АКТИВНЫЕ СРЕДЫ

PACS 32.50. + d; 33.80.Be; 42.55.Rz

Спектроскопические исследования заселения высокоэнергетических уровней Nd^{3+} -содержащих лазерных кристаллов при интенсивной накачке

О.Л.Антипов, О.Н.Еремейкин, А.П.Савикин

Исследована люминесценция кристаллов Nd:YAG и Nd:YAP в диапазоне 380-650 нм при интенсивной накачке излучением лазерных диодов ($\lambda_p=808$ нм) и пучками 2-й (532 нм), 3-й (354.7 нм) и 4-й (266 нм) гармоник импульсного Nd:YAG-лазера. P9д сильных линий люминесценции идентифицирован с переходами с высокоэнергетического уровня $^2F(2)_{5/2}$. Выявлен канал эффективного заселения этого уровня при комбинированной накачке кристалла Nd:YAG излучением диодного лазера и пучком 4-й гармоники.

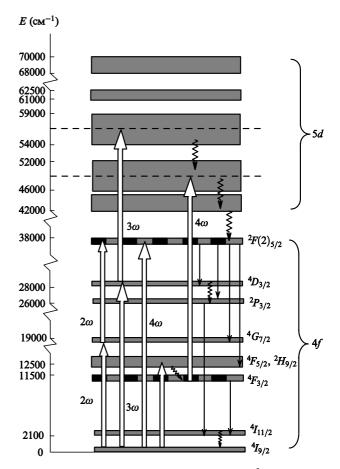
Ключевые слова: интенсивная накачка, поглощение из возбуждённого состояния, спектры люминесценции Nd^{3+} .

1. Введение

Лазерные кристаллы, содержащие ионы неодима Nd^{3+} , такие как иттрий-аллюминиевый гранат с неодимом $\mathrm{Nd}^{3+}\colon Y_3\mathrm{Al}_5\mathrm{O}_{12}$ ($\mathrm{Nd}\colon YAG$) и ортоалюминат с неодимом $\mathrm{Nd}^{3+}\colon YA\mathrm{IO}_3$ ($\mathrm{Nd}\colon YAP$), являются одними из самых широко используемых активных лазерных сред. Люминесцентные свойства этих кристаллов, связанные с переходами с метастабильного уровня ${}^4F_{3/2}$ и ряда других уровней, хорошо изучены [1, 2].

В последние годы в связи с широким использованием диодной накачки, обеспечивающей значительную инверсию населённостей за счёт возбуждения большого числа ионов-активаторов, внимание исследователей привлекают эффекты поглощения из возбуждённого состояния (с уровня ${}^4F_{3/2}$) и ап-конверсии. Эти эффекты, проявляющиеся при большой населённости метастабильного рабочего уровня, ограничивают рост инверсной населённости с ростом накачки и уменьшают коэффициент усиления на рабочем лазерном переходе [3, 4].

С другой стороны, такие эффекты многоступенчатого возбуждения приводят к заселению высоколежащих энергетических уровней, способных давать вклад в дисперсионные и нелинейно-оптические свойства кристаллов [2, 5]. Недавние исследования кристаллов Nd: YAG с ламповой накачкой показали, в частности, что заселение высоколежащего квазиметастабильного уровня $^2F(2)_{5/2}$ со временем жизни ~ 3 мкс приводит к заметным изменениям показателя преломления (рис.1) [5].


Эти изменения показателя преломления могут быть использованы для формирования динамических нелинейно-оптических решёток, которые представляются перспективными для адаптивной коррекции внутрирезонаторных аберраций мощных лазерных систем [5-7]. Исследования показали также, что заселение уровня ${}^2F(2)_{5/2}$ сопровождалось сильным возрастанием люминесценции в видимом диапазоне спектра [8]. Этот эффект представ-

Институт прикладной физики РАН, Россия, 603950 Н.Новгород, ул. Ульянова, 46; e-mail: antipov@appl.sci-nnov.ru

Поступила в редакцию 24 июня 2002 г.

ляет интерес для получения коротковолновой генерации в Nd^{3+} -содержащих кристаллах.

Целью представленной работы являлось изучение механизмов заселения высоколежащих уровней в лазерных кристаллах Nd: YAG и Nd: YAP в условиях интенсивной диодной накачки и накачки 2-й, 3-й или 4-й гармониками импульсного Nd: YAG-лазера, а также спектров люминесценции этих кристаллов в видимом диапазоне.

Puc.1. Схема энергетических уровней ионов Nd^{3+} в кристалле Nd:YAG.

2. Описание экспериментальной установки

Исследовались спектры люминесценции кристаллов YAG и YAP, активированных ионами Nd $^{3+}$ с концентрацией $\sim 1 \%$. Эти кристаллы накачивались излучением лазерных диодов и/или Nd: YAG-лазера и его гармоник (рис.2).

Диодная накачка осуществлялась линейкой непрерывных лазерных диодов производства фирмы Thalas-CSF с $\lambda_p=807-808$ нм и средней мощностью до 25 Вт (при токе 30 A). Для уменьшения нагрева кристаллов непрерывное излучение модулировалось прерывателем (длительность «светового окна» составляла ~ 6 мс при частоте повторения импульсов ~ 12.5 Гц). В других экспериментах использовалась импульсная диодная матрица JENOPTIK Laserdiode GmbH с $\lambda_p=808$ нм, длительностью импульса генерации 200-300 мкс и пиковой мощностью до 300 Вт. Перестройка длины волны генерации лазерных диодов в некотором диапазоне осуществлялась изменением температуры охлаждающей воды.

Оптическая накачка производилась также 2-й ($\lambda_p = 532$ нм), 3-й (354.7 нм) или 4-й (266 нм) гармониками импульсного Nd : YAG-лазера (1064 нм), что обеспечивало как прямое, так и каскадное заселение уровня ${}^2F(2)_{5/2}$ (см. рис.1). Длительность исходного лазерного импульса ($\lambda_p = 1064$ нм) составляла 10 нс, частота повторения импульсов – 12.5 Гц. Для удвоения частоты генерации Nd : YAGлазера использовался кристалл CDA, для получения 3-й и 4-й гармоник — кристалл DKDP. Энергия в импульсе 2-й и 4-й гармоник достигала ~ 10 и ~ 2 мДж соответственно, энергия в импульсе 3-й гармоники — примерно 0.5 мДж.

Пучки излучения лазеров фокусировались на исследуемом кристалле. Диодные линейка и матрица имели на выходе цилиндрические линзы, уменьшающие расходимость до $0.1-1.0^\circ$. Размеры сфокусированных пучков гармоник импульсного Nd: YAG-лазера и диодных излучателей в кристаллах были равны 10×0.1 мм и $7\div10\times0.2\div0.5$ мм соответственно.

Спектр люминесценции в видимом диапазоне 380 – 650 нм регистрировался автоматизированным спектрометром ДФС-12. Сигнал с ФЭУ-79 усиливался и обрабатывался компьютером через 12-разрядный АЦП. Отношение сигнал-шум улучшалось при усреднении по 10 – 20 принимаемым импульсам.

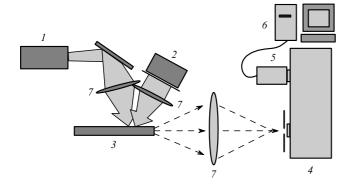


Рис.2. Схема экспериментальной установки: I-Nd: YAG-лазер и генератор гармоник на его основе; 2- диодный излучатель; 3- кристалл Nd: YAG или Nd: YAP; 4- ДФС-12; 5-ФЭУ-79; 6-АЦП; 7-собирающие линзы.

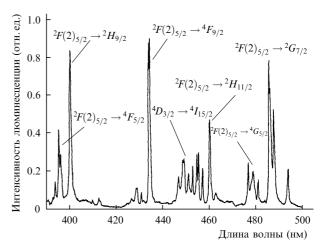


Рис.3. Спектр люминесценции кристалла Nd: YAG при накачке на $\lambda_{\rm p}=532$ или 266 нм.

3. Люминесценция кристаллов при накачке излучением гармоник

Исследовались спектры люминесценции кристаллов Nd: YAG и Nd: YAP при накачке импульсами 2-й, 3-й или 4-й гармоник Nd: YAG-лазера.

3.1. Люминесценция кристалла Nd: YAG

Измеренные спектры люминесценции кристалла Nd: YAG при накачке 2-й или 4-й гармоникой оказались одинаковыми в диапазоне 400-500 нм (рис.3). Положение наиболее интенсивных спектральных линий в этом диапазоне с хорошей точностью соответствуют переходам, стартовыми уровнями которых являются два нижних штарковских подуровня состояния ${}^2F(2)_{5/2}$ с энергиями 37768 и 37789 см $^{-1}$ [9]. Конечные уровни переходов были идентифицированы как уровни ${}^2K_{13/2}$, ${}^2G_{9/2}$, ${}^2G_{7/2}$, ${}^4G_{5/2}$, ${}^4F_{9/2}$, ${}^2H_{9/2}$ и ${}^2F_{5/2}$. Несколько линий, имеющих меньшую интенсивность, были отождествлены с переходами ${}^4D_{3/2} \rightarrow {}^4I_{15/2}$.

Одной из основных целей работы было исследование заселения высокоэнергетического квазиметастабильного уровня ${}^2F(2)_{5/2}$. В качестве критерия заселения этого уровня была выбрана люминесценция на линии с $\lambda_{\text{lum}}=400.5$ нм, соответствующая переходу ${}^2F(2)_{5/2} \rightarrow {}^2H_{9/2}$ [10]. Исследование интенсивности люминесценции на этой линии показало, что излучение 2-й или 4-й гармоники приводит к заселению уровня ${}^2F(2)_{5/2}$ ионов Nd ${}^{3+}$ из основного состояния ${}^4I_{9/2}$. При этом интенсивность люминесценции на линии с $\lambda_{\text{lum}}=400.5$ нм квадратично зависела от энергии накачки пучком 2-й гармоники и линейно – от энергии пучка 4-й гармоники (рис.4 и 5). Такие зависимости объясняются соответственно двухступенчатым или одноступенчатым механизмом возбуждения уровня ${}^2F(2)_{5/2}$ из основного состояния ${}^4I_{9/2}$.

В случае накачки излучением 2-й гармоники возбуждение уровня ${}^2F(2)_{5/2}$ осуществляется каскадно через уровень ${}^4G_{7/2}$, имеющий малое время жизни ~ 0.37 нс [11]. В связи с этим эффективность такого возбуждения оказалась малой даже в том случае, когда энергия в импульсе 2-й гармоники была почти в 4 раза больше энергии в импульсе 4-й гармоники.

Измеренный спектр люминесценции кристалла Nd: YAG при возбуждении 3-й гармоникой существенно зависел от энергии накачки. При малой энергии импуль-

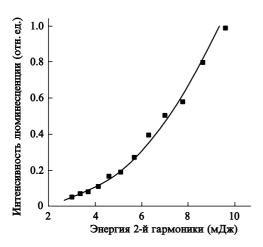


Рис.4. Зависимость интенсивности люминесценции кристалла Nd : YAG на линии с $\lambda_{lum}=400.5$ нм от энергии накачки 2-й гармоникой.

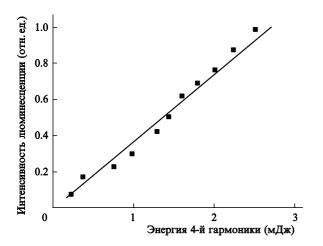


Рис.5. Зависимость интенсивности люминесценции кристалла Nd : YAG на линии с $\lambda_{\text{lum}}=400.5$ нм от энергии накачки 4-й гармоникой.

сов накачки (не более 0.2 мДж) спектральные линии люминесценции были идентифицированы как переходы $^4D_{3/2} \rightarrow ^4I_{13/2}, \ ^2P_{3/2} \rightarrow ^4I_{11/2}$ и $^4D_{3/2} \rightarrow ^4I_{15/2}, \ ^2P_{3/2} \rightarrow ^4I_{13/2}$ (рис.6). Стартовыми уровнями этих переходов являются достаточно долгоживущие уровни $^4D_{3/2}$ и $^2P_{3/2}$, имеющие

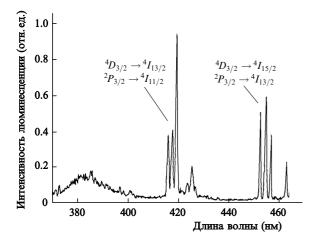


Рис.6. Спектр люминесценции кристалла Nd: YAG при накачке 3-й гармоникой и энергии в импульсе накачки не более 0.2 мДж.

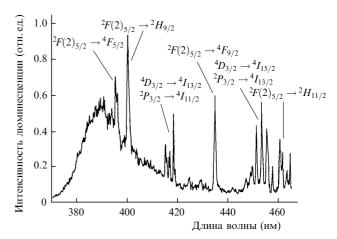


Рис.7. Спектр люминесценции кристалла Nd: YAG при накачке 3-й гармоникой и энергии в импульсе накачки ~ 0.5 мДж.

время релаксации 2.2 и 300 нс соответственно [12]. Заселение данных уровней из основного состояния происходит при поглощении квантов 3-й гармоники.

Увеличение энергии импульсов 3-й гармоники приводило к появлению новых линий люминесценции, соответствующих переходам с уровня ${}^{2}F(2)_{5/2}$ на уровни ${}^{4}F_{5/2}$, ${}^{2}H_{9/2}$ и ${}^{4}F_{9/2}$. Интенсивность этих переходов квадратично зависела от энергии накачки. Такая квадратичная зависимость может быть опять объяснена двухступенчатым поглощением, когда ионы Nd ³⁺ с возбуждённого уровня ${}^{4}D_{3/2}$ при поглощении второго фотона совершают переход на уровни конфигурации 5d. Суммарная энергия такого двухступенчатого возбуждения, равная 56400 см^{-1} , соответствует третьей полосе поглощения 5*d*-оболочки в кристалле Nd: YAG [12]. Термализация возбуждения внутри 5*d*-оболочки и быстрый безызлучательный переход $5d \to 4f$ (за время ~ 2 нс [2]) приводят к заселению уровня ${}^{2}F(2)_{5/2}$, люминесценция с которого и была зарегистрирована (рис.7).

Следует отметить, что результаты проведенных спектроскопических исследований кристалла Nd:YAG при лазерной накачке хорошо согласуются с результатами предыдущих исследований [9–14]. В то же время наши измерения показали наличие нескольких новых (ранее не отмеченных) спектральных линий (в частности, широкой полосы люминесценции в диапазоне 380-400 нм (см. рис.6, 7)).

3.2. Люминесценция кристалла Nd: YAP при накачке излучением гармоник

Исследовались спектры люминесценции кристалла Nd: YAP, полученные при накачке 2-й, 3-й и 4-й гармониками импульсного Nd: YAG-лазера (рис.8, 9). При накачке 3-й гармоникой кристалла Nd: YAP (рис.8) была зарегистрирована люминесценция на линиях, соответствующих переходам $^4D_{3/2} \rightarrow ^4I_{13/2}, ^2P_{3/2} \rightarrow ^4I_{11/2}, ^4D_{3/2} \rightarrow ^4I_{15/2}$ и $^2P_{3/2} \rightarrow ^4I_{13/2}$, положение которых близко к положению аналогичных линий в кристалле Nd: YAG.

В то же время спектры люминесценции кристалла Nd: YAP при оптической накачке излучением 2-й и 4-й гармоник (рис.9) отличаются от спектров кристалла Nd: YAG при той же накачке. Так, при накачке кристалла Nd: YAP излучением 2-й гармоники наряду с переходами с уровней ${}^2F(2)_{5/2}$ и ${}^4D_{3/2}$ зарегистрирован также переход с уровня ${}^2P_{3/2}$ ($\lambda_{\text{lum}}=461$ нм), который в спектре люминесценции кристалла Nd: YAG не наблюдался.

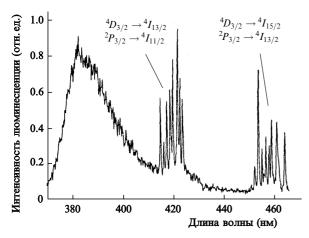
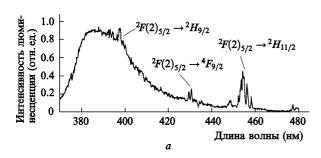



Рис. 8. Спектр люминесценции кристалла Nd: YAP при накачке 3-й гармоникой.

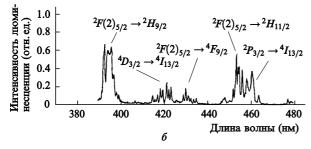


Рис.9. Спектры люминесценции кристалла Nd : YAP при накачке 2-й (a) и 4-й (δ) гармониками.

При накачке 4-й гармоникой были зарегистрированы только те линии, которые соответствуют переходам с уровня ${}^2F(2)_{5/2}$. Однако эти линии люминесценции в кристалле Nd: YAP были немного смещены в коротковолновую сторону по сравнению с аналогичными линиями в кристалле Nd: YAG. Данный факт можно объяснить тем, что два нижних штарковских подуровня состояния ${}^2F(2)_{5/2}$ ионов Nd ${}^{3+}$ в матрице YAP расположены немного выше, чем в матрице YAG [11, 14].

Следует отметить, что при лазерной накачке кристалла Nd: YAP наблюдалась еще более интенсивная (по сравнению с накачкой кристалла Nd: YAG) широкополосная люминесценция в диапазоне $\lambda_{\text{lum}} = 375 - 400$ нм (см. рис.8, 9). Наличие этой полосы люминесценции может быть объяснено переходами с уровней 5d-оболочки, линии которых перекрываются.

4. Коротковолновая люминесценция при комбинированной накачке

Коротковолновая люминесценция (в диапазоне 380—650 нм) исследовалась в кристаллах Nd: YAG и Nd: YAP

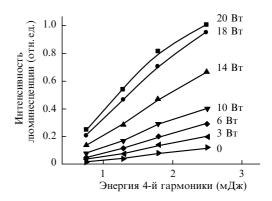


Рис.10. Интенсивность люминесценции кристалла Nd: YAG на линии с $\lambda_{\text{lum}} = 400.5$ нм при комбинированной накачке линейкой диодных лазеров и 4-й гармоникой импульсного Nd: YAG-лазера в зависимости от энергии в импульсе 4-й гармоники при различных мошностях лиолной линейки.

при накачке диодными излучателями ($\lambda_p = 808$ нм) и гармониками Nd : YAG-лазера.

При оптической накачке кристаллов Nd: YAG и Nd: YAP одними только диодными излучателями (как непрерывными, так и импульсными) в наших экспериментах не было зарегистрировано люминесценции в диапазоне 380-650 нм вплоть до интенсивностей накачки $10-15 \text{ кBT/см}^2$. В то же время при комбинированной накачке кристалла Nd:YAG диодной линейкой ($\lambda_p = 808$ нм) и излучением 4-й гармоники импульсного Nd: YAGлазера наблюдалось сильное увеличение люминесценции с уровня ${}^{2}F(2)_{5/2}$ с ростом интенсивности диодной накачки (рис. 10). Интенсивность люминесценции зависела от задержки импульса 4-й гармоники относительно начала импульса диодной накачки. При увеличении задержки от нуля до 200 мкс имел место практически линейный рост интенсивности коротковолновой люминесценции. Максимум сигнала люминесценции наблюдался при задержке ~250 мкс, что соответствует времени жизни метастабильного уровня ${}^4F_{3/2}$. При дальнейшем росте временной задержки интенсивность коротковолновой люминесценции не увеличивалась.

Были получены зависимости интенсивности люминесценции на линии с $\lambda_{\text{lum}} = 400.5$ нм при комбинированной накачке 4-й гармоникой и диодной лазерной линейкой от средней мощности последней при её различных длинах волн. Длина волны диодной накачки варьировалась путём изменения температуры воды в контуре охлаждения линейки. При этом был определён оптимальный температурный режим работы диодной лазерной линейки (рис.11). В результате оптимизации было достигнуто увеличение интенсивности люминесценции на порядок по сравнению с таковой при накачке только одной 4-й гармоникой. При этом отношение пиковой мощности 4-й гармоники к мощности линейки составляло $\sim 10^{\circ}$. Полученный результат показал значительную роль диодной накачки (обеспечивающей заселение уровня ${}^{4}F_{3/2}$) для наблюдения люминесценции с уровня ${}^{2}F(2)_{5/2}$.

В эксперименте с импульсной диодной матрицей наблюдалась еще более интенсивная люминесценция с уровня ${}^2F(2)_{5/2}$. Сигнал люминесценции возрастал примерно в 50 раз при увеличении мощности импульса диодной накачки от нуля до 200 Вт (рис.12). Задержка импульса 4-й гармоники относительно импульса диодной матрицы подбиралась экспериментально по максимуму

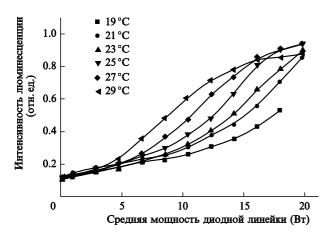


Рис.11. Интенсивность люминесценции кристалла Nd:YAG на линии с $\lambda_{lum}=400.5$ нм при комбинированной накачке непрерывным излучением диодной линейки и 4-й гармоникой импульсного Nd:YAG-лазера от средней мощности диодного лазера при разных температурах воды в контуре охлаждения.

люминесценции, который достигался в конце импульса излучения матрицы (при задержке ~ 250 мкс).

Сильное увеличение интенсивности коротковолновой люминесценции в кристалле Nd: YAG при росте мощности диодной накачки можно объяснить двухступенчатым переходом на уровень ${}^2F(2)_{5/2}$ из основного состояния ${}^4I_{9/2}$ через промежуточный метастабильный уровень ${}^{4}F_{3/2}$ (рис.1). Действительно, излучение диодной накачки на $\lambda_{\rm p}=808$ нм обеспечивает эффективное заселение уровня ${}^4F_{3/2}$, который имеет время жизни ~ 250 мкс и является верхним уровнем рабочего лазерного перехода (на длине волны 1064 нм). В условиях нашего эксперимента населённость уровня ${}^4F_{3/2}$ была довольно большой: оценка ее по усилению слабого сигнала показала, что возбуждается до 10 % всех ионов Nd^{3+} (в кристалле Nd:YAG с содержанием ионов Nd³⁺, равным 1 % и соответствующим их концентрации 1.38×10^{20} см⁻³ [2]). Поэтому при наличии лазерного пучка 4-й гармоники кроме переходов из основного состояния ${}^4I_{9/2}$ имеют место переходы

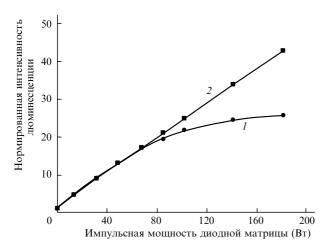


Рис.12. Интенсивность люминесценции кристалла Nd: YAG на линии с $\lambda_{\text{lum}}=400.5$ нм при комбинированной накачке импульсной диодной матрицей и 4-й гармоникой импульсного Nd: YAG-лазера, нормированная на интенсивность люминесценции при накачке только 4-й гармоникой, в зависимости от импульсной мощности диодной матрицы при постоянной температуре в контуре охлаждения (I) и при понижении её с повышением мощности матрицы (2).

вверх, стартовым уровнем которых является метастабильный уровень ${}^4F_{3/2}$. Поглощение излучения 4-й гармоники неодимового лазера из возбуждённого состояния (с уровня ${}^4F_{3/2}$) способно переводить ионы Nd ${}^{3+}$ во вторую полосу 5d-оболочки (на уровни с энергией ~ 49000 см $^{-1}$). При этом такое поглощение из возбуждённого состояния весьма велико, поскольку сечение межконфигурационного перехода $4f \to 5d$ (с уровня ${}^4F_{3/2}$ во вторую полосу 5d-оболочки) на два порядка превышает сечение переходов $4f \to 4f$, а частота 4-й гармоники лежит вблизи резонанса на длине волны 263 нм [2,14].

После такого двухступенчатого перехода в 5d-оболочку происходит безызлучательная релаксация на нижние уровни этой оболочки с последующей безызлучательной релаксацией на верхние уровни 4f-оболочки (за время ~ 2 нс [2]), приводящей, в частности, к заселению квазиметастабильного уровня $^2F(2)_{5/2}$. Отметим, что несмотря на потери энергии на безызлучательную релаксацию эффективность такого двухступенчатого возбуждения состояния $^2F(2)_{5/2}$ оказалась значительно выше, чем при непосредственном поглощении УФ излучения из основного состояния (переходы $^4I_{9/2} \rightarrow ^2F(2)_{5/2}$ и $^4I_{11/2} \rightarrow ^2F(2)_{5/2}$).

Эксперименты не выявили увеличения интенсивности коротковолновой люминесценции в кристалле Nd : YAG при комбинированной накачке 2-й гармоникой Nd : YAG-лазера и диодной линейкой, а также 3-й гармоникой того же лазера и той же линейкой. Данный факт можно объяснить малостью энергии квантов излучения 2-й и 3-й гармоник (по сравнению с энергией перехода $4f \rightarrow 5d$) и отсутствием промежуточных резонансов поглощения с метастабильного уровня ${}^4F_{3/2}$ для этого излучения (рис.1).

Следует отметить также, что увеличения интенсивности коротковолновой люминесценции не наблюдалось и в кристалле Nd: YAP при комбинированной накачке излучением диодной линейки и 2-й, 3-й или 4-й гармоник импульсного Nd: YAG-лазера. Этот результат можно объяснить тем, что энергетическая структура ионов Nd $^{3+}$ в кристалле Nd: YAP несколько иная. Из литературных данных известно, в частности, расположение двух полос поглощения в 5d-оболочке кристалла Nd: YAP с резонансными частотами 53400 и 55200 см $^{-1}$ [15]. Нетрудно оценить, что суммарная энергия квантов комбинированной накачки (49100 см $^{-1}$) недостаточна для переходов $4f \rightarrow 5d$.

5. Заключение

Таким образом, экспериментально исследована люминесценция в кристаллах Nd:YAG и Nd:YAP в видимом диапазоне длин волн (390–650 нм) при накачке диодными излучателями и 2-й, 3-й и 4-й гармониками импульсного Nd:YAG-лазера. Выявлены механизмы заселения высоколежащего квазиметастабильного уровня $^2F(2)_{5/2}$. Наиболее эффективное заселение этого уровня достигается при комбинированной накачке кристалла Nd:YAG диодным излучателем и 4-й гармоникой Nd:YAG-лазера. В этом случае было отмечено сильное (на порядок и больше) увеличение сигнала люминесценции с высокоэнергетического уровня $^2F(2)_{5/2}$ (яркое голубое свечение кристалла наблюдалось визуально). Механизм заселения обусловлен двухступенчатым возбуждением: диодная накачка приводит к заселению верхнего

метастабильного уровня рабочего перехода, кванты 4-й гармоники обеспечивают поглощение из возбуждённого состояния в результате хорошо разрешенного межконфигурационного перехода $4f \rightarrow 5d$ с последующей безызлучательной релаксацией на уровень ${}^2F(2)_{5/2}$.

Исследованный эффект представляется важным для понимания механизма изменения показателя преломления лазерных кристаллов, связанного с отличием поляризуемости высокоэнергетических уровней от поляризуемости основного состояния [5, 16]. Полученные результаты, по-существу, указывают на возможность управления оптической нелинейностью лазерных кристаллов за счёт комбинирования диодной и лазерной накачек, поскольку заселение верхних энергетических уровней даёт существенный вклад в нелинейные изменения показателя преломления [2, 5, 16]. Ещё одним важным следствием проведённых исследований является возможность получения эффективной люминесценции в фиолетово-голубом диапазоне спектра.

Настоящая работа выполнена при финансовой поддержке РФФИ (гранты № 01-02-17674, 02-02-81042 Бел.2002а, 00-15-96675), фонда НАТО «Наука ради мира» (грант SfP 974143), а также МНТЦ (грант ISTC/EOARD 1913р).

Каминский А.А., Антипенко Б.М. Многоуровневые функциональные схемы кристаллических лазеров (М.: Наука, 1998).

- Powell R.C. Physics of solid-state laser materials (New York Berlin Heidelberg: Springer, 1989).
- 3. Guyot Y., Manaa H., Rivoire J.Y., et al. Phys. Rev. B, 51, 784 (1995).
- 4. Guy S., Bonner C.L., Shepherd D.P., et al. *IEEE J. Quantum Electron.*, **34**, 900 (1998).
- Антипов О.Л., Кужелев А.С., Лукьянов А.Ю., Зиновьев А.П. Квантовая электроника, 25, 891 (1998).
- Antipov O.L., Kuzhelev A.S., Vorob'ev V.A., Zinov'ev A.P. Opt. Commun., 152, 313 (1998).
- 7. Antipov O.L., Chausov D.V., Kuzhelev A.S., et al. *IEEE J. Quantum Electron.*, **37**, 716 (2001).
- Antipov O.L., Eremeykin O.N., Vorob'ev V.A., et al. *Techn. Dig. XVII Intern. Conf. Nonlinear Optics (ICONO'2001)* (Minsk, Belarus, 2001, p. 253).
- Горбань И.С., Гуменюк А.Ф., Дегода В.Я. Оптика и спектроскопия. 58, 217 (1985).
- Venikouas G.E., Quarles G.J., King J.P., Powell R.C. *Phys. Rev. B*, 30, 2401 (1984).
- Басиев Т.Т., Дергачев А.Ю., Орловский Ю.В. и др. Труды ИОФ РАН, 46, 3 (1994).
- 12. Kramer M.A., Boyd R.W. Phys. Rev. B, 23, 986 (1981).
- 13. Багдасаров Х.С., Володин И.С., Коломийцев А.И. и др. *Квантовая электроника*, **9**, 1158 (1982).
- 14. Konstantinov N.Yu., Karaseva L.G., Gromov V.V., et al. *Phys. Stat. Sol.* (*a*), **83**, 153 (1984).
- 15. Дубинский А.М., Столов А.Л. ФТТ, **27**, 2194 (1985).
- Antipov O.L., Kuzhelev A.S., Chausov D.V., Zinov'ev A.P. J. Opt. Soc. Am. B, 16, 1072 (1999).