PACS 33.70.Jg; 42.62.Fi

Влияние температуры на ударное уширение ИК спектральных линий молекулы CO₂

С.Н.Андреев, В.Н.Очкин, С.Ю.Савинов

Методом диодной лазерной спектроскопии измерены ширины ИК спектральных линий молекулы CO_2 в широких интервалах температур (T=170-600~K) и вращательных квантовых чисел ($J\leqslant 82$). Установлено, что существующие квазиклассические модели ударного уширения не описывают всю совокупность результатов экспериментов. Предложена усовершенствованная модель, учитывающая отклонение траектории движения частиц от прямолинейной и увеличение эффективного сечения уширения при малых относительных скоростях частиц вследствие орбитальных столкновений. Модель не содержит свободных подгоночных параметров и удовлетворительно описывает эксперимент. Уточнена схема усреднения сечений уширения по относительным скоростям частиц.

Ключевые слова: диодная лазерная спектроскопия, спектральная линия, ударное уширение.

1. Введение

Взаимодействие излучающих частиц с окружающими атомами или молекулами вызывает столкновительное уширение и сдвиг спектральных линий. Характер этих взаимодействий зависит от относительной скорости частиц, что, с нашей точки зрения, для молекулярных спектров изучено недостаточно. В настоящей работе экспериментально и теоретически исследуется столкновительное уширение ИК спектральных линий на примере молекулы СО2, играющей важную роль в различных устройствах, технологиях, процессах энергопереноса в атмосфере и др. Сведения о контурах линий этой молекулы систематически обсуждаются в литературе. Молекула СО2 служит «тестовой» молекулой в спектроскопии.

С развитием техники Фурье и лазерной ИК спектроскопии высокого разрешения появились базы спектроскопических данных, например HITRAN-92, HITRAN-96 [1, 2]. Теоретическое описание контуров линий в молекулярных спектрах и методы экстраполяции данных базируются на классическом подходе Андерсона [3], систематизированном впоследствии в работе [4]. Эта модель получила название приближения АТС, она применяется до настоящего времени (см. также [5]). По мере накопления экспериментальных данных модель видоизменялась. Наиболее важное с физической точки зрения изменение было осуществлено в работе [6] (модель RB). Результаты расчетов ширин линий СО2 по этим моделям в целом согласуются, хотя ни одна из них не описывает всей совокупности экспериментальных данных для широкого диапазона вращательных квантовых чисел $J_{\rm i} \leqslant$ 80. Расхождения имеют ярко выраженный характер, но не превышают 15-20 %. Более существенно то, что имеющееся на сегодня систематические экспериментальные данные относятся к области комнатных температур. В

Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва. Ленинский просп.. 53

Поступила в редакцию 18 февраля 2002 г.

связи с этим мы исследовали ударное уширение линий CO_2 в расширенном диапазоне температур.

2. Эксперимент

Измерялось пропускание углекислого газа в области 4.5 мкм (колебательные переходы $V_1V_2^lV_3 \rightarrow V_1V_2^l(V_3+1)$) при температуре T = 170 и 600 К. Измерения проводились на ИК диодном лазерном спектрометре, описанном в [7,8], со спектральным разрешением $\sim\!10^{-4}~{\rm cm}^{-1}$. Для идентификации спектральных линий и нахождения газовых и колебательных температур разработана программа сравнения экспериментального и рассчитанного пропускания [9]. На рис.1,а приведен фрагмент экспериментального спектра пропускания СО2 (разряд в СО2), а на рис. $1, \delta$ – рассчитанного. Использована следующая система обозначений спектральных линий: первые три цифры соответствуют изотопическому составу молекулы (626 – $^{16}O^{12}C^{16}O$, 636 – $^{16}O^{13}C^{16}O$ и т. д.), затем следуют обозначения нижнего колебательного уровня и вращательного перехода.

Программа позволяет находить ширины спектральных линий (см. вставку на рис.1,a) и выделять ударные составляющие. Для этого записывался рабочий участок спектра, по нему определялась газовая температура T (подробнее см. [9]) и, следовательно, полуширина на полувысоте доплеровской составляющей $\Delta v_{1/2}^{\rm D}$. По измеренной общей полуширине фойгтовского контура и $\Delta v_{1/2}^{\rm D}$ находилась полуширина ударной составляющей. Для контроля работы спектрометра при малом давлении ${\rm CO}_2$ ($p \leqslant 1$ Top) и комнатной температуре записывался доплеровский контур линии ${}^{13}{\rm C}^{16}{\rm O}_2$. Его полуширина составляла $\Delta v_{1/2}^{\rm D} = 2.1 \times 10^{-3}$ см $^{-1}$, что соответствовало температуре T = 300 К.

В условиях плазмы тлеющего разряда изучалось пропускание в диапазонах 2259.4—2260.5 см $^{-1}$ и 2264.3—2265.3 см $^{-1}$, при этом вращательная температура $T_{\rm r}$, отождествляемая с газовой, составляла 600 ± 30 K, колебательные температуры симметричной и деформационной мод $T_1=T_2=650\pm30$ K, а колебательная темпера-

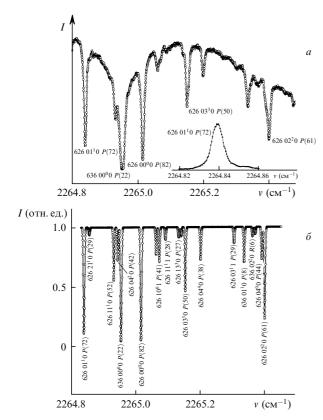


Рис.1. Фрагменты экспериментального (a) и расчетного (б) спектров в случае разряда в CO_2 при давлении p=20 Тор и токе i=5 мА.

тура антисимметричной моды $T_3 = 900 \pm 50 \,\mathrm{K}$. Эксперименты в плазме проводились при сравнительно низких давлениях (p = 20 Top), когда доминировало доплеровское уширение (фойгтовский параметр a < 1). При более высоких р спектр существенно усложнялся, что затрудняло измерение контуров. Поэтому ширина ударной составляющей определялась с погрешностью 10-20 %, несмотря на прецизионные измерения ширин исходных контуров. Степень диссоциации СО2 минимизировалась прокачкой газа и не превышала 5 %. Измерения проводились в тлеющем разряде при токе i = 5 мA в охлаждаемых водой стеклянных разрядных трубках с внутренним диаметром 0.5 см и внешним диаметром 0.8 см. Полная длина каждой трубки была равна 11 и 6 см, длина разрядной зоны – 10 и 5 см соответственно. Электроды из ковара вынесены в боковые отростки. Диаметр зондирующего лазерного пучка составлял 1 мм, и все измеряемые величины соответствовали осевой зоне разряда.

Измерения при T = 170 K проводились в кварцевых кюветах (без разряда) длиной 20 и 5 см, охлаждаемых этиловым спиртом, который, в свою очередь, охлаждался жидким азотом. Температура контролировалась по давлению насыщающих паров $CO_2 p_s(170 \text{ K}) = 77.55 \text{ Top}$ [10]. Изучалось пропускание СО2 в областях 2283.4- 2285.2 cm^{-1} и $2286.4 - 2287.0 \text{ cm}^{-1}$. В этих условиях доминировало ударное уширение, а параметр $a_{\min} = 5.56$ (линия $626\ 00^00\ P(66)$). Разница между рассчитанной полушириной ударной составляющей и исходно измеряемой величиной оказывается меньше погрешности измерений. Так, для указанной линии $626\ 00^{0}0\ P(66)$ измеряемая полуширина $\Delta v_{\rm m} = (11 \pm 1.0) \times 10^{-3} \ {\rm cm}^{-1}$, а рассчитанная полуширина лоренцевской составляющей $\Delta v_{1/2}^{\rm L} =$ 10.7×10^{-3} см⁻¹, поэтому мы отождествляли измеряемую величину с ударной полушириной линии.

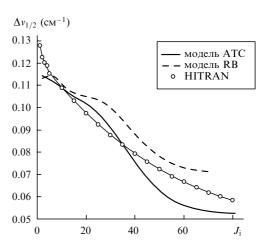


Рис.2. Экспериментальная (усредненные результаты, HITRAN) и рассчитанные по моделям ATC и RB зависимости ударной полуширины спектральных линий от вращательного квантового числа J_i для P-ветви перехода $00^00 \rightarrow 00^01$ в молекуле CO_2 при T=300 K и p=1 атм.

3. Результаты и их обсуждение

3.1. Сопоставление расчета и эксперимента

На рис.2 представлены зависимости ударной полуширины линий от вращательного квантового числа J_i нижнего колебательного состояния для P-ветви перехода $00^00 \to 00^01$ в CO_2 при уширении в собственном газе при T=296 К и p=1 атм. Показаны результаты расчетов, взятые из работ [11] (приближение ATC) и [12] (приближение RB). Здесь же приведены усредненные экспериментальные величины из базы данных HITRAN [1, 2]. Видно, что при $J_i<20$ обе модели дают близкие результаты, согласующиеся с экспериментом. В целом модель ATC хорошо «работает» до $J_i\leqslant40$. При $J_i>40$ согласие ухудшается, расхождение в результатах расчета по обеим моделям достигает 40%. Тем не менее согласие с экспериментом еще удовлетворительное — расхождение лежит в пределах ±20 %.

На рис.3 представлены зависимость ударной полуширин линий от J_i , измеренная при $T=170~{\rm K}$ и $p=77.6~{\rm Top}$, и результаты нашего расчета в приближении ATC с ис-

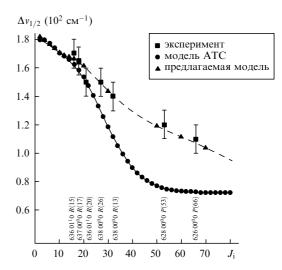


Рис.3. Экспериментальная и рассчитанные по модели ATC и предлагаемой модели зависимости ударной полуширины спектральных линий молекулы ${\rm CO_2}$ от $J_{\rm i}$ при p=77.6 Top и T=170 K.

пользованием данных работы [11]. При $J_i < 20$ соответствие результатов расчета и эксперимента удовлетворительное, однако далее с ростом J_i экспериментальная и расчетная зависимости заметно расходятся. При $J_i > 40$ это расхождение составляет 50 %, т.е. принятая на сегодня схема расчета не позволяет адекватно описать экспериментальные данные. Это заставило нас проанализировать существующие модели расчета ширин линий с целью их возможного усовершенствования.

3.2. Анализ существующих моделей

В квазиклассических моделях сталкивающиеся молекулы движутся по классическим траекториям, а квантовые соотношения используются лишь для рассмотрения внутренних степеней свободы. Форма линии при ударном уширении, описывается формулой Лоренца

$$P(v) = \frac{1}{\pi} \frac{\Delta v_{1/2}(i \to f)}{(v - v_{if} + \Delta_{if})^2 + \Delta v_{1/2}^2(i \to f)}.$$
 (1)

Состояние i(f) определяется совокупностью колебательных и других квантовых чисел $V_i(V_f)$ и вращательным квантовым числом $J_i(J_f)$. Полуширина $\Delta v_{1/2}(i \rightarrow f)$ и сдвиг Δ_{if} (в см $^{-1}$) линии связаны с частотой оптически активных соударений следующим образом:

$$\begin{split} \Delta v_{1/2}(\mathbf{i} \to \mathbf{f}) &= \frac{1}{2\pi c} \, n_{\rm B} v \sigma_{\rm R}(v, \mathbf{i} \to \mathbf{f}), \\ \Delta_{\rm if} &= \frac{1}{2\pi c} \, n_{\rm B} v \sigma_{\rm I}(v, \mathbf{i} \to \mathbf{f}), \end{split} \tag{2}$$

где c – скорость света; v – относительная скорость частиц; $n_{\rm B}$ – плотность «уширяющих» частиц В. Комплексное эффективное сечение оптически активных соударений $\sigma(v, i \to f)$ определяется как сумма парциальных сечений $\sigma(v, i \to f, V_{\rm B}, J_{\rm B})$ по всем возможным состояниям $V_{\rm B}, J_{\rm B}$ «уширяющих» частиц В:

$$\begin{split} \sigma(v, i \to f) &= \sigma_{R}(v, i \to f) + i\sigma_{I}(v, i \to f) \\ &= \sum_{V_{B}, J_{B}} \rho(V_{B}, J_{B}) \sigma(v, i \to f, V_{B}, J_{B}), \end{split} \tag{3}$$

где $ho(V_{
m B},J_{
m B})$ — относительная населенность состояния $V_{
m B},J_{
m B}$ частиц ${
m B};$

$$\sigma(v, i \to f, V_B, J_B) = \int_0^\infty S(b, v, i \to f, V_B, J_B) 2\pi b db; \quad (4)$$

b — прицельный параметр; $S(b,v,{\rm i}\to {\rm f},V_{\rm B},J_{\rm B})$ — функция прерывания. Ее действительная часть определяет вероятность сбоя фазы или обрыва излучения, а мнимая — вероятность сдвига спектральной линии на переходе ${\rm i}\to {\rm f}$ при столкновении с молекулой ${\rm B}(V_{\rm B},J_{\rm B})$. В настоящей работе мы обсуждаем только уширение спектральных линий. Функция $S(b,v,{\rm i}\to {\rm f},V_{\rm B},J_{\rm B})$ рассчитывается во втором приближении теории возмущений [3, 4]:

$$ReS(b, v, i \to f, V_B, J_B) = S_2(b) = S_2^{outer}(b) + S_2^{middle}(b).$$
 (5)

В приближении АТС полагается, что частицы движутся по прямолинейным траекториям с постоянной скоростью, а потенциал взаимодействия между молекулами $V_{\rm e}$ – электростатический. При этих условиях в [3,4] даны соотношения для расчета $S_2^{\rm outer}$ и $S_2^{\rm middle}$. У линей-

ной симметричной молекулы CO_2 нет дипольного момента, и первый неисчезающий член в выражении для V_e [3, 4] соответствует квадруполь-квадрупольному взаимодействию. При $b\to 0$ функция $S_2^{\mathrm{ATC}}(b)\sim 1/b^n\to\infty$ (для электростатических потенциалов n>1), поэтому в [3] из условия $S_2^{\mathrm{ATC}}(b_0,v,\mathrm{i}\to\mathrm{f},\,V_\mathrm{B},J_\mathrm{B})=1$ определяется b_0 и считается, что

$$S_2(b,v,{\bf i}\to{\bf f},V_{\rm B},J_{\rm B}) = \begin{cases} S_2^{\rm ATC}(b,v,{\bf i}\to{\bf f},V_{\rm B},J_{\rm B}) & \text{при } b\geqslant b_0, \\ 1 & \text{при } b< b_0. \end{cases} \eqno(6)$$

Таким образом, в рамках теории АТС

$$\sigma^{\text{ATC}}(v, i \rightarrow f, V_{\text{B}}, J_{\text{B}}) = \pi b_0^2(v, i \rightarrow f, V_{\text{B}}, J_{\text{B}})$$

$$+\int_{b_0}^{\infty} S_2^{\text{ATC}}(b, v, i \to f, V_B, J_B) 2\pi b db. \tag{7}$$

В работе [3] вводится критический прицельный параметр $b_{\rm m}$, соответствующий газокинетическому диаметру молекул, который используется вместо b_0 при $b_0 < b_{\rm m}$ (в практических расчетах $b_{\rm m}$ служит обычно свободным параметром). Процедура устранения расходимости (6) не вполне корректна, хотя ее физический смысл ясен: для столкновений с $b < b_0$ вероятность сбоя фазы или обрыва излучения практически равна единице, а введение $b_{\rm m}$ позволяет неявно учесть неэлектростатические короткодействующие межмолекулярные силы. Еще одна очевидная трудность модели АТС состоит в том, что при малых b предположение о движении молекул по прямолинейным траекториям с постоянной скоростью не выполняется*.

Другая версия квазиклассической модели предложена в [6] (модель RB), где выражение для $S_2(b)$ получено с использованием теоремы о связанных кластерах:

$$S_2^{\text{RB}}(b) = 1 - (1 - S_{2,\text{fB}iB}^{\text{L}}) \exp[-(S_{2,\text{iB}} + S_{2,\text{fB}} + S_{2,\text{fB}iB}^{\text{C}})], (8)$$

где $S_{2,\, \mathrm{fB}\, \mathrm{iB}}^{\mathrm{L}} = S_{2\mathrm{nd}}^{\mathrm{middle}}; S_{2,\, \mathrm{fB}\, \mathrm{iB}}^{\mathrm{C}} = S_{2\mathrm{d}}^{\mathrm{middle}}; S_{2,\, \mathrm{iB}} + S_{2,\, \mathrm{fB}} = S_{2}^{\mathrm{outer}}; S_{2\mathrm{nd}}^{\mathrm{middle}}$ и $S_{2\mathrm{nd}}^{\mathrm{middle}}$ — недиагональный $(J_{B}' \neq J_{B})$ и диагональный $(J_{B}' \neq J_{B})$ члены $S_{2\mathrm{nd}}^{\mathrm{middle}}$. При этом $S_{2}^{\mathrm{RB}}(b)$ сохраняет конечное значение при $b \to 0$. Траектория движения частиц определяется разложением вектора $\mathbf{r}(t) = \mathbf{r}_{\mathrm{A}}(t) - \mathbf{r}_{\mathrm{B}}(t)$ (где $\mathbf{r}_{\mathrm{A}}(t)$, $\mathbf{r}_{\mathrm{B}}(t)$ — радиусы-векторы молекул A (оптически активные молекулы) и B) в ряд у точки максимального сближения \mathbf{r}_{c} с сохранением членов второго порядка малости по времени t. Потенциал взаимодействия представлялся в виде суммы мультипольного электростатического потенциала и парциальных атом-атомных потенциалов Леннарда — Джонса. В [6] для такого потенциала и параболических траекторий приведены общие соотношения для расчета $S_{2}^{\mathrm{RB}}(b)$.

По сравнению с ATC расчет в модели RB существенно усложняется, и появляется значительное число параметров атом-атомных потенциалов, определение которых представляет самостоятельную проблему. В приближении RB устраняется расходимость функции $S_2^{\rm RB}$ (8) при $b \to 0$. Вместе с тем член $1-S_{2,{\rm fBiB}}^{\rm L}$ в (8) получен во втором приближении теории возмущений, т. е. при $|S_{2,{\rm fBiB}}^{\rm L}| \ll 1$. Можно показать, однако, что это

^{*}В [13–15] анализировалось влияние искривления траектории движения сталкивающихся частиц. При этом, однако, основное внимание уделено сдвигам линий.

предположение при $J_{\rm i}\gg 1$ (или $J_{\rm f}\gg 1$) нарушается. Другими словами, с ростом $J_{\rm i}(J_{\rm f})$ в приближении RB следует ожидать увеличения систематической погрешности, что мы и рассматриваем как возможную причину расхождения результатов расчета и эксперимента (см. рис.2).

3.3. Предлагаемая схема расчета ширин линий

Мы стремились, сохранив физическую наглядность модели ATC, учесть возможные искажения траектории при малых прицельных параметрах. Задача распадается на две части. Во-первых, следует найти вид функции $S_2(b)$, удовлетворяющий следующим условиям: при $b \to 0$ функция $S_2(b)$ сохраняет конечное значение, не превышающее единицы, а при $S_2(b) \ll 1$ функция $S_2(b) = S_2^{\rm ATC}(b)$. Вторая часть задачи состоит в расчете матричных элементов вида $\langle V_i J_i m_i, V_B J_B m_b | V | V_i' J_i' m_i', V_B J_B' m_B' \rangle$ (где V-потенциал взаимодействия сталкивающихся частиц, m_j магнитное квантовое число) с учетом искажения траекторий и влияния короткодействующих неэлектростатических сил.

В первой части задачи мы воспользовались результатами работы [16]. В итоге для S(b) получено следующее выражение*:

$$S(b) = 1 - \exp\left\{-i(\Delta_{\rm i} - \Delta_{\rm f}) - [S_{2,\,\rm iB}^{\rm outer} + S_{2,\,\rm iB}^{\rm outer} + S_{2,\,\rm iB\,fB}^{\rm middle}]\right\}$$

$$+\frac{1}{2}(\Delta_{\rm i}-\Delta_{\rm f})^2\bigg\},\tag{9}$$

где $A_{\rm i}$ и $A_{\rm f}$ — члены 1-го порядка в теории ATC, описывающие усредненные (по ориентациям) сдвиги состояний і и f, обусловленные взаимодействием с частицей ${\rm B}(V_{\rm B},J_{\rm B});~S_{2,{\rm iB}}^{\rm outer},~S_{2,{\rm iB}}^{\rm outer}$ и $S_{2,{\rm iB}}^{\rm middle}$ имеют тот же вид, что и аналогичные члены в теории ATC [3, 4]. Функция S(b), записанная в виде (9), сохраняет конечное значение при $b \to 0$, и в пределе $S_2^{\rm outer}+S_2^{\rm middle}\to 0$ имеем $S_2(b)=S_2^{\rm ATC}(b)$.

При описания поступательного движения сталкивающихся молекул учтем их взаимодействие с помощью потенциала Леннарда – Джонса

$$V_{\rm LD} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \tag{10}$$

с известными постоянными ε и σ [17]. При больших b притяжение приводит к тому, что расстояние наибольшего сближения $r_{\rm c} < b$, а при малых b короткодействующее отталкивание приводит к тому, что $r_{\rm c} \approx \sigma$. Связь между $r_{\rm c}$ и b для потенциала (10) следует из законов сохранения энергии и момента импульса:

$$b = r_{\rm c} \left\{ 1 - \frac{8\varepsilon}{\mu v^2} \left[\left(\frac{\sigma}{r_{\rm c}} \right)^{12} - \left(\frac{\sigma}{r_{\rm c}} \right)^6 \right] \right\}^{1/2},\tag{11}$$

где μ — приведенная масса сталкивающихся молекул. Введем безразмерные переменные

$$R = \frac{r}{\sigma}, \quad \beta = \frac{b}{\sigma}, \quad K = \frac{E}{\varepsilon},$$
 (12)

где E— энергия относительного движения молекул. Задача двух тел с потенциалом взаимодействия (10) сводится к анализу одномерного движения частицы с массой $m=\mu\sigma^2/\varepsilon$ и полной энергией K в поле эффективного потенциала [18]

$$V_{\text{eff}} = \frac{K\beta^2}{R^2} - \frac{4}{R^6} + \frac{4}{R^{12}}.$$
 (13)

Как следует из (13), существует критическая величина $(K\beta^2)_{\rm cr}=2.4624$, такая, что при $K\beta^2<(K\beta^2)_{\rm cr}$ на кривой эффективной потенциальной энергии $V_{\rm eff}$ (13) формируется потенциальный барьер. Если K>4/5=0.8, то при любом прицельном параметре система проходит через барьер. Если K<4/5=0.8, то существует такое $\beta_{\rm cr}$, что при $\beta\leqslant\beta_{\rm cr}$ система преодолевает барьер (происходит практически лобовое столкновение), а при $\beta>\beta_{\rm cr}$ не преодолевает. Столкновения при $\beta\leqslant\beta_{\rm cr}$ называются орбитальными, поскольку движение происходит по спиральной траектории. В окрестности точки максимального сближения $\mathbf{r}_{\rm c}$ в уже упомянутом параболическом приближении [6]

$$r(t) \approx (r_{\rm c}^2 + v_{\rm c}^{\prime 2} t^2)^{1/2},$$
 (14)

где $v_c^{\,\prime 2} = v_c^2 + F_c r_c / \mu$; v_c и F_c — относительная скорость и сила в точке максимального сближения r_c . Из (14) следует, что вблизи точки r_c криволинейное движение можно приблизительно описать как движение по эквивалентной прямой с прицельным параметром r_c и «фиктивной» скоростью v_c' . Такой прием позволит использовать при расчетах $S_2(b)$ соотношения приближения АТС с заменой в них b на r_c , а v — на v_c' . Для потенциала (10)

$$v_{c}' = v \left\{ 1 + \frac{8\varepsilon}{\mu v^{2}} \left[5 \left(\frac{\sigma}{r_{c}} \right)^{12} - 2 \left(\frac{\sigma}{r_{c}} \right)^{6} \right] \right\}^{1/2}. \tag{15}$$

Рассмотрим движение молекул с $K\leqslant 0.8$, когда существует $\beta_{\rm cr}$. При $\beta\leqslant\beta_{\rm cr}$ частицы испытывают лобовое столкновение с относительной кинетической энергией $E\geqslant\epsilon$. Заметим, что длина волны де Бройля $\lambda=h\times(2E\mu)^{-1/2}$ (λ (в Å) = $6.59(\epsilon/k)^{-1/2}$), соответствующая такому движению, для большинства молекул много меньше характерного расстояния при взаимодействии частиц (т.е. постоянной σ потенциала (10)). В частности, для молекулы углекислого газа $\epsilon/k=205$ K, $\sigma=4.07$ Å [17]. Следовательно, в окрестности точки максимального сближения $r_{\rm c}$ частицы всегда движутся по классическим траекториям.

При расчете эффективного сечения уширения следует учесть анизотропную часть потенциала взаимодействия

$$V = V_{\text{mol}} + V_{\text{e}}, \qquad (16)$$

где $V_{\rm mol}=V_{\rm iso}+V_{\rm aniso}$ – неэлектростатический потенциал с изотропной частью $V_{\rm iso}=V_{\rm LD}$. Можно показать, что изотропная часть потенциала $V_{\rm mol}$, т. е. потенциал (10), ввиду центральной симметрии не может вызвать переходы между состояниями оптически активной молекулы. Естественно предположить, что анизотропная часть межмолекулярного потенциала $V_{\rm aniso}$ достаточно короткодействующая, т. е. область ее действия $R\sim 1$. В эту область попадают частицы, преодолевшие потенциальный барьер, с относительной энергией столкновений

^{*}В работе [16] в итоговые выражения для S(b) (см. формулы (2.17) и (2.18)) вкрались неточности при учете вклада диагональных матричных элементов изотропной части потенциала. Здесь приведено выражение с учетом сделанных исправлений.

 $E\geqslant \varepsilon$. Если вращательный квант молекулы $2\tilde{B}J_{\rm i}\ll E$ (где \tilde{B} — вращательная постоянная), то вращательные переходы осуществляются при каждом столкновении в случае сближения молекул на расстояние $R\sim 1$. Это означает, что при таком условии, не конкретизируя вида $V_{\rm aniso}$, можно с достоверностью считать, что $S_2(b)=1$ при $R\sim 1$. Для молекул ${\rm CO}_2$ постоянная $\tilde{B}=0.39~{\rm cm}^{-1}$ [1], поэтому мы ограничивались вращательными квантовыми числами $J_{\rm i}\sim 80$.

Отвлекаясь от проблемы сдвига линий, будем считать, что $\varDelta_{\rm f} \approx \varDelta_{\rm f}$, тогда из (9) следует, что

$$S_2(b) = 1 - \exp\left[-\left(S_{2,iB}^{\text{outer}} + S_{2,iB}^{\text{outer}} + S_{2,iBfB}^{\text{middle}}\right)\right].$$
 (17)

Таким образом, при $K \leqslant 0.8$

$$\sigma(K, V_{\rm B}, J_{\rm B}) = \pi \sigma^2 \left\{ \beta_{\rm cr}^2(K) + 2 \int_{R_{\rm cr}(K)}^{\infty} S_2(R_{\rm c}, K) R_{\rm c} \left[1 + \frac{4}{K} \left(\frac{5}{R_{\rm c}^{12}} - \frac{2}{R_{\rm c}^6} \right) \right] dR_{\rm c} \right\}.$$
(18)

Здесь мы перешли от интегрирования по приведенному прицельному параметру β к интегрированию по приведенному расстоянию наибольшего сближения $R_{\rm c}$. В (18) величина $R_{\rm cr}(K)$ — расстояние наибольшего сближения при $\beta = \beta_{\rm cr}$. Величины $\beta_{\rm cr}$ и $R_{\rm cr}$ (с учетом (12)) определяют локальный минимум функции (13). В частности, при фиксированном K

$$R_{\rm cr}(K) = \left\{ 0.2 \left[1 - \left(1 - \frac{K}{0.8} \right)^{1/2} \right] \right\}^{-1/6},\tag{19}$$

а $\beta_{\rm cr}(K)$ находится из выражения (11). Можно показать, что при K>0.8

$$\sigma(K, V_{\rm B}, J_{\rm B}) = 2\pi\sigma^2$$

$$\times \int_{R_{c}^{min}(K)}^{\infty} S_{2}(R_{c}, K) R_{c} \left[1 + \frac{4}{K} \left(\frac{5}{R_{c}^{12}} - \frac{2}{R_{c}^{6}} \right) \right] dR_{c}, \quad (20)$$

где $R_{\rm c}^{\rm min}(K)$ — минимальное при заданном K расстояние наибольшего сближения. Легко показать, что

$$R_{\rm c}^{\rm min}(K) = \left[\frac{2}{1 + (K+1)^{1/2}}\right]^{1/6}.$$
 (21)

Формулы (3), (17)—(21) совместно с выражениями для расчета функций $S_{2,iB}^{\text{outer}}$, $S_{2,iB}^{\text{outer}}$, $S_{2,iB}^{\text{middle}}$ [4] позволяют определить ширины спектральных линий молекул с учетом особенностей поступательного движения сталкивающихся молекул.

3.4. Сопоставление с экспериментом

Приведенные выше соотношения получены при фиксированной относительной скорости v сталкивающихся частиц. Оговорим процедуру усреднения по скоростям, поскольку, как показывает анализ литературы, в этом вопросе также нет единого подхода. Примем, что распределение по абсолютным скоростям v_a оптически активных частиц является максвелловским. Известно [19], что функция распределения по скоростям возмущающих частиц v относительно оптически активной молекулы зависит от скорости v_a :

$$\psi(v/v_{a}) = \frac{2v}{\pi v_{a} \bar{v}_{p}} \left\{ \exp\left[-\frac{4}{\pi} \left(\frac{v - v_{a}}{\bar{v}_{p}}\right)^{2}\right] - \exp\left[-\frac{4}{\pi} \left(\frac{v + v_{a}}{\bar{v}_{p}}\right)^{2}\right] \right\}, \tag{22}$$

где \bar{v}_p — средняя абсолютная скорость возмущающих частиц. При учете зависимости сечения уширения от скорости v столкновительное уширение становится неоднородным: ансамбль частиц распадается на группы $f(v_a) dv_a$, каждой из которых будет соответствовать свой лоренцевский контур с полушириной

$$\langle \Delta v_{1/2}(i \to f, v_a) \rangle = \int_0^\infty \Delta v_{1/2}(i \to f, v) \psi(v/v_a) dv.$$
 (23)

Для всего ансамбля результирующий контур должен определяться следующим выражением:

$$\Phi(v) = \frac{1}{\pi} \int_0^\infty \frac{\langle \Delta v_{1/2}(v_a) \rangle f(v_a) dv_a}{\left(v - v_{if}\right)^2 + \langle \Delta v_{1/2}(v_a) \rangle^2}.$$
 (24)

Часто, однако, считается, что контур, обусловленный ударным уширением, является в целом лоренцевским с полушириной

$$\langle \Delta v_{1/2} \rangle = \frac{n_{\rm B}}{2\pi c} \langle v \sigma_{\rm R}(v, i \to f) \rangle.$$
 (25)

В (25) усреднение проводится по относительным скоростям v. Для упрощения расчетов в большинстве работ (например, в [6, 20, 21]) усреднение по максвелловскому распределению заменяется более простым соотношением

$$\Delta \tilde{v}_{1/2} = \frac{n_{\rm B}}{2\pi c} \, \bar{v} \sigma_{\rm R}(\bar{v}, i \to f), \tag{26}$$

где $\bar{v} = (8kT/\pi\mu)^{1/2}$ – средняя относительная скорость (приближение средней частицы).

Процедура усреднения неоднократно обсуждалась (например, в [19, 22]), однако анализ возможных погрешностей из-за упрощений (25), (26) не проведен даже в рамках приближения АТС и тем более в рамках модели RB. Предлагаемая нами схема расчетов по объему вычислений близка к модели АТС, и мы оценили эти погрешности. На рис.4 представлены расчетные погрешности

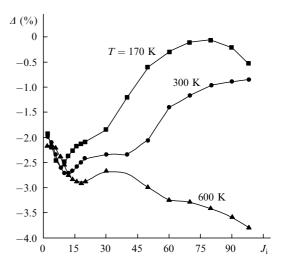


Рис.4. Зависимости относительной погрешности \varDelta от $J_{\rm i}$ для ${\rm CO_2}$ при различных T.

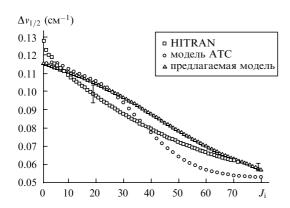


Рис.5. Экспериментальная (усредненные результаты, HITRAN) и рассчитанные по модели ATC и предлагаемой модели зависимости ударной полуширины спектральных линий от вращательного квантового числа J_i для P-ветви перехода $00^00 \to 00^01$ в молекуле CO_2 при T=300 К и p=1 атм.

$$\Delta(Ji) = \frac{\Delta v_{1/2}(J_i) - \langle \Delta v_{1/2}(J_i) \rangle}{\Delta v_{1/2}(J_i)}$$
(27)

для P-ветви перехода $00^00 \rightarrow 00^01$ в CO_2 при T=170, 300 и 600 К. В (27) величина $\Delta v_{1/2}(J_{\rm i})$ – истинная полуширина контура (24), а $\langle \Delta v_{1/2}(J_{\rm i}) \rangle$ – усредненная полуширина (25). Видно, что погрешность $\Delta(J_{\rm i}) < 0$. В целом ее абсолютная величина невелика (не более 4 %), но при проведении прецизионных измерений ее следует принимать во внимание.

На рис.5 приведены результаты нашего расчета ударной полуширины $\Delta v_{1/2}(J_i)$ для P-ветви перехода $00^00 \rightarrow 00^01$ при T=300 К и p=1 атм. Постоянный квадрупольный момент молекулы углекислого газа $Q_{\rm CO_2}=-3.69 {\rm D\cdot Å}$ [20]. Здесь же даны результаты расчетов для модели ATC [11] и экспериментальные данные HITRAN [1, 2]. Хотя, как отмечалось, и модель ATC при комнатной температуре дает неплохое согласие с экспериментом (расхождение результатов расчета и эксперимента не превышало 20 %), из рис.5 видно, что это согласие еще несколько улучшилось — среднее расхождение составляет ~ 7 %. Отметим, что результаты расчета хорошо описывают и ширины линий с $J_i \sim 80$, где вклад электростатического взаимодействия невелик.

На рис.6 представлены зависимости ударной полуширины линий от J_i , полученные при измерениях в плазме ($T=600~{\rm K}, p=20~{\rm Top}$), и расчетные полуширины при тех же условиях. Согласие результатов расчета с экспериментом удовлетворительное. Здесь же приведена зависимость, полученная в приближении АТС. При высокой температуре влияние низкоэнергетических столкновений мало, а электростатическое взаимодействие эффективно вплоть до больших J_i , поэтому обе модели дают близкие результаты.

Из рис.3, где сопоставлены результаты расчетов и эксперимента при $T=170~\rm K$, видно, что в области $J_i<20$ предложенная нами модель и модель АТС дают близкие результаты, соответствующие эксперименту. Напротив, при $J_i>20~\rm модель$ АТС предсказывает существенно иную зависимость, чем наблюдаемая в эксперименте, тогда как новая модель хорошо его описывает. Принимая во внимание приведенное выше обсуждение, мы можем утверждать, что при низких температурах влияние низкоэнергетических столкновений ($K \le 0.8$) заметно возрастает и их учет становится необходимым. На рис.7

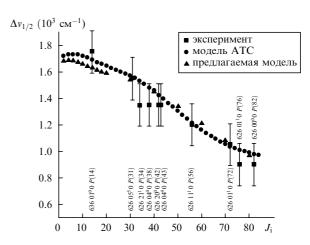


Рис.6. Экспериментальная и рассчитанные по модели ATC и предлагаемой модели зависимости ударной полуширины спектральных линий молекулы ${\rm CO_2}$ от $J_{\rm i}$ при p=20 Top и T=600 K.

представлены расчетные зависимости ударной полуширины спектральных линий молекулы CO_2 от J_i при T=15 К и p=1 атм. Условия низких температур могут быть интересными, например, при исследованиях верхних слоев атмосферы и газодинамических процессов. Здесь расхождение между предложенной моделью и моделью АТС чрезвычайно велико. Так, при $J_i > 20$ результаты уже различаются в 2.5 раза. Отметим, что полуширины линий в этом случае примерно на порядок больше, чем при комнатной температуре. Специальная постановка экспериментов для проверки этих расчетов представляется весьма целесообразной.

4. Заключение

Таким образом, методом диодной лазерной спектроскопии были измерены ширины ИК спектральных линий молекулы CO_2 в широких диапазонах изменения температур и вращательных квантовых чисел. Анализ полученного материала и имеющихся литературных данных позволил сделать вывод о необходимости уточнения существующих расчетных моделей.

Предложенная схема расчета, учитывающая отклонения траектории движения частиц от прямолинейной в поле межмолекулярных сил и увеличение эффективного

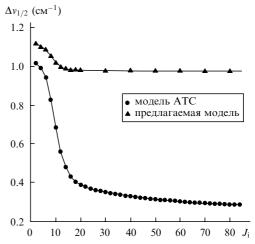


Рис.7. Рассчитанные по модели ATC и предлагаемой модели зависимости ударной полуширины спектральных линий молекулы ${\rm CO_2}$ от $J_{\rm i}$ при T=15 K и p=1 атм.

сечения уширения при орбитальных столкновениях частиц с малыми поступательными энергиями, позволяет удовлетворительно описать экспериментальные данные. Указаны условия, при которых учет этих столкновений особенно важен. При расчетах используется небольшое число исходных величин, известных из независимых экспериментов и расчетов: постоянные межмолекулярного потенциала Леннарда – Джонса и постоянные электростатические мультипольные моменты молекул.

Авторы признательны Л.П.Преснякову и А.П.Коузову за полезные обсуждения и ценные замечания, а также Н.В.Слобожанову за помощь в численных расчетах. Работа выполнена при поддержке федеральных программ «Интеграция» (проект УНЦ «Фундаментальная оптика и спектроскопия»), «Фундаментальная спектроскопия» и «Лазерная физика», а также гранта НАТО – Россия СLG 978204.

- Rothman L.S., Hawkims R.L., et al. J. Quant. Spectr. Rad. Transfer, 48, 537 (1992).
- Rothman L.S., Rinsland C.P., Goldman A., et al. J. Quant. Spectr. Rad. Transfer, 60, 665 (1998).
- 3. Anderson P.W. Phys. Rev., 76, 647 (1949).
- 4. Tsao C.J., Curnutte B. J. Quant. Spectr. Rad. Transfer, 2, 41 (1962).
- 5. Вайнштейн Л.А., Собельман И.И., Юков Е.А. Возбуждение

- атомов и уширение спектральных линий (М.: Наука, 1979).
- Robert D., Bonamy J. J. Phys., 40, 923 (1979).
- 7. Демьяненко А.В. и др. *Квантовая электроника*, **14**, 851 (1987).
- Zasavitskii I.I., Islamov R.Sh., et al. J. Sov. Laser. Res., 11, 361 (1990).
- Андреев С.Н., Савинов С.Ю. Кр. сообщ. по физ. ФИАН, № 5-6, 77 (1995).
- 10. *Физические величины. Справочник*. Под ред. И.С.Григорьева, Е.З.Мелихова (М.: Энергоатомиздат, 1991).
- Yamamoto G., Tanaka M., Aoki T. J. Quant. Spectr. Rad. Transfer, 9, 371 (1969).
- 12. Arie E., Lacome N.E., Arcas P., Levy A. Appl. Opt., 25, 2584 (1986).
- 13. Быков А.Д. и др. Оптика атмосферы и океана, 5, 907 (1992).
- 14. Быков А.Д. и др. Оптика атмосферы и океана, 5, 1127 (1992).
- Лаврентьева Н.Н., Савельев В.Н. Оптика атмосферы и океана, 7, 29 (1994).
- 16. Leavitt R.P., Korff D. J. Chem. Phys., 74, 2180 (1981).
- 17. Hirschfelder J.O., et al. *Molecular Theory of Gases and Liquids* (N.Y.: Wiley, 1967).
- Hirschfelder J.O., Bird R.B., Spotz E.L. J. Chem. Phys., 16, 968 (1948).
- 19. Luijendijk C.M. J. Phys. B, 10, 1735 (1977).
- Bouanich J.-P., Blanquet G. J. Quant. Spectr. Rad. Transfer, 40, 205 (1988)
- Rosenmann L., Hartman J.M., Perrin M.V., Taine J. J. Chem. Phys., 88, 2995 (1988).
- 22. Pickett H.M. J. Chem. Phys., 73, 6090 (1980).