия, 117342, ул. Введенского, 3; e-mail: vgdmitr@orc.ru

Рис.1. Дисперсионные зависимости когерентных длин коллинеарных еее-процессов ГВГ (q = 1), ГТГ (q = 2), ГЧГ-1 (q = 3), ГЧГ-2 (q = 4) в стехиометрическом кристалле LiNbO₃. На длинах волн $\lambda_1 =$ 3579.54 и $\lambda_2 = 4256.45$ нм наблюдается попарное равенство когерентных длин.

Для выполнения условий квазисинхронизма на λ_1 одновременно для ГВГ и ГТГ достаточно выбрать период доменной структуры $\Lambda_1 = 2m_1 L_{\rm coh}^{(1)}$, а для одновременной реализации ГЧГ-1 и ГЧГ-2 – период $\Lambda_3 = 2m_3 L_{\rm coh}^{(3)}$. Для выполнения квазисинхронизма одновременно для всех четырех процессов на одной доменной структуре необходимо обеспечить равенство $\Lambda_1 = \Lambda_3$:

$$\Lambda_1 = \frac{2\pi}{G_1} = 2m_1 L_{\rm coh}^{(1)} = 2m_3 L_{\rm coh}^{(3)},\tag{6}$$

т.е. период доменной структуры должен быть кратен одновременно двум длинам когерентности. Из (6) следует, что

$$\frac{L_{\rm coh}^{(1)}}{L_{\rm coh}^{(3)}} = \frac{m_3}{m_1},\tag{7}$$

т.е. отношение когерентных длин должно быть равным или целому нечетному числу, или отношению целых нечетных чисел. Соотношение (7) позволяет установить, при каких условиях (т.е. на каких длинах волн основного

Табл.1.

излучения и для каких типов взаимодействующих волн) реализуется одновременный квазисинхронизм для всех четырех процессов (1)-(4), что ограничивает число комбинаций типов взаимодействия (всего их 64, но, во-первых, далеко не для всех пар взаимодействий условия квазисинхронизма выполняются в диапазоне прозрачности кристалла и, во-вторых, не для всех справедливо условие (7)).

Аналогично случаю для λ_1 при выполнении условий квазисинхронизма для λ_2 одновременно для ГВГ и ГЧГ-1 имеем $\Lambda_1 = 2m_1 L_{\rm coh}^{(1)}$, а для ГТГ и ГЧГ-2 – $\Lambda_2 = 2m_2 L_{\rm coh}^{(2)}$. Для выполнения квазисинхронизма одновременно для всех четырех процессов на одной доменной структуре необходимо выполнение равенства $\Lambda_1 = \Lambda_2$, т. е.

$$\Lambda_1 = \frac{2\pi}{G_1} = 2m_1 L_{\rm coh}^{(1)} = 2m_2 L_{\rm coh}^{(2)},\tag{8}$$

откуда

$$\frac{L_{\rm coh}^{(1)}}{L_{\rm coh}^{(2)}} = \frac{m_2}{m_1}.$$
(9)

Проиллюстрируем сказанное на примере одноосного отрицательного кристалла LiNbO₃ стехиометрического состава в случае распространения излучения в плоскости *ху*. В табл.1 приведены результаты расчета длин когерентности для различных комбинаций типов взаимодействия для всех четырех процессов (1)–(4). В первом – четвертом столбцах табл.1 приведены рассматриваемые типы взаимодействия, в пятом – длины волн, на которых длины когерентности совпадают попарно: для процессов (1), (2), т. е. $L_{\rm coh}^{(3,4)}$ и для процессов (3), (4), т. е. $L_{\rm coh}^{(3,4)}$. Величины $L_{\rm coh}^{(3,4)}$ и $L_{\rm coh}$ приведены в шестом и седьмом столбцах, а в восьмом столбце дано отношение $L_{\rm coh}^{(1,2)}$. Если последнее отношение равно целому нечетному числу или отношению целых нечетных чисел, то квазисинхронизм реализуется одновременно для всех четырех процессов: ГВГ, ГТГ, ГЧГ-1, ГЧГ-2.

Порядок синхронизма m в (1)–(4), являющийся целым нечетным числом, может быть как положительным, так и отрицательным (последнее соответствует отрицательной когерентной длине, или, другими словами, об-

$2\omega + 2\omega = 4\omega$	$\omega + 3\omega = 4\omega$	$\omega + 2\omega = 3\omega$	$\omega+\omega=2\omega$	λ (нм)	$L_{ m coh}^{(3,4)}$ (мкм)	$L_{ m coh}^{(1,2)}$ (мкм)	$L_{\rm coh}^{(1,2)}/L_{\rm coh}^{(3,4)}$
eeo	eeo	eee	eee	3579.54	3.95	16.05	4.07
		oee	oee	3579.54	3.95	35.51	9.00
	oeo	eee	oee	5349.02	5.97	13.94	2.34
		oee	ooe	5349.02	5.97	18.01	3.02
000	eoo	eoo	eeo	2144.32	3.00	4.89	1.63
		000	oeo	2144.32	3.00	7.19	3.40
	000	eoo	oeo	3541.2	10.61	9.21	0.87
		000	000	3541.2	10.61	13.53	1.27
eee	eee	oee	oee	3579.54	12.62	35.51	2.81
		eee	eee	3579.54	12.62	16.05	1.27
	oee	oee	ooe	5349.05	17.69	18.01	1.02
		eee	oee	5349.05	17.69	13.94	0.79
000	eoe	eoo	eeo	2144.32	339.45	4.89	0.01
		000	eoo	2144.32	339.45	7.19	0.02
	00e	eoo	oeo	3541.2	-12.19	9.21	-0.76
		000	000	3541.2	-12.19	13.53	-1.11

ратному направлению псевдовектора доменной структуры G_q). Взаимосвязь двух пар процессов (ГВГ и ГТГ, ГЧГ-1 и ГЧГ-2) в уравнениях (1) – (4) показывает, что для выполнения условия квазисинхронизма одновременно для всех четырех процессов знаки порядков квазисинхронизма для процессов (1), (2) и (3), (4) должны быть одинаковыми внутри этих пар, хотя знаки пар могут быть и противоположными. Отметим, что пары процессов (1), (2) и (3), (4) в двух последних строках табл.1 имеют разные знаки порядков квазисинхронизма.

Если не ставить перед собой задачу удовлетворения условиям квазисинхронизма одновременно для всех четырех процессов, то внутри пары процессов (ГВГ и ГТГ или ГЧГ-1 и ГЧГ-2) знаки порядков квазисинхронизма могут быть разными. В табл.2 представлены результаты расчета когерентной длины для того же стехиометрического кристалла LiNbO₃ при одновременной реализации процессов ГЧГ-1 и ГЧГ-2 при подаче на вход нелинейного РДС-кристалла первой (ω), второй (2ω) и третьей (3ω) гармоник. Разумеется, при этом ни для одного из процессов, представленных в табл.2, нельзя добиться одновременной реализации условий квазисинхронизма для ГВГ и ГТГ.

Аналогичные расчеты можно провести для первой пары процессов (ГВГ и ГТГ) в случае равных и разных по знаку когерентных длин. При этом реализация квазисинхронизма (одновременно ГВГ и ГТГ) для процессов ГЧГ-1 и ГЧГ-2 исключается. Этим способом можно устранить нежелательную конкуренцию другой пары процессов.

Отметим, что в случае разных знаков порядков квазисинхронизма (разных знаков когерентных длин) внутри пары знаки эффективной нелинейности кристалла $d_{\rm eff}$ для этих пар в общем случае также различны. Для случая пары процессов ГЧГ-1, ГЧГ-2 это приводит к уменьшению общей эффективности преобразования в четвертую гармонику. По этой причине для данной пары важно иметь одинаковые знаки $d_{\rm eff}$ для обоих процессов (например, за счет выбора надлежащего октанта взаимодействия), что приведет к увеличению эффективности преобразования при ГЧГ, как показано для ГВГ в нашей работе [6].

Перейдем к рассмотрению возможности реализации одновременного квазисинхронизма всех четырех процессов на одной доменной структуре при неравных порядках квазисинхронизма внутри каждой пары процессов. Пусть, например, для процессов (1), (2), т. е. ГВГ и ГТГ, условия одновременного синхронизма выполняются при $m_1 \neq m_2$ и $G_1 = G_2 = G$. Тогда, если одновременно на той же структуре выполняется условие $\delta k_3 = 0$ (для процесса ГЧГ-1), то из (1)–(4) получаем (т. к. при этом $G_3 = G$) со-

T	~	2
та	OЛ.	. L.

$2\omega + 2\omega = 4\omega$	$\omega + 3\omega = 4\omega$	λ (мкм)	$L_{ m coh}^{(3)}$ (мкм)	$L_{ m coh}^{(4)}$ (мкм)
eee	ooe	3439.5 4003.4	11.76 14.84	$-11.76 \\ -14.84$
	ooe	2027.67	24.66	-24.66
00e	oee	2725.8 5002.18	-13.49 -19.21	13.49 19.21
	eoe	2157.38	-1873.04	1873.04
	eee	3424.66 4132.4	$-12.01 \\ -13.95$	12.01 13.95

Рис.2. Дисперсионные зависимости периода доменной структуры, необходимого для протекания коллинеарных sss-процессов ГВГ ($m_1 = 3$), ГТГ ($m_2 = 5$), ГЧГ-1 ($m_3 = 9$) и ГЧГ-2 ($m_4 = 11$) в кристалле КТР. На длине волны 2445.5 нм наблюдается пересечение кривых при $\Lambda_{1-4} \simeq 153$ мкм ($L_d = 76.46$ мкм).

отношение $\delta k_4 = -(m_2 - m_1)G + m_4G_4 - m_3G$, и выполнение квазисинхронизма для ГЧГ-2 ($\delta k_4 = 0$) на той же структуре ($G_4 = G$) возможно при условии

$$m_1 + m_4 = m_2 + m_3. \tag{10}$$

Выражение (10) определяет возможность реализации квазисинхронизма на одной доменной структуре одновременно для всех четырех процессов (1)–(4).

Для иллюстрации сказанного на рис.2 приведены зависимости требуемого периода доменной структуры $\Lambda_q = 2L_d^{(q)}$, где L_d — ширина одного домена, от длины волны основного излучения в двухосном кристалле КТР для четырех процессов (1)–(4) с разными порядками квазисинхронизма, подобранными в соответствии с соотношением (10) ($m_1 = 3, m_2 = 5, m_3 = 9, m_4 = 11$, так что $m_1 + m_4 = m_2 + m_3 = 14$) для sss-взаимодействия в плоскости *ху* (напомним, что при переходе от одноосных кристаллов к двухосным следует заменить индексы о и е на индексы s и f).

При расчете использовались коэффициенты уравнения Селлмейера из [7]. Условия квазисинхронизма одновременно для процессов (1)–(4) на длине волны основного излучения 2442.5 нм при $\Lambda_{1-4} \simeq 153$ мкм удалось реализовать при различных порядках квазисинхронизма и нагреве кристалла до 31.5 °C.

Полученные результаты можно обобщить и на генерацию гармоник более высокого порядка. Так, выполнение условия квазисинхронизма $\delta k_q = 0$ в уравнениях (1) – (4) приведет к тому, что автоматически будут создаваться предпосылки для одновременной генерации пятой гармоники (ГПГ) в процессах $\omega + 4\omega = 5\omega$ (ГПГ-1) и $2\omega + 3\omega = 5\omega$ (ГПГ-2):

$$\Gamma\Pi\Gamma-1 \quad \delta k_5 = k_{5s} - k_{1k} - k_{4n} + m_5G_5 = \Delta k_5 + m_5G_5, \ (11)$$

$$\Gamma\Pi\Gamma-2 \quad \delta k_6 = k_{5s} - k_{2i} - k_{3m} + m_6 G_6 = \Delta k_6 + m_6 G_6.$$
(12)

При $\Delta k_1 = \Delta k_4$ получаем $\Delta k_5 = \Delta k_6$.

Аналогично для генерации шестой гармоники (ГШГ) в процессах $\omega + 5\omega = 6\omega$ (ГШГ-1), $2\omega + 4\omega = 6\omega$ (ГШГ-2) и $3\omega + 3\omega = 6\omega$ (ГШГ-3) имеем

$$\Gamma \amalg \Gamma -1 \quad \delta k_7 = k_{6p} - k_{5s} - k_{1j} + m_7 G_7 = \Delta k_7 + m_7 G_7, \quad (13)$$

$$\Gamma \amalg \Gamma^2 \quad \delta k_8 = k_{6p} - k_{2i} - k_{4n} + m_8 G_8 = \Delta k_8 + m_8 G_8, \ (14)$$

$$\Gamma \amalg \Gamma -3 \quad \delta k_9 = k_{6p} - 2k_{3m} + m_9 G_9 = \Delta k_9 + m_9 G_9.$$
(15)

Из (13), (15) получаем, что при выполнении условия квазисинхронизма на одном порядке для всех взаимодействий будет справедливо равенство

$$k_{4n} + k_{2i} = k_{5s} + k_{1i}$$

Это равенство создает предпосылки для выполнения условий квазисинхронизма для ГВГ (1) и ГПГ-1 (11).

В настоящей работе мы ограничились рассмотрением выполнения условий квазисинхронизма, не затрагивая вопроса об эффективной нелинейности. В частности, для кристаллов точечной группы 3m в плоскости xy отличны от нуля эффективные нелинейности для следующих типов взаимодействия: еее, оое, ооо и еоо. При изменении направления волновых векторов взаимодействующих волн $k_q(\omega_i)$ (угла θ) эффективные нелинейности отличны от нуля и могут быть реализованы все процессы.

Таким образом, существует связь между порядками квазисинхронизма для одновременной генерации различных гармоник лазерного излучения в РДС-кристаллах. Это позволяет создавать многочастотные преобразователи частоты лазерного излучения в оптические гарымоники, что может найти ряд интересных применений, в частности для создания источника ударных электромагнитных волн оптического диапазона. Однако в том случае, когда необходимы, например, только 2-я и 3-я гармоники, одновременная ГЧГ может выступать как конкурирующий процесс, мешая основному преобразованию и уменьшая его эффективность. Подавление нежелательной пары процессов может быть достигнуто за счет применения взаимодействий с разными знаками порядков квазисинхронизма.

Все результаты настоящей работы получены при использовании справочно-расчетного пакета программ LID-SHG (Laser Investigator&Designer – Second Harmonic Generation), расположенного на сайте http://www.bmstu. ru/~lid. Работа выполнена при поддержке РФФИ (грант № 00-02-17857).

- Fejer M.M., Magel G.A., Jundt D.H., Byer R.L. *IEEE J. Quantum Electron.*, 28, 2631 (1992).
- Гречин С.Г., Дмитриев В.Г. Квантовая электроника, 26, 151 (1999).
- 3. Гречин С.Г., Дмитриев В.Г., Юрьев Ю.В. *Квантовая электрони*ка, **26**, 155 (1999).
- 4. Dmitriev V.G., Grechin S.G. Proc.SPIE, 3733, 228 (2001).
- 5. Smith D.S., Riccius H.D., Edwin R.P. Optics Comms, 17, 332 (1976).
- 6. Гречин С.Г., Дмитриев В.Г. Квантовая электроника, **31**, 929 (2001).
- 7. Anthon D.W., Crowder C.D. Appl. Optics, 27, 2650 (1988).