Теоретическое исследование рентгеновского лазера на переходах Ni-подобного ксенона в области 13–14 нм

Е.П.Иванова*, Н.А.Зиновьев*, Л.В.Найт**

На основе атомно-кинетического расчета коэффициентов усиления в Ni-подобном ксеноне предсказано наличие нескольких эффективных лазерных переходов в области 13-14 нм. Рассмотрены временные характеристики коэффициентов усиления $g(\tau)$ в зависимости от электронной плотности, температуры и диаметра плазменного инура. Результаты расчета могут быть использованы для оптимизации параметров накачки с целью достижения максимального коэффициента усиления.

Ключевые слова: моделирование рентгеновских лазеров, атомно-кинетический расчет, Ni-подобный ксенон.

1. Введение

В настоящее время активно исследуется возможность генерации лазерного ВУФ излучения в области 13-14 нм, поскольку именно для этого диапазона длин волн разработаны методы создания многослойных зеркал с коэффициентом отражения до 60 % [1-3]. Лазерное излучение достаточной интенсивности в этой области спектра применяется для целей микролитографии, рентгеновской микроскопии, в биотехнологиях и т. д.

В последние годы разрабатываются новые экспериментальные подходы к созданию эффективных ВУФ лазеров. Так, интенсивное излучение в области 1-22 нм исследовалось в так называемой мишени газ-пафф, накачиваемой импульсами Nd:YAG-лазера с длительностью 0.9-10нс и энергие
й $\sim \! 0.7$ Дж [4]. Такой источник «плазмы световой искры» разрабатывался еще в начале 70-х гг. [5]. В настоящее время он является одной из перспективных установок для создания несжимающейся безабляционной плазмы с целью генерации лазерного излучения в области 1-5 нм [6]. Гибридный источник накачки разработан в работе [7]: электрический разряд в капилляре создает низкотемпературную плазму в состоянии Ne-подобной серы, затем плазма разогревается пикосекундным лазером накачки. В таких источниках непинчующейся плазмы возможно достижение температур порядка нескольких сот электронвольт.

Радиационно-столкновительная модель генерации усиления спонтанного излучения (УСИ) на переходах Ni-подобных ионов аналогична модели генерации УСИ на Ne-подобных ионах, предложенной в начале 70-х гг. [8–10]. Первые экспериментальные наблюдения УСИ на Ni-подобных ионах [11] продемонстрировали экономичность Ni-подобной схемы по сравнению с Ne-подобной, поскольку отношение энергии лазерного перехода в Niподобном ионе к энергии его образования существенно ниже, чем в Ne-подобном ионе. В первых работах с Ni-

Поступила в редакцию 14 марта 2001 г.

подобными ионами использовался единственный продолжительный импульс лазерной накачки (0.5–1.5 нс) [11, 12]. Результатом этих работ явилось существенное продвижение в спектральную область дальнего ВУФ излучения и в область водяного окна ($\lambda < 44$ Å). Однако коэффициенты усиления и яркость выходящего лазерного луча в плазме Ni-подобных ионов оказались значительно ниже, чем в лазерах на Ne-подобных ионах. В дальнейших исследованиях для повышения эффективности Ni-подобных схем использовались двух- и многоступенчатые конфигурации лазерной накачки плазмы [13–15].

Преимущество многоступенчатой накачки очевидно: в течение предварительного импульса происходит ионизация и расширение плазмы и за время между импульсами выравнивается градиент плотности плазмы. Таким образом, на определенном расстоянии образуется относительно однородный участок плазмы с плотностью, необходимой для возникновения лазерного эффекта. К моменту действия основного импульса должна быть достигнута рабочая стадия ионизации. Далее основной импульс разогревает плазму, приводя ее в инвертированное состояние. Таким образом, многоступенчатая накачка обеспечивает лучшие условия для распространения лазерного луча в более однородной среде, оптимизирует ионизационный баланс и существенно повышает отношение температур электронов и ионов $T_{\rm e}/T_{\rm i}$, что приводит к увеличению коэффициентов усиления. Тем не менее в [13-15] квантовый выход лазера не превышал 10⁻⁶.

Во многих экспериментах малая длина плазмы L обусловлена коротким выходящим лазерным импульсом ($\tau_{las} < 100$ пс), что связано с малым временем существования инверсии в плазме с оптимальными электронными плотностью n_e и температурой T_e . Целью настоящих исследований является генерация коротких и ультракоротких импульсов ВУФ лазеров. Однако для ряда приложений важное значение имеет достижение максимального произведения коэффициента усиления на длину плазменного шнура gL. Увеличение L стало возможным с использованием техники возбуждения бегущей волной (ВБВ) [2, 3]: луч лазера накачки сканируется вдоль образца, опережая распространение выходящего лазерного

^{*}Институт спектроскопии РАН, Россия, 142190 Троицк Моск. обл. ^{**}Brigham Young University, Provo, UT 84602, USA

излучения. С использованием ВБВ в работе [2] для Niподобного серебра на переходе 3d4d - 3d4p (0–1) с $\lambda =$ 139 Å было достигнуто gL > 30.

Оптимизация источников накачки производится с целью достижения параметров n_e^{opt}, T_e^{opt}, при которых $g(\tau)$ максимально; при этом особенно важно учитывать временные характеристики процессов в плазме. Для случая двухступенчатых (и многоступенчатых) схем следует выделить по крайней мере три временные храктеристики: $\tau_0(n_{\rm e}, T_{\rm e})$ – временной интервал достижения рабочей стадии ионизации при нагревании плазмы (в нашем случае стадии Ni-подобного ксенона), $\tau_{ex}(n_e, T_e, d)$ – время заселения уровней в Ni-подобном ионе (d-диаметр плазменного шнура) и $\tau_i^{Ni}(n_e, T_e)$ – время ионизации Ni-подобного иона в следующую (Со-подобную) стадию, т.е. время жизни Ni-подобного иона в плазме. Во многих экспериментах длина насыщения ВУФ лазера обусловлена временем жизни $\tau_i^{Ni}(n_e, T_e)$ либо временным интервалом $\tau_{\rm ex}(n_{\rm e}, T_{\rm e}, d).$

В работах [16, 17] мы выполнили расчет коэффициентов усиления на переходах ионов изоэлектронного ряда неона. Было установлено, что при определенных параметрах плазмы возможна инверсия между высоковозбужденными состояниями Ne-подобных ионов. В частности, сильными лазерными переходами в Ne-подобных ионах являются $2s2p^63d [J=2] - 2s2p^63p [J=1]$, т.е. переход 3d - 3p(2 - 1), в котором «наблюдателем» является 2s-вакансия остова. Лазерные переходы между высоковозбужденными состояниями находятся в области спектра с большой плотностью линий, что затрудняет их спектроскопическую идентификацию. Тем не менее в литературе имеются данные об экспериментальных измерениях коэффициентов усиления в Ne-подобном германии на переходе 3d - 3p(2 - 1) [18]. Аналогичные лазерные переходы между высоковозбужденными состояниями Ni-подобного тантала исследовались теоретически в [19]. Из расчетов следует, что для каждого иона возможно значительное расширение диапазона длин волн лазерных переходов, однако для подавляющей части ионов лазерные переходы между возбужденными уровнями не исслелованы.

В литературе отсутствуют данные об исследованиях ВУФ лазера на Ni-подобном ксеноне, в настоящее время ведется интенсивный поиск лазерного эффекта в этой системе с использованием газ – пафф-установок, где плазма создается под действием двухступенчатого лазера накачки [4, 6]. Весьма полезными могут оказаться теоретические расчеты коэффициентов усиления с указанием оптимальных параметров плазмы и временных характеристик $\tau_0(n_e, T_e), \tau_{ex}(n_e, T_e, d), \tau_i^{Ni}(n_e, T_e)$. В настоящей работе детально исследуется коэффициент усиления $g(\tau; n_e, T_e, d)$ для всех возможных лазерных переходов в Ni-подобном ксеноне, включая сильные лазерные линии в области 13-14 нм. Предполагается, что плазма в капилляре создается двухступенчатым импульсом накачки, аналогичным используемому в [4, 6]. Рассчитываются временные характеристики, а также $n_{\rm e}$, $T_{\rm e}$, d.

2. Расчет коэффициентов усиления на переходах Ni-подобного ксенона

Моделирование рентгеновских лазеров можно разделить на три взаимосвязанных этапа: магнитно-гидродинамические (МГД) расчеты разогрева плазмы и плазмен-

ной динамики, атомно-кинетические расчеты населенностей уровней, интенсивностей линий и коэффициентов усиления и расчеты распространения излучения в плазме с оценкой длин насыщения и когерентности. Каждый этап представляет собой сложную задачу, содержащую множество параметров. Поскольку лазерное усиление наблюдается в строго определенном диапазоне параметров плазмы, большое значение приобретают атомно-кинетические расчеты коэффициентов усиления, позволяющие установить параметры плазмы, оптимальные для достижения максимального лазерного эффекта на каждом из возможных переходов. В наших расчетах мы полагаем, что в первом приближении МГД-расчеты и кинетика заселения уровней иона - независимые задачи, т.к. электронное возбуждение и радиационный распад внутри отдельного иона практически не влияют на плазменную динамику.

Мы не останавливаемся здесь на описании метода расчета коэффициентов усиления, поскольку он детально изложен в [16, 20]. В радиационно-столкновительной модели лазерные переходы возможны между состояниями ионов изоэлектронных последовательностей неона, никеля, палладия. Для всех известных лазерных переходов в этих ионах $\Delta n = 0$ (n – главное квантовое число состояния). В [21] на примере переходов $2p^53p[J=0] - 2p^53s[J=1]$, $2p^53p[J=2] - 2p^53s[J=1]$ в Ne-подобном германии выполнен полный расчет уширения линий с учетом штарковского эффекта, возникающего благодаря квазистатическим микрополям в плазме.

Расчет показал, что в этих случаях уширение линий за счет квазистатических ионных микрополей пренебрежимо мало. Лазерный эффект максимален при достаточно высоких T_e , n_e . Так, в Ni-подобном ксеноне необходимо выполнение условий $T_e \ge 500$ эВ, $n_e \ge 10^{20}$ см⁻³. При этом доплеровская и собственная ширины линии составляют порядка сотни обратных сантиметров, что значительно больше расщеплений тонкой и сверхтонкой структуры, возникающих благодаря ионным квазистатическим микрополям. Уширение линий за счет столкновений с электронами в несколько раз превышает доплеровское уширение. По вышеизложенным причинам при расчете ширины линии не учитывается вклад в уширение, вносимый квазистатическими микрополями.

При столь сильном столкновительном смешивании населенности верхнего ($P_{\rm up}$) и нижнего ($P_{\rm low}$) рабочих уровней близки, так что обычно инверсия $P_{\rm up} - P_{\rm low}(g_{\rm up}/g_{\rm low})$ составляет 10–30 % населенности верхнего уровня ($g_{\rm up}$, $g_{\rm low}$ – коэффициенты вырождения верхнего и нижнего уровней). Таким образом, для адекватного описания физических процессов в плазме скорости столкновительных и радиационных переходов в рабочем ионе должны рассчитываться с высочайшей точностью; при этом существенно, чтобы все скорости переходов рассчитывались в одном и том же приближении.

В нашей модели расчеты уровней энергий, вероятностей радиационных переходов (ВРП) и сечений возбуждения иона электронным ударом основаны на последовательной квантово-электродинамической теории. Используемый метод атомных расчетов известен под названием релятивистской теории возмущений с модельным потенциалом нулевого приближения. Описание этого метода можно найти в работах [22–24]. В этих же работах выполнен детальный анализ спектроскопических констант и проведено сопоставление с расчетами других авторов.

Табл.1. Состояния Ni-подобного ксенона, при переходах между которыми возможно усиление спонтанного излучения, длины волн переходов λ и ВРП между уровнями.

Верхнее сос	тояние	Нижнее сос	тояние	_			
Уровень	J	Уровень	J	Переход	λ (A)	BPII (c^{-1})	
$3d_{5/2}4d_{5/2}$	0	$3d_{5/2}4p_{3/2}$	1	35-12	99.0	$1.0 \cdot 10^{11}$	
$3d_{3/2}4f_{5/2}$	1	$3d_{3/2}4d_{1/2}$	1	57-28	113	$4.4 \cdot 10^{10}$	
$3p_{3/2}4p_{3/2}$	0	$3d_{3/2}4p_{1/2}$	1	65-9	45.0	$1.68 \cdot 10^{11}$	
$3p_{1/2}4p_{1/2}$	0	$3p_{1/2}4s_{1/2}$	1	67-61	197	$1.9 \cdot 10^{10}$	
$3p_{1/2}4p_{1/2}$	0	$3d_{3/2}4p_{1/2}$	1	67-9	39.1	$8.9 \cdot 10^{11}$	
$3p_{1/2}4p_{1/2}$	0	$3d_{5/2}4p_{3/2}$	1	67-12	39.9	$2.2 \cdot 10^{11}$	
$3p_{1/2}4p_{3/2}$	2	$3p_{1/2}4s_{1/2}$	1	69-61	173	$5.0 \cdot 10^{10}$	
$3p_{3/2}4d_{5/2}$	4	$3p_{3/2}4p_{3/2}$	3	74-62	143	$1.2 \cdot 10^{11}$	
$3p_{1/2}4d_{3/2}$	2	$3p_{1/2}4p_{1/2}$	1	78-66	118	$1.6 \cdot 10^{11}$	
$3p_{1/2}4d_{5/2}$	2	$3p_{1/2}4p_{3/2}$	1	80 - 68	138.6	$1.1 \cdot 10^{11}$	
$3p_{1/2}4d_{5/2}$	3	$3p_{3/2}4p_{5/2}$	2	81-69	139.0	$1.2 \cdot 10^{11}$	
$3p_{3/2}4f_{7/2}$	2	$3p_{3/2}4d_{5/2}$	1	89-76	132	$9.6 \cdot 10^{10}$	
$3p_{1/2}4f_{5/2}$	2	$3p_{1/2}4d_{3/2}$	1	93-79	130	$1.1 \cdot 10^{11}$	

В табл.1 представлена классификация в *jj*-схеме связи и даны краткие обозначения исследуемых здесь переходов, УСИ между которыми возможно при определенных параметрах плазмы, даны их длины волн и ВРП. Для краткости переход обозначается порядковыми номерами уровней (по возрастанию энергии). В изоэлектронной последовательности никеля наиболее изученными являются два первых перехода из табл.1. По механизму инверсии переход 3d4d - 3d4p(0 - 1) аналогичен переходу 2p3p - 2p3s(0 - 1) в Ne-подобном ионе. Инверсия на переходе 3d4f - 3d4d(1 - 1) обусловлена реабсорбцией (перепоглощением фотонов) на верхний уровень, большой скоростью заселения этого уровня из основного состояния электронным ударом, а также достаточно большой ВРП из верхнего состояния в нижнее.

В оптически-тонкой среде верхний резонансный уровень $3d_{3/2}4f_{5/2}[J=1]$ с вероятностью $6\cdot10^{13}$ с⁻¹ распадается в основное состояние, а в оптически плотной среде реабсорбция в 10–100 раз понижает вероятность этого распада, в результате чего значительно увеличивается населенность верхнего состояния $3d_{3/2}4f_{5/2}[J=1]$, что и объясняет возникновение инверсии. Характерно, что время жизни инверсии для этого перехода, а также для внутриоболочечных переходов 3p - 3d(0-1) с $\lambda = 45$, 39.1 и 39.9 Å для Ni-подобного ксенона составляет 10–20 пс, так что их наблюдение при стандартных подходах

Рис.1. Зависимости усредненных по времени коэффициентов усиления g от n_e для наиболее сильных переходов в Ni-подобном ксеноне при $T_e = 600$ эB, d = 0.1 мм.

затруднительно. Наиболее эффективными являются лазерные переходы в области длин волн 130-140 Å (4 нижние строки табл.1).

При расчете параметров импульсов накачки важную роль играют упомянутые во Введении временные факторы. Наша модель позволяет оценить ионизационный баланс в плазме при учете двух стадий ионизации - Сиподобной и Ni-подобной, а также временные характеристики: $\tau_i^{Cu}(n_e, T_e)$ – время ионизации Си-подобного иона, τ_{ex} , τ_i^{Ni} [20]. В табл.2 дан ионизационный баланс в плазме ксенона, а также время ионизации Си-подобного иона в Ni-подобный в зависимости от параметров плазмы n_e, $T_{\rm e}$. Как видно из табл.2, сравнительно небольшие вариации параметров плазмы могут привести к значительному изменению времени ионизации. Данные табл.2 позволяют оценить ионизационный баланс и время ионизации Ni-подобного иона в Со-подобный. Так, при $T_e = 500 -$ 600 эВ Ni-подобный ион находится в «термической ловушке», т.е. при таких Te ионизация и рекомбинация на Ni-подобный ион практически сбалансированы.

На рис.1 показаны зависимости коэффициентов усиления от n_e для наиболее сильных лазерных переходов при $T_e = 600$ эВ, d = 100 мкм. Для обычного перехода 4d - 4p(0-1) с $\lambda = 99$ Å оптимальная плотность $n_e^{opt} = 10^{20}$ см⁻³, для прочих переходов n_e^{opt} больше. Так, для перехода 4f - 4d(2-1) с $\lambda = 130$ Å $n_e^{opt} \ge 5 \cdot 10^{20}$ см⁻³. На рис.2,*a* даны зависимости коэффициента усиления *g* от времени τ для перехода 4d - 4p(0-1) в предположении мгновенного нагрева плазмы основным импульсом накачки. В расчете $g(\tau)$ мы полагаем, что в момент $\tau = 0$ заселен лишь основной уровень ксенона в Ni-подобном

Табл.2. Ионизационный баланс в плазме ксенона при учете Ni- и Cu-подобных стадий ионизации в зависимости от параметров плазмы n_e , T_e ([Ni] – доля Ni-подобных ионов ([Ni]+[Cu]=1); τ_i^{Cu} – время ионизации Cu-подобной стадии в Ni-подобную; $k = T_e/E_{\text{ioniz}}$; E_{ioniz} – энергия ионизации Cu-подобного иона).

$n_{\rm e} (10^{19} {\rm cm}^{-3}) \longrightarrow$		5		7.5		10		25		50		100	
<i>T</i> _e (эВ)	k	[Ni]	$ au_{i}^{Cu}$ (HC)										
200	0.23	0.18	4.2	0.19	3.2	0.20	1.6	0.23	0.75	0.25	0.3	0.25	0.15
250	0.29	0.36	2.9	0.36	1.6	0.37	0.8	0.42	0.3	0.44	0.15	0.47	0.06
300	0.35	0.52	1.9	0.54	0.8	0.55	0.4	0.60	0.14	0.63	0.06	0.67	0.05
350	0.41	0.63	1.0	0.65	0.3	0.68	0.2	0.72	0.07	0.74	0.03	0.76	0.03
400	0.47	0.71	0.5	0.73	0.15	0.75	0.1	0.78	0.04	0.82	0.02	0.82	0.015
450	0.51	0.80	0.1	0.81	0.07	0.82	0.05	0.84	0.03	0.86	0.015	0.86	0.01

Рис.2. Временные зависимости $g(\tau)$ для переходов 4d - 4p(0-1)($\lambda = 99$ Å (a)) и 4f - 4d (2 - 1) ($\lambda = 130$ Å (δ)) при двухступенчатой накачке и параметрах плазмы $n_{\rm e} = 1.5 \cdot 10^{20}$ (a), $5 \cdot 10^{20}$ см⁻³ (δ), d = 0.1 мм и разных $T_{\rm e}$.

ионе; при этом с помощью поправочного коэффициента учитывается, что часть ионов находится в других стадиях ионизации.

Кривые на рис.2, а для разных Те имеют острый несимметричный максимум при $\tau = 1 - 2$ пс, затем функция $g(\tau)$ плавно выходит на асимптотику. С увеличением $T_{\rm e}$ усиление в максимуме растет, при этом его асимптотическое значение падает; падение асимптотических значений $g(\tau)$ обусловлено уменьшением числа ионов в Niподобном состоянии из-за ионизации в Со-подобное состояние. Таким образом, $g(\tau)$, усредненное на интервале 600 пс, максимально при $T_{\rm e} = 600$ эВ. Пр
и $T_{\rm e} > 600$ зВ функция $g_{\text{max}}(\tau) \simeq 16 - 18$ см⁻¹ при $\tau = 1 - 2$ пс и затухает при $\tau \sim 10 - 15$ пс. Этот острый максимум обусловлен большой разностью скоростей заселения электронным ударом верхнего (3d4d [J = 0]) и нижнего (3d4p [J = 1]) рабочих уровней из основного состояния; во временном диапазоне, соответствующем этому максимуму, влияние столкновительного смешивания с остальными уровнями еще незначительно. В работе [25] такой механизм инверсии был назван «переходным». После этого максимума населенности и инверсии выходят на квазистационарные значения, обусловленные столкновительным смешиванием со всеми остальными уровнями.

На рис.2,6 даны функции $g(\tau)$ для перехода 4f - 4d(2-1) с $\lambda = 130$ Å; здесь $g(\tau)$, усредненное на интервале 0-600 пс, максимально при $T_e = 600$ эВ. При более высоких T_e $g_{\max}(\tau)$ растет, а его асимптотическое значение падает за счет уменьшения Ni-подобной фракции.

Мы рассмотрели также временные зависимости $g(\tau)$ для одиночного длительного импульса накачки; здесь расчет был выполнен в предположении, что в начальный

Рис.3. Временные зависимости $g(\tau)$ для некоторых переходов Niподобного ксенона в случае одиночного импульса накачки при параметрах плазмы $n_e = 5 \cdot 10^{20}$ см⁻³, d = 0.1 мм и $T_e = 400$ эВ.

10

100

момент заселен нижний уровень Сu-подобного иона, т. е. под действием импульса накачки происходит образование Ni-подобного иона и его возбуждение. В этом случае ионизационный баланс далек от оптимального, продолжительность инвертированного состояния и $g(\tau)$ меньше. При этом для всех переходов $n_e^{\text{opt}} \approx 5 \cdot 10^{20} \text{ см}^{-3}$.

На рис.3 показаны функции $g(\tau)$ для нескольких переходов из табл.1 при n_e^{opt} и $T_e = 400$ эВ – минимальной температуре, при которой возможно усиление. В реальном эксперименте интенсивности необходимо измерять в узком временном интервале, что весьма затруднительно. Исходя из расчета времени ионизации $\tau_i^{\text{Си}}(n_e, T_e)$ (табл.2), можно грубо оценить длительность импульса накачки $\tau_0(n_e, T_e)$, в течение которого будет достигнута Ni-подобная стадия, в зависимости от необходимых параметров несжимающейся беспримесной плазмы. Длительность импульса слабо зависит от его формы; мы полагаем, что $\tau_0(n_e, T_e)$ приблизительно на два порядка больше $\tau_i^{\text{Сu}}(n_e, T_e)$, указанных в табл. 2.

Особый интерес представляет малоизученный переход 4f - 4d(1 - 1) с $\lambda = 113$ Å, механизм инверсии которого обусловлен реабсорбцией (вторая строка табл.1). УСИ на этом переходе исследовалось экспериментально в Ni-подобных ионах молибдена [26] и серебра [2]. В [2] в условиях двухступенчатой накачки с использованием ВБВ для этого перехода g = 30 - 33 см⁻¹ при $T_e \sim 800$ эВ. В Ni-подобном ксеноне при одиночном импульсе накачки и оптимальных параметрах плазмы (рис.3) $g_{max}(\tau) = 1$ см⁻¹. На рис.4 представлена зависимость $g(\tau)$

Рис.4. Временные зависимости $g(\tau)$ для перехода с реабсорбцией 4f - 4d(1-1) ($\lambda = 113$ Å) и для внутриоболочечного перехода 3p - 3d(0-1) ($\lambda = 39.1$ Å) в случае двухступенчатой накачки при параметрах плазмы $n_{\rm c} = 5 \cdot 10^{20}$ см⁻³, d = 0.1 мм и $T_{\rm c} = 500$ эВ.

τ (пс)

Рис.5. Зависимость коэффициента усиления от диаметра плазмы при $T_{\rm e} = 500$ эВ и разных $n_{\rm e}$; для перехода с реабсорбцией ($\lambda = 113$ Å) дано $g_{\rm max}$ ($\tau = 2.5$ пс), для остальных переходов – усредненные по времени g

в случае двухступенчатой накачки для $n_{\rm e}^{\rm opt}, T_{\rm e}^{\rm opt},$ где $g_{\rm max}(\tau)>25~{\rm cm}^{-1}.$

Заметное усиление в течение очень малого времени ($\tau_{\text{las}} \sim 5$ пс) возможно на коротковолновом внутриоболочечном переходе 3d - 3p(0-1) с $\lambda = 39.1$ Å; здесь внешний 4*p*-электрон является «наблюдателем», и в результате перехода изменяется состояние вакансии в остове. Этот переход интересен с точки зрения перехода к коротковолновому диапазону при умеренных T_{c} . Зависимости $g(\tau)$ для этого перехода также представлены на рис.3, 4.

Мы выполнили расчеты $g(\tau)$, варьируя диаметр плазменного шнура d. Сильная зависимость от d была найдена для перехода с инверсией, обусловленной реабсорбцией ($\lambda = 113$ Å), еще два лазерных перехода также оказались чувствительными к величине d. На рис.5 показано поведение коэффициентов усиления для разных переходов в зависимости от изменения диаметра излучающей плазмы. Для перехода с $\lambda = 113$ Å показано значение g_{max} . При высокой плотности (рис.5, ϵ) коэффициент усиления для всех переходов падает с увеличением d; исключением является перехода с $\lambda = 113$ Å. Следует отметить, что для этого перехода с увеличением диаметра при тех же параметрах T_e , n_e длительность «переходной» инверсии увеличивается до ~20 пс.

При достаточно малых плотностях ($n_{\rm e} \leq 3 \cdot 10^{20} \, {\rm cm}^{-3}$) для переходов 4p - 4s(2 - 1) ($\lambda = 173$ Å), 4d - 4p(2 - 1) $(\lambda = 138.6 \text{ Å})$ и 4d - 4p(3 - 2) $(\lambda = 139 \text{ Å})$ возможен рост коэффициента усиления при увеличении диаметра плазменного шнура до нескольких миллиметров. Реабсорбция излучения в плазме учтена в соответствие с формулами из [27, 28] посредством фактора ускользания г_{іі} для каждого перехода с уровня *i* на уровень *j*: $A_{ij}^{\text{eff}} = \varepsilon_{ij}A_{ij}$, где A_{ij} – вероятность распада изолированного иона, т.е. в оптически тонкой среде; $\varepsilon_{ij} = 1.22 [\ln (k_0 d)]^{1/2} / (k_0 d) \leq 1;$ $k_0 \sim N_i A_{ii}$ – коэффициент фотопоглощения; N_i – плотность ионов. В случае $n_{\rm e} \sim 10^{20} - 10^{21}$ см⁻³, $d \sim 0.1 - 5$ мм лишь для резонансных переходов в основное состояние с $\Delta J = 1$ имеем $\varepsilon_{ii} \ll 1$; для остальных переходов ε_{ii} меняется незначительно. В оптически плотной плазме населенность резонансных уровней повышается, что может привести к исчезновению инверсии для переходов в резонансное состояние с J = 1. Однако благодаря столкновительному перемешиванию возможно увеличение населенностей и верхних рабочих уровней. Соответственно в принципе возможны также ситуации, при которых инверсия практически не зависит от диаметра либо даже растет с его увеличением.

3. Заключение

Итак, в Ni-подобном ксеноне эффективное VCИ возможно на переходах 4f - 4d(2 - 1) с $\lambda = 130, 132$ Å и 4d - 4p(3 - 2) с $\lambda = 139$ Å при $T_e \ge 400$ эВ, $n_e \approx 5 \cdot 10^{20}$ см⁻³. Для этих переходов при указанных параметрах плазмы и достаточно малых d произведение gL > 50. Характерно, что для обычного перехода 4d - 4p(0 - 1) ($\lambda = 99$ Å) gL в 2-3 раза меньше.

Результаты настоящего расчета могут быть полезны в экспериментальных исследованиях УСИ в плазме ксенона [4, 6]. Обычно варьируемыми параметрами являются длительности и интенсивности предымпульса и основного импульса накачки, а также отношение их энерговкладов. Большое значение имеет выбор временного интервала для регистрации интенсивности лазерной линии. Расчет показывает, что длительность выходящего лазерного импульса τ_{las} , а также среднее значение $g(\tau)$ уменьшаются с увеличением $T_e > 600$ эВ, при этом $g_{max}(\tau)$ растет. В случае «переходной» инверсии для перехода 4d - 4p(0 - 1) функция $g(\tau)$ имеет острый максимум с шириной до нескольких десятков пикосекунд (двухступенчатая накачка). Здесь наблюдение усиления возможно лишь при длине излучателя несколько миллиметров, причем при очень коротком излучателе возможна регистрация лишь части выходящего импульса. Очевидно, что в этом случае при подгонке экспериментальных интенсивностей, измеренных при разных длинах излучателя, под однопараметрическую модельную формулу интенсивности выходящего луча можно получить весьма завышенные g. Это означает, что в случае «переходной» инверсии $g(\tau)$ будет разным для каждого отрезка длины излучателя. Еще одна неточность в измерениях $g(\tau)$ может возникнуть из-за нестабильности диаметра плазменного шнура в случае пинчующегося капиллярного разряда.

Погрешности нашего расчета обусловлены погрешностью определения ионизационного баланса, а также температуры ионов T_i , т. е. доплеровской части ширины линии. Неопределенности обоих типов устраняются одним масштабирующим множителем для всех переходов при всех параметрах. Более точный расчет потребует расширения системы уравнений в расчете кинетики населенностей, что, по-видимому, существенно в расчетах коэффициентов усиления для переходов между высоковозбужденными уровнями. Эти поправки не искажают принципиальных результатов настоящей работы.

- 1. Artyukov I.A., Benvare B.R., et al. J. de Phys. IV, 11, pt.2, 451 (2001).
- 2. Klisnick A., et. al. Proc.SPIE, 3776, 282 (1999).
- 3. Lewis C.L.S., et. al. Proc.SPIE, 3776, 292 (1999).
- Fiedorowicz H., Bartnik A., Szczurek M., Daido H., Sakaya N., Kmetik V., Kato Y., Suzuki M., Matsumura M., Tajima J., Nakayama T., Wilhein T. *Optics Comms*, 163, 103 (1999).
- 5. Аскарьян Г.А., Тарасова Н.М. *Письма в ЖЭТФ*, **14**, 89 (1971).
- Fiedorowicz H., Bartnik A., Jarocki R., Rakowski R., Szczurek M. Appl.Phys.B, 70, 305 (2000).
- Nickles P.V., Janulewicz K.A., Rocca J.J., Ruhl H., Bortolotto F., Sandner W. *Abstracts, VII Intern.Conf. on X-ray Lasers* (France, 2000, p.8).

- 8. Молчанов А.Г. *УФН*, **106**, 165 (1972).
- Виноградов А.В., Собельман И.И., Юков Е.А. Квантовая электроника, 2, 105 (1975).
- Жерихин А.Н., Кошелев К.Н., Летохов В.С. Квантовая электроника, 3, 152 (1976).
- MacGowan B.J., Maxon S., Hagelstein P.L., Keane C.J., London R.A., Matthews D.L., Rosen M.D., Scofield J.H., Whelan D.A. *Phys. Rev.Letts*, 59, 2157 (1987).
- MacGowan B.J., Da Silva L.B., Field D.J., Kean C.J., Koch J.A., London R.A., Matthews D.L., Maxon S., Mrowka S., Osterheld A.L., Scofield J.H., Shimkaveg G., Trebes J.E., Walling R.S. *Phys. Fluids B*, 4, 2326 (1992).
- Daido H., Kato Y., Ninomiya S., Kodama R., Yuan G., Oshikane Y., Takagi M., Takabe H. *Phys. Rev. Letts*, **75**, 1074 (1995).
- 14. Nilsen J., Moreno J.C. Optics Letts, 20, 1387 (1995).
- 15. Li Y., Pretzler G., Lu P.X., Fill E.E. Phys. Rev. A, 53, R652 (1996).
- 16. Иванова Е.П., Зиновьев Н.А. *Квантовая электроника*, **27**, 207 (1999).
- 17. Ivanova E.P., Zinovyev N.A. Phys.Letts A, 274, 239 (2000).
- Enright G.D., Villeneuve D.M., Dunn J., Baldis H.A., Kieffer J.C., Pepin H., Chaker M., Herman P.R. J.Opt.Soc.Amer., 8, 2047 (1991).
- Ivanova E.P., Knight L.V. *Proc.SPIE*, **3776**, 263 (1999).
 Ivanov L.N., Ivanova E.P., Knight L.V., Molchanov A.G. *Phys.*
- *Scripta*, **53**, 653 (1996).
- Benredjem D, Sureau A., Moller C. In: Inst.Phys.Conf.Ser.№151 (Bristol, Philadelphia, IOP Publishing Ltd, 1996, p. 333).
- 22. Ivanova E.P., Gulov A.V. At. Data Nucl. Data Tables, 49, 1 (1991).
- 23. Ivanov L.N., Ivanova E.P., Knight L.V. Phys. Rev. A, 48, 4365 (1993).
- 24. Ivanov L.N., Ivanova E.P., Knight L.V. Phys. Letts A, 206, 89 (1995).
- 25. Nickless P.V. Phys. Rev. Letts, 78, 2748 (1997).
- 26. Nilsen J., Li Y., Dunn J., Barbee T.W., Osterheld A. J. de Phys. (in press).
- 27. Держиев В.И., Жидков А.Г., Яковленко С.И. Излучение ионов в неравновесной плотной плазме (М., Энергоатомиздат, 1986).
- 28. Fill E.J. Quant.Spectr.Radiat.Transfer, 39, 489 (1988).