Абсорбционные и люминесцентные свойства волоконных световодов на основе кварцевого стекла, содержащего Cr⁴⁺

В.В.Двойрин^{*}, Е.М.Дианов^{*}, В.М.Машинский^{*}, В.Б.Неуструев^{*}, А.Н.Гурьянов^{**}, А.Ю.Лаптев^{**}, А.А.Умников^{**}, М.В.Яшков^{**}, Н.С.Воробьёв^{***}

Исследованы спектры поглощения и люминесценции волоконных световодов на основе кварцевого стекла, содержащих хром и различные легирующие добавки в сердцевине. В световодах, легированных алюминием и галлием, широкополосная люминесценция иона Cr^{4+} (максимум на 1100 нм, ширина полосы 300 нм) наблюдалась при комнатной температуре. Квантовый выход люминесценции по оценке составил $10^{-4} - 10^{-5}$.

Ключевые слова: волоконные световоды, ион Cr⁴⁺, люминесценция.

1. Введение

Создание волоконно-оптических широкополосных перестраиваемых источников излучения на основе кварцевого стекла в ближней ИК области (1.3 и 1.55 мкм) является одной из важных задач волоконной оптики. В последнее время в связи с этим возрос интерес к стёклам, легированным хромом [1-4]. По данным литературы ион Cr⁴⁺ в стёклах различного состава имеет широкую полосу поглощения в видимом и ближнем ИК диапазонах, а также широкую полосу люминесценции в ближней ИК области, включающую в себя 1.3 и 1.55 мкм. Таким образом, материалы на основе кварцевого стекла, содержащие ион Cr⁴⁺, являются потенциальной основой для создания волоконно-оптических перестраиваемых лазеров и усилителей, а также лазеров сверхкоротких импульсов с широкополосной накачкой. В настоящее время опубликовано сравнительно немного работ [1-4], посвящённых спектроскопическим свойствам иона Cr⁴⁺ в легированном кварцевом стекле. В связи с этим возникла необходимость дальнейшего исследования влияния различных легирующих добавок в стекле и их концентраций на степень окисления хрома, а также люминесцентные свойства ионов Cr⁴⁺, особенно в условиях высокотемпературных технологических режимов, характерных для изготовления волоконных световодов методом химического осаждения из газовой фазы (MCVD).

В данной работе исследовались спектры поглощения и люминесценции ионов хрома в световодах с германо-, алюмо- и галлиевосиликатной сердцевинами.

2. Методы изготовления и характеристики образцов

Заготовки световодов были изготовлены методом MCVD. Основные легирующие добавки, формирующие

Поступила в редакцию 27 июля 2001 г.

Табл.1. Молярные концентрации оксидов германия и алюминия, а также концентрации (грамм-ион на 100 мл) ионов галлия в стекле сердцевины и ионов Mg и Cr в растворах для пропитки пористых слоев стекла в исследованных образцах.

Световод	GeO ₂	Al_2O_3	Ga	Mg	Cr
AJ-25	9	_	_	0.12	0.13
FF-1	_	8.5	_	_	0.0098
FF-3	_	_	1.35	_	0.0078
FF-4	_	7.5	_	0.08	0.0068

профиль показателя преломления (Ge и Al), вводились в стекло при окислении соответствующих хлоридов в газовой фазе, а Ga и остальные элементы (Mg и Cr) – методом пропитки пористого слоя MCVD стекла растворами их солей с последующим испарением растворителя и проплавлением пористого слоя. Концентрации вводимых элементов приведены в табл.1. Концентрации GeO₂ и Al₂O₃ в сердцевине определялись по профилю показателя преломления в заготовке, содержание Ga, Mg и Cr указано в грамм-ионах соответствующих металлов на 100 мл раствора. Из полученных заготовок были вытянуты маломодовые световоды (разность показателей преломления сердцевины и оболочки $\Delta n \sim 0.01 - 0.02$, длина волны отсечки $\lambda_c \sim 4000$ нм).

3. Методы и результаты измерения поглощения и люминесценции

Оптические потери в световодах составляли десятки децибел на метр, что затрудняло проведение точных измерений спектров поглощения стандартным методом сравнения интенсивностей выходящего излучения на длинном и коротком отрезках световода. Поэтому (после предварительной оценки потерь и спектра люминесценции) к короткому отрезку исследуемого световода с двух сторон приваривались отрезки одномодового германосиликатного световода с малыми потерями ($\Delta n \sim 0.01$, $\lambda_c \sim 1200$ нм) длиной по несколько метров. Длина отрезка исследуемого световода из условия достижения максимальной интенсивности люминесценции на выходе световода при возбуждении из-

^{*}Научный центр волоконной оптики при Институте общей физики РАН, Россия, 119991 Москва, ул. Вавилова, 38

^{**}Институт химии высокочистых веществ РАН, Россия, 603600 Нижний Новгород, ул. Тропинина, 49

^{****}Институт общей физики РАН, Россия, 119991 Москва, ул. Вавилова, 38

Рис.1. Спектры поглощения световодов серии FF.

лучением с $\lambda \sim 650$ нм. Для различных световодов длина отрезков составляла от 15 до 40 см.

Далее в полученной конструкции стандартным методом измерялись спектры оптических потерь в диапазоне 500-1800 нм в установке с лампой накаливания (КГМ-70) и монохроматором (МДР-23). Сигнал на выходе из световода измерялся кремниевым (ФД-24К) или германиевым (ФД-5Г) фотодиодом и регистрировался усилителем с синхронным детектором (NF Electronic, модель 9610). В основном ослабление сигнала определялось потерями в исследуемых световодах. Вследствие заметного различия параметров свариваемых световодов потери на сварных соединениях были достаточно велики (до 1 дБ), однако слабая спектральная зависимость этих потерь позволяла легко учесть их вклад. Кроме того, была измерена интенсивность рассеяния через боковую поверхность световода в непосредственной близости от выходного торца при возбуждении световодов непрерывным излучением Kr⁺-лазера (Spectra Physics, модель 165) на $\lambda = 476, 520, 568, 647$ и 676 нм (мощность в световоде составляла 1-50 мВт). Измерения показали, что для всех световодов потери на рассеяние не превышают 0.1 дБ/м и пренебрежимо малы по сравнению с общими потерями, которые, следовательно, в основном являются абсорбционными.

На рис.1 приведены спектры поглощения для световодов с алюмосиликатной сердцевиной серии FF. Как и в работах [1, 2], наблюдалась слабая зависимость спектров поглощения от температуры. На рис.2 спектр поглощения световода FF-1 при температуре 77 К, приведенный в зависимости от частоты, разложен на пять гауссовых компонент.

При измерении спектров люминесценции для ее возбуждения использовалось излучение Kr⁺-лазера (мощ-

Рис.2. Спектр поглощения световода FF-1 (показана каждая вторая точка) и его разложение на пять гауссовых компонент.

Рис.3. Спектры люминесценции световода FF-1 при возбуждении излучением на $\lambda = 647$ нм при T = 77 и 300 К и на $\lambda = 765$ нм при T = 77 К. Для спектров при возбуждении на $\lambda = 647$ нм относительный масштаб сохранён.

ность в световоде ~10 мВт), а также YAG:Nd-лазера ($\lambda = 1064$ нм, мощность в световоде ~100 мВт). Спектральная фильтрация излучения, выходящего из световода, осуществлялась двойным монохроматором (МДР-6У) и, в случае длины волны возбуждающего излучения $\lambda = 1064$ нм, – дополнительно диэлектрическим зеркалом, отражающим лазерное излучение. Интенсивность люминесценции измерялась германиевым фотодиодом, сигнал регистрировался в режиме синхронного детектирования. Для измерений поглощения и люминесценции при температуре 77 К отрезок исследуемого световода погружался в дьюар с жидким азотом.

Интенсивность люминесценции значительно сильнее, чем поглощение, зависела от состава стекла и температуры. При T = 77 К и возбуждении на длинах волн 568, 647 и 676 нм люминесценция была зарегистрирована во всех световодах. Наибольшая интенсивность люминесценции наблюдалась в световодах FF-1, FF-3 и FF-4, что позволило зарегистрировать ее спектр при T = 77 и 300 К. Кроме того, в световоде FF-1 дополнительно использовалось возбуждение на длинах волн 740, 765, 781, 801 и 823 нм Al₂O₃:Ti-лазера (мощность в световоде ~ 10 мВт) и также была зарегистрирована люминесценция. При возбуждении на длинах волн 476, 530 и 1064 нм люминесценцию не удалось зарегистрировать ни в одном световоде.

Во всех случаях наблюдались полосы одинаковой формы шириной около 300 нм с центром на 1100 нм. Спектры люминесценции при T = 77 и 300 К световода FF-1 приведены на рис.3. Узкие линии обусловлены пропусканием возбуждающего излучения во втором порядке монохроматора (1294 нм) и рассеянием в монохроматоре. При возбуждении на $\lambda = 647$ нм полоса люминесценции была несколько шире, чем при возбуждении на $\lambda = 765$ нм.

Квантовый выход люминесценции при T = 77 и 300 К, рассчитанный с учётом чувствительности фотоприёмника, ослабления излучения в монохроматоре и числовой апертуры световода, приведён в табл.2. Относительная точность данных, приведённых в табл.2, составляет около 10 %, погрешность в оценке абсолютной величины η может быть двукратной. Квантовый выход люминесценции при T = 77 К в пределах точности измерений не зависел от длины волны возбуждения в диапазоне 568–

Табл.2. Квантовый выход люминесценции η.

Световод	T = 77 K	T = 300 K
FF-1	$1.9 \cdot 10^{-4}$	$2.6 \cdot 10^{-5}$
FF-3	$3.2 \cdot 10^{-4}$	$2.2 \cdot 10^{-5}$
FF-4	$5.3 \cdot 10^{-4}$	$3.3 \cdot 10^{-5}$

676 нм для всех световодов и в диапазоне 568-823 нм – для световода FF-1.

4. Обсуждение результатов

Измерения рассеяния показали, что во всех исследованных световодах потери на рассеяние пренебрежимо малы по сравнению с поглощением. Судя по данным работ [1-4], спектр поглощения в световодах с алюмо- и галлиевосиликатной сердцевинами определяется ионом Cr⁴⁺. Форма спектра хорошо аппроксимируется суммой пяти гауссовых линий (рис.2, табл.3). Меньшее число компонент удовлетворительного совпадения не даёт.

Ион Cr⁴⁺ обладает малым ионным радиусом и предпочитает тетраэдрическое окружение. Используя диаграммы Танабе – Сугано для иона электронной конфигурации $3d^2$ в тетраэдрическом окружении, можно отнести наблюдаемый спектр поглощения к переходам ${}^{3}A_{2} - {}^{3}T_{1}$ и ${}^{3}A_{2} - {}^{3}T_{2}$ [5–7]. Каждый из уровней ${}^{3}T_{1}, {}^{3}T_{2}$ является трёхкратно вырожденным в симметрии T_{d} и при понижении симметрии расщепляется, с чем и связана наблюдаемая система полос.

Характеристики полос и их привязка к конкретному переходу приведены в табл.3. Из нее видно, что люминесценция наблюдается при возбуждении уровня ${}^{3}T_{1}$. Увеличение тушения люминесценции (примерно в 10 раз) при повышении температуры от 77 до 300 К может быть объяснено многофононной релаксацией, которая из-за уширения фононного спектра более эффективна в стёклах по сравнению с кристаллами. Кроме того, близкое расположение уровней ${}^{3}T_{1}$ и ${}^{1}E$ приводит к их смешению в результате спин-орбитального взаимодействия, чему также благоприятствует расщепление ${}^{3}T_{1}$. Возможность подобного эффекта обсуждалась в работе [4]. В этом случае также ожидается заметная зависимость люминесценции от температуры.

В работах [1, 2] авторы тоже наблюдали люминесценцию при 77 К в алюмосиликатных световодах, при этом приведённые спектры потерь по форме и расположению очень близки к полученным нами. Некоторое различие в спектрах можно объяснить технологией изготовления световодов, а именно тем, что в [1, 2] алюминий был введён пропиткой, тогда как в наших образцах, где наблюдалась люминесценция, он вводился из парогазовой фазы методом MCVD. Различие в характеристиках люминесценции было более значительным. Авторы [1, 2] сообщают о полосе сложной формы шириной 500 нм с центром на $\lambda \sim 1250$ нм, которая наблюдалась только

Табл.3. Параметры гауссовых компонент в разложении спектра поглощения и их идентификация.

Номер пика	Центр (см ⁻¹)	Ширина (см ⁻¹)	Переход
1	8123.2	1600	${}^{3}T_{2} - {}^{3}A_{2}$
2	10755	2690	${}^{3}T_{2} - {}^{3}A_{2}$
3	12757	1927	${}^{3}T_{1} - {}^{3}A_{2}$
4	14585	2337	${}^{3}T_{1} - {}^{3}A_{2}$
5	16977	3606	${}^{3}T_{1} - {}^{3}A_{2}$

при 77 К, и относят её к переходу ${}^{3}T_{2} - {}^{3}A_{2}$. Мы наблюдали полосу симметричной формы шириной 300 нм с центром на 1100 нм при 77 и 300 К в случае возбуждения уровня ${}^{3}T_{1}$. При возбуждении уровня ${}^{3}T_{2}$ (1064 нм) люминесценция не наблюдалась.

В случае германосиликатного световода АЈ-25, легированного магнием и хромом, привязать поглощение в видимой области к определённой степени окисления хрома затруднительно, поскольку здесь может также присутствовать поглощение ионом Cr^{3+} . На возможное присутствие иона Cr³⁺ указывает наблюдаемый рост поглощения в коротковолновой области, начиная с 500 нм [3]. В работе [2] представлены данные о стабилизации германием инов хрома в степени окисления +3. В нашей работе наличие люминесценции при 77 К по форме полосы, ширине и расположению аналогичной люминесценции в алюмосиликатном световоде, легированном хромом, указывает на присутствие хрома в степени окисления +4. Таким образом, можно сделать заключение о том, что добавка магния в германосиликатный световод позволяет, по крайней мере частично, стабилизировать хром в степени окисления +4.

5. Выводы

В настоящей работе впервые, по нашим данным, наблюдалась люминесценция иона Cr^{4+} при комнатной температуре в алюмосиликатных световодах и галлиевосиликатном световоде. Световоды изготовлены методом MCVD, а хром и магний дополнительно введены методом пропитки. Полоса люминесценция имеет максимум на 1100 нм и ширину 300 нм. Люминесценция наблюдалась при оптическом возбуждении в диапазоне 568–823 нм, при этом квантовый выход не менялся в пределах точности измерений и составил ~ 10^{-5} при T = 300 K и 10^{-4} при 77 K.

Добавка магния положительно сказалась на увеличении квантового выхода в алюмосиликатном световоде и привела к частичной стабилизации ионов хрома в степени окисления +4 в германосиликатном световоде. Спектральный диапазон накачки соответствует возбуждению уровня ${}^{3}T_{1}$ иона Cr⁴⁺ в искажённом тетраэдрическом окружении.

Таким образом, несмотря на пока ещё низкий уровень квантового выхода, получены обнадёживающие результаты, стимулирующие дальнейшие исследования в области создания широкополосных оптоволоконных источников в ближнем ИК дипазоне на базе кварцевого стекла с примесью ионов хрома.

Авторы выражают искреннюю благодарность В.М. Парамонову (НЦВО) и Н.Н.Вечканову (ИХВВ) за помощь в проведении экспериментов. Работа частично поддержана грантом научной школы РФФИ (№ 00-15-96650).

- 1. Felice V., Dussardier B. et al Europ. Phys. J. Appl. Phys., 11, 107 (2000).
- Felice V., Dussardier B., Jones J.K., Monnom G., Ostrovsky D.B. *Optics Mater.*, 16, 279 (2001).
- Murata T., Torisaka M., Takebe H., Morinaga K. J.Non-Cryst.Sol., 220, 139 (1997).
- Wu X., Huang S., Yen W.M., Aitken B.G., Newhouse M.A. J.Non-Cryst.Sol., 203, 120 (1996).
- Sugano S., Tanabe Y., Kamimura H. Multiplets of transition-metal ions in crystals (N.Y., Academic Press, 1970).
- 6. Anino C., Thery J., Vivien D. Optics Mater., 8, 121 (1997).
- Lipavsky B., Kalisky Y., Burshtein Z., Shimony Y., Rotman S. Optics Mater., 13, 117 (1999).