НЕЛИНЕЙНО-ОПТИЧЕСКИЕ ЯВЛЕНИЯ

PACS 42.50.Dv; 42.65.Yj

Возможность увеличения сжатия света путем каскадной параметрической генерации

Е.Г.Ларионцев

Теоретически исследованы квантовые флуктуации амплитуды выходного излучения в каскаде однонаправленных кольцевых параметрических генераторов света ($\Pi\Gamma C$), работающих при мощности накачки не выше пороговой. Показано, что при использовании каскада $\Pi\Gamma C$ можно уменьшить спектральную плотность флуктуаций за счет более эффективного сжатия света.

Ключевые слова: параметрический генератор света, сжатие света, спектр флуктуаций амплитуды.

Параметрический генератор света (ПГС) является одним из основных источников сжатого света [1-5]. На пороге параметрической генерации при устранении диссипации энергии внутри резонатора можно, в принципе, полностью подавить квантовые флуктуации амплитуды выходного излучения. Спектральная плотность флуктуаций амплитуды, равная отношению спектральных плотностей квантового и дробового шумов на пороге генерации определяется в области малых спектральных частот формулой (см. [5])

$$V = \frac{L}{L+T},\tag{1}$$

где T-коэффициент пропускания выходного зеркала; Lвсе остальные потери за проход резонатора. Для ослабления квантового шума надо увеличивать T и уменьшать L, предельные возможности здесь определяются диссипативными потерями, связанными с поглощением в нелинейном кристалле.

Однако в реальных ПГС достигнуть предела, связанного с диссипацией энергии внутри резонатора, не удается. В настоящее время лучшая степень сжатия, полученная при T = 7.2% и L = 0.41%, равна 7.2 дБ [5], что заметно хуже теоретического предела 12 дБ, определяемого формулой (1) при этих параметрах. Наибольшее подавление квантового шума, равное 7.2 дБ, было получено при мощности накачки ниже пороговой. При приближении к порогу генерации в допороговой области в [5] наблюдалось увеличение шума и стационарный режим становился неустойчивым.

Задача о преобразовании квантового шума в многокаскадном ПГС в методологическом и идейном плане относится к широкому кругу задач, обсуждавшихся в последнее время (см. [3] и цитируемую там литературу). Рассматривается квантовая система, состоящая из двух подсистем. В первой подсистеме генерируется неклассический свет (сжатый свет, свет с разгруппировкой фотонов и т. д.). Выходное излучение первой подсистемы подается на вход второй подсистемы и «управляет» ею. В [3] разработан обший подход к описанию таких систем, он и используется в настоящей работе.

Рассмотрим каскад из двух однонаправленных кольцевых ПГС, работающих при мощности накачки не выше пороговой. Вакуумное поле падает на выходное зеркало первого ПГС, а выходное излучение первого ПГС поступает на вход второго ПГС. Операторы рождения (a_j^+) и уничтожения (a_j) фотонов внутрирезонаторных полей каждого ПГС (j = 1, 2) описываются следующей системой ланжевеновских уравнений [1-3]:

$$\tau_{\mathbf{c}}\dot{a}_j = -\frac{k_j}{2}a_j + \frac{\varepsilon_j}{2}a_j^+ + F_j,\tag{2}$$

$$\tau_{c}\dot{a}_{j}^{+} = -\frac{k_{j}}{2}a_{j}^{+} + \frac{\varepsilon_{j}^{*}}{2}a_{j} + F_{j}^{+}.$$
(3)

Здесь k_j – полные потери за обход *j*-го резонатора; τ_c – время обхода светом резонатора; ε_j – эффективная комплексная амплитуда накачки; F_j и F_j^+ – ланжевеновские силы. При записи уравнений (2), (3) мы положили, что оба резонатора имеют равные собственные частоты ω_{lc} , а частота накачки ω_p удовлетворяет условию $\omega_p = 2\omega_{lc}$.

Операторы рождения (a_{out1}^+) и уничтожения (a_{out1}) фотонов поля, выходящего из первого ПГС (j = 1) через полупрозрачное зеркало с коэффициентом пропускания *T*, определяются из граничных условий на этом зеркале [1,2]:

$$a_{\text{out }1} = \sqrt{T}a_1 - a_{\text{in}}, \quad a_{\text{out }1}^+ = \sqrt{T}a_1^+ - a_{\text{in}}^+,$$
 (4)

где $a_{in}(a_{in}^+)$ – оператор уничтожения (рождения) фотонов вакуумного поля, падающего на выходное зеркало первого ПГС. Так как входящим полем для второго каскада (j = 2) является поле, выходящее из первого ПГС, граничные условия на выходном зеркале второго каскада (имеющем тот же коэффициент пропускания T) принимают, в отличие от (4), следующий вид:

$$a_{\text{out}2} = \sqrt{T}a_2 - a_{\text{out}1}, \quad a_{\text{out}2}^+ = \sqrt{T}a_2^+ - a_{\text{out}1}^+.$$
 (5)

НИИ ядерной физики им. Д.В.Скобельцына при МГУ им. М.В.Ломоносова, Россия, 119899 Москва, Воробьевы горы

Поступила в редакцию 6 июля 2000 г., после доработки – 8 сентября 2000 г.

Будем считать, что оба каскада идентичны: $k_1 = k_2 = T + L$, $\varepsilon_1 = \varepsilon_2 = \varepsilon$. Эффективную комплексную амплитуду накачки ε представим в виде

$$\varepsilon = \frac{1}{2}(T+L)\eta e^{-i\theta},\tag{6}$$

где ϑ – фаза накачки; η – отношение амплитуды накачки к пороговой. Порогу генерации соответствует $\eta = 1$, и в рассматриваемой нами области мощностей накачки, не превышающих пороговой, $\eta < 1$.

Как известно, в ПГС наблюдается сжатие квадратурной компоненты $a + a^+$ при фазе накачки $\vartheta = \pi$. Далее мы будем интересоваться лишь сжатием и поэтому положим $\vartheta = \pi$. В этом случае выражение для ε принимает вид $\varepsilon = -(T + L)\eta/2$.

Решая систему уравнений (2), (3) методом преобразования Фурье и используя (4), получаем следующие формулы для квадратурных компонент внутрирезонаторного и выходного полей первого каскада:

$$a_{1}(\omega) + a_{1}^{+}(\omega) = \frac{F_{1}(\omega) + F_{1}^{+}(\omega)}{p(\omega)},$$
(7)

$$a_{\text{out }1}(\omega) + a_{\text{out }1}^+(\omega) = \sqrt{T}[a_1(\omega) + a_1^+(\omega)]$$

$$-a_{\rm in}(\omega) - a_{\rm in}^+(\omega), \tag{8}$$

где $p(\omega) = (T + L)(1 + \eta)/2 - i\omega\tau_c$.

Для первого каскада ланжевеновскую силу $F_1(t)$ представим в виде [1, 2]

$$F_1(t) = \sqrt{T}a_{\rm in}(t) + \sqrt{L}b_1(t).$$
(9)

Первый член в правой части (9) сответствует внешнему (вакуумному) полю, проникающему в ПГС через полупрозрачное зеркало, а второй – квантовому шуму, связанному с диссипативными потерями в первом каскаде. Источники шума являются дельта-коррелированными:

$$\langle a_{\rm in}(t)a_{\rm in}^+(u)\rangle = \delta(t-u), \quad \langle a_{\rm in}^+(t)a_{\rm in}(u)\rangle = 0,$$

$$\langle b_1(t)b_1^+(u)\rangle = \delta(t-u), \quad \langle b_1^+(t)b_1(u)\rangle = 0.$$

$$(10)$$

Операторы шума a_{in} и b_1 не коррелируют друг с другом.

Аналогично (7), (8) получим следующие формулы для фурье-компонент поля во втором каскаде [3]:

$$a_2(\omega) + a_2^+(\omega) = \frac{F_2(\omega) + F_2^+(\omega)}{p(\omega)},$$
 (11)

$$a_{\text{out}2}(\omega) + a_{\text{out}2}^{+}(\omega) = \sqrt{T}[a_{2}(\omega) + a_{2}^{+}(\omega)]$$
$$-\sqrt{T}[a_{1}(\omega) + a_{1}^{+}(\omega)] + a_{\text{in}}(\omega) + a_{\text{in}}^{+}(\omega).$$
(12)

Для второго каскада ланжевеновскую силу $F_2(t)$ представим в виде [3]

$$F_2(t) = \sqrt{T} [\sqrt{T} a_1(t) - a_{\rm in}(t)] + \sqrt{L} b_2(t).$$
(13)

Член в квадратных скобках в правой части этого выражения соответствует выходному полю первого каскада, а последний член – квантовому шуму, связанному с диссипативными потерями во втором каскаде. Оператор b_2 имеет такие же корреляционные свойства, как и b_1 , он не коррелирует с a_{in} и b_1 .

Используя соотношения (5)–(13), можно выразить фурье-компоненту выходного поля $a_{out 2}(\omega) + a_{out 2}^+(\omega)$ через спектральные компоненты операторов a_{in} , b_1 и b_2 . Учитывая коррелляционные свойства этих операторов, получаем следующую формулу для спектральной плотности флуктуаций амплитуды $V(\omega) = \langle |a_{out 2}(\omega) + a_{out 2}^+(\omega)|^2 \rangle$ в каскаде из двух идентичных ПГС:

$$V(\omega) = \frac{A^2}{B^2} + \frac{TL}{B} + \frac{TLA}{B^2},$$
 (14)

где $A = [(T+L)(1+\eta)/2 - T]^2 + \omega^2 \tau_c^2; B = [(T+L)(1+\eta)/2]^2.$

Формула (14) справедлива в области частот $|\omega| \ll (T + L)/\tau_c$. Из нее следует, что в каскаде из двух идентичных ПГС при мощности накачки ниже пороговой можно достигнуть большего сжатия света, чем в одном ПГС. Типичная зависимость $V(\omega = 0)$ от относительной амплитуды накачки η показана на рис.1,*a* для каскада из двух ПГС (сплошные кривые) и для одного ПГС (штриховые кривые). Кривые 1 соответствуют экспериментальным данным работы [5]: L=0.41%, T=7.2%, $\tau_c = 4.8 \cdot 10^{-10}$ с ($(L + T)/(2\pi\tau_c) = 25$ МГц). Для кривых 2 коэффициент пропускания T = 20%, а L и τ_c те же, что и для кривых 1. Аналогичные зависимости $V(\omega)$ от η показаны на рис.1, δ для спектральной компоненты с $\omega/2\pi = 6.5$ МГц. На частоте $\omega/2\pi = 6.5$ МГц проводилось измерение сжатия света в работе [5].

Из (14) следует (это видно также из рис.1,*a*), что на пороге параметрической генерации ($\eta = 1$) для спектральных компонент с $\omega = 0$ спектральная плотность V(0) одинакова для каскада и одиночного ПГС. Тот же результат

Рис.1. Зависимости спектральной плотности флуктуаций амплитуды $V(\omega)$ от относительной амплитуды накачки η для спектральных компонент с $\omega/2\pi = 0$ (*a*) и 6.5 МГц (*б*) в случае каскада из двух ПГС (сплошные кривые) и для одного ПГС (штриховые кривые) при L = 0.41 %, $\tau_c = 4.8 \cdot 10^{-10}$ с, T = 7.2 [5] (*I*) и 20 % (*2*).

получается и в системе из многих контуров: предельная спектральная плотность V(0) на пороге ($\eta = 1$) оказывается такой же, как и в одиночном ПГС. Она определяется шумами последнего каскада, связанными с внутрирезонаторными диссипативными потерями в этом каскаде.

При $\omega = 0$ использование каскада дает выигрыш лишь при амплитуде накачки ниже пороговой. В области же спектральных компонент с $\omega \neq 0$, как следует из (14), применение каскада позволяет получить более эффективное сжатие света во всем интервале амплитуд накачки, включая и пороговую (см. рис.1, δ). Использование каскада ПГС существенно расширяет полосу частот, в которой происходит подавление квантового шума. В одиночном ПГС спектральная плотность $V(\omega)$ пропорциональна ω^2 в области малых частот $|\omega| \ll (T + L)/\tau_c$. В системе из N контуров $V(\omega)$ пропорционально ω^{2N} .

Таким образом, анализ спектра флуктуаций амплитуды выходного излучения в каскаде однонаправленных кольцевых ПГС показывает, что при использовании каскада идентичных ПГС, работающих при амплитуде накачки не выше пороговой, можно осуществить более эффективное сжатие света.

Работа выполнена при поддержке РФФИ (грант № 00-02-16041) и БРФФИ-РФФИ (грант № 00-02-81040 Бел.2000-а).

- 1. Collet M.J., Gardiner C.W. Phys. Rev. A, 30, 1386 (1984).
- 2. Collet M.J., Walls D.F. Phys. Rev. A, 32, 2887 (1985).
- 3. Gardiner C.W., Parkins A.S. Phys. Rev. A, 50, 1792 (1994).
- 4. Breitenbach G., Schiller S. J.Mod.Opt., 44, 59 (1998).
- Schneider K., Lang M., Mlynek J., Schiller S. Optics Express, 2, 59 (1998).