PACS 42.25.Dd; 42.62.Be; 42.30.Wb; 87.64.Cc

Устойчивость фазовой функции Хеньи – Гринштейна и быстрое интегрирование по путям в условиях многократного рассеяния света

В.М.Петникова, Е.В.Третьяков, В.В.Шувалов

Показано, что устойчивость фазовой функции Хеньи—Гринитейна позволяет резко увеличить скорость решения задачи распространения света через сильно рассеивающие объекты с использованием той же, что и в исходной постановке задачи, априорной информации о процессах взаимодействия. При этом рост скорости расчета сопровождается постепенным огрублением моделирования с плавным переходом от точности метода Монте-Карло к точности диффузионного приближения. В рамках стандартного предположения о статистической независимости длины свободного пробега фотона и угла его рассеяния получено точное аналитическое выражение, связывающее эффективное число актов рассеяния с длиной оптического пути.

Ключевые слова: фазовая функция Хеньи-Гринштейна, фазовая функция многократного рассеяния, быстрое интегрирование по путям.

1. Введение

Задачу распространения света в условиях многократного рассеяния обычно решают численно методами теории переноса [1, 2], Монте-Карло [3, 4] либо интегрирования по путям [5-7]. Основой такого расчета являются параметры, априорно описывающие статистику: коэффициенты $\mu_{\rm a,s}$ поглощения и рассеяния, а также фазовая функция $P_{\rm s}^{(1)}({m \Theta})$, характеризующая распределение плотности вероятности однократного рассеяния на двумерный (2D) угол $\boldsymbol{\Theta} = (\theta, \varphi)$, где θ и φ – азимутальный и полярный углы рассеяния [1-4]. Поскольку в такой «точной», оперирующей только априорной статистикой ($\mu_{a.s}$ и $P_s^{(1)}(\boldsymbol{\Theta})$) постановке задача многократного рассеяния аналитически никогда не решается, обычно ее дополнительно упрощают, вводя некоторые приближения [2, 7–11]. К сожалению, при распространении на расстояния ~ 1000 длин рассеяния и более верификация полученных в рамках этих приближений результатов с помощью перечисленных выше точных методов из-за огромных временных затрат становится практически невозможной. Дело в том, что более или менее достоверный (относительная погрешность $\sim 1 \%$) расчет лишь одного распределения плотности вероятности прохождения фотонов от источника к приемнику потребует моделирования заведомо более 10¹³ реализаций, что следует просто из необходимости заполнения соответствующего этому распределению массива данных (10^4 фотонов на ячейку).

Кардинальный рост скорости численного расчета в любом из указанных точных методов может быть реализован за счет введения 2D распределения $P_{\rm s}^{(k)}(\boldsymbol{\Theta})$, априорно описывающего процесс k-кратного рассеяния [11 –

В.М.Петникова, Е.В.Третьяков, В.В.Шувалов. Международный учебно-научный лазерный центр МГУ им. М.В.Ломоносова, Россия, 119992 Москва, Воробьевы горы; e-mail: vsh@vsh.phys.msu.su

Поступила в редакцию 19 июня 2006 г., после доработки – 10 июля 2006 г.

14]. При реализации такого подхода в [13, 14] полагалось, что

$$P_s^{(k)}(\boldsymbol{\Theta}) = \frac{1}{4\pi} \frac{1 - g_k^2}{\left(1 + g_k^2 - 2g_k \cos \theta\right)^{3/2}}, \quad k = 1, 2, \dots$$
 (1)

является фазовой функцией Хеньи – Гринштейна [15], параметр анизотропии $g_k = g_1^k = \langle \cos \Theta \rangle$ которой определяет средний косинус угла k-кратного рассеяния и меняется в пределах от 0 (изотропное рассеяние) до 1 (рассеяние вперед). Считалось, что число актов рассеяния k на отрезке траектории длиной Δz превращается в некую новую эффективную константу $k_{\rm eff}$, которая зависит от Δz и определенным образом выражается через среднее значение $\langle k \rangle = \mu_{\rm s} \Delta z$ [12 – 14]. При этом необходимая для проведения расчета зависимость $k_{\rm eff}(\Delta z)$ вводилась из полуэмпирических соображений.

Ниже будет показано, что, поскольку распределение $P_s^{(1)}(\boldsymbol{\Theta})$ относится к классу устойчивых распределений [16] и характер зависимости $P_s^{(k)}(\boldsymbol{\Theta})$ воспроизводит характер $P_s^{(1)}(\boldsymbol{\Theta})$ (см. формулу (1)), привлекать соображения такого типа не требуется и зависимость $k_{\rm eff}(\Delta z)$ может быть найдена точно. Поэтому в рамках любого из перечисленных выше точных подходов с использованием той же, что и в исходной постановке задачи, априорной информации о рассеивающей среде при решении задачи многократного малоуглового рассеяния может быть реализован кардинальный выигрыш в скорости расчета.

2. Фазовая функция многократного рассеяния

Будем считать, что на отрезке длиной Δz , параллельном оси z, фотон k=0,1,... раз меняет направление распространения на угол $\boldsymbol{\Theta}_k=(\theta_k,\varphi_k)$. Интересуясь лишь итоговым изменением направления его распространения $(\boldsymbol{\Theta}=\sum_{k=0}^{\infty}\boldsymbol{\Theta}_k)$ и считая все акты рассеяния независимыми, введем эффективную фазовую функцию многократного рассеяния в виде

$$P_{s}(\boldsymbol{\Theta}, \Delta z) = \sum_{k=0}^{\infty} P^{(k)}(\Delta z) P_{s}^{(k)}(\boldsymbol{\Theta}). \tag{2}$$

Здесь $P^{(k)}(\Delta z)$ – вероятность k-кратного рассеяния на отрезке Δz , которая в дальнейшем будет учитывать и вероятность отсутствия поглощения (метод интегрирования по путям):

$$P_{s}^{(k)}(\boldsymbol{\Theta}) = \iint d\boldsymbol{\Theta}' P_{s}^{(k-1)}(\boldsymbol{\Theta}') P_{s}^{(1)}(\boldsymbol{\Theta} - \boldsymbol{\Theta}'), \quad k = 1, 2, \dots \quad (3)$$

— фазовая функция k-кратного рассеяния; $P_s^{(0)}(\boldsymbol{\Theta}) \equiv \delta(\boldsymbol{\Theta})$ — δ -функция по углу $\boldsymbol{\Theta} = (\theta, \varphi)$.

С использованием аппарата характеристических функций легко показать, что для любой фазовой функции $P_s^{(1)}(\boldsymbol{\Theta})$ уже только из условия независимости актов однократного рассеяния для любого целого n>1 сразу следует, что

$$\left\langle \cos \sum_{k=1}^{n} \boldsymbol{\theta}_{k} \right\rangle = \left\langle \cos \boldsymbol{\theta}_{1} \right\rangle^{n}.$$
 (4)

Поэтому, если бы фазовая функция однократного рассеяния определялась распределением (1) и это распределение было бы устойчивым [16], мы получили бы весьма простое и удобное соотношение $g_k = g_k^1$ [14].

3. Устойчивость фазовой функции Хеньи – Гринштейна

Для иллюстрации устойчивости фазовой функции Хеньи – Гринштейна (1) приведем результат численного интегрирования (3) при $P_{\rm s}^{(1)}(\boldsymbol{\theta})$, заданном выражением (1) для $0.99>g_1>0.15$ и k=1,2,...,50. На рис.1 на плоскости θ,k показаны зависимости $F^{(k)}(\theta)=\int_0^{2\pi}\mathrm{d}\phi P_{\rm s}^{(k)}(\boldsymbol{\theta})$, рассчитанные таким методом (точки) и зависимости

$$F^{(k)}(\theta) = \frac{1}{2} \frac{1 - g_1^{2k}}{(1 + g_1^{2k} - 2g_1^k \cos \theta)^{3/2}},\tag{5}$$

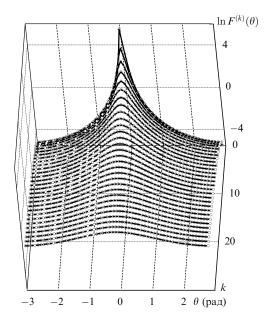


Рис.1. Трансформация зависимости $F^{(k)}(\theta)$ при изменении k и $g_1=0.95$. Точки – результат численного интегрирования выражения (3), сплошные линии соответствуют выражению (5).

рассчитанные с использованием выражения (1) и условия $g_k = g_1^k$ при $g_1 = 0.95$ (сплошные линии). Легко убедиться в том, что при $g_k = 0.99 - 0.07$ (почти изотропное рассеяние) отклонение данных численного интегрирования (3) от полученных по формуле (5) не превышает 10^{-3} . С учетом погрешности использованных нами численных процедур это подтверждает, что распределение (1) действительно является устойчивым [16]. Отметим, что тот же результат может быть получен и гораздо более строго – аналитически [11, 14].

4. Статистические моменты при *k*-кратном рассеянии

Отметим сразу, что из-за разной длины траекторий с разной кратностью рассеяния $P^{(k)}(\Delta z)$ в (2) нельзя считать заданным стандартным распределением Пуассона (см., напр., [13, 14]). Поэтому для расчета статистических моментов распределения $P^{(k)}(\Delta z)$ мы воспользуемся следующими простыми соображениями.

Предположим, что при k-кратном рассеянии траектория любого фотона является некой ломаной линией, состоящей из k+1 прямолинейных отрезков $\Delta \mathbf{l}_i$ (i=0, 1, ..., k), в конечных точках которых фотон и рассеивается на 2D угол Θ_i (рис.2). Будем считать, что длины этих отрезков Δl_i распределены по экспоненциальному закону с моментами первого и второго порядка $\langle \Delta l_i \rangle = \langle \Delta l \rangle = \mu_{\rm s}^{-1}$ и $\langle \Delta l_i^2 \rangle = \langle \Delta l^2 \rangle = 2\mu_{\rm s}^{-2}$ соответственно. При этом средняя длина рассматриваемых траекторий $\langle \Delta l^{(k)} \rangle = (k+1)\mu_{\rm s}^{-1}$ зависит от полного числа k актов рассеяния, а $\langle [\Delta l^{(k)}]^2 \rangle =$ $2(k+1)\mu_s^{-2}$. Спроецировав теперь все точки рассеяния на отрезок Δz , являющийся продолжением ΔI_0 , построим на нем k+1 последовательно расположенных отрезков с неравными длинами $\Delta z_i = \Delta \hat{l}_i \cos{(\sum_{m=0}^i \boldsymbol{\Theta}_m)}$, где $\boldsymbol{\Theta}_0 \equiv 0$, т. к. Θ_0 – угол входа фотона на рассматриваемую траекторию. Усреднив Δz_i по Δl_i и $\boldsymbol{\Theta}_i$, в предположении статистической независимости длин свободного пробега Δl_i и углов $\boldsymbol{\Theta}_i$ однократного рассеяния (приближение точечных рассеивающих центров) получим

$$\langle \Delta z^{(k)} \rangle = \sum_{i=0}^{k} \langle \Delta z_i \rangle = \mu_s^{-1} \sum_{i=0}^{k} g_1^i = \mu_s^{-1} \frac{1 - g_1^{k+1}}{1 - g_1},$$
 (6)

где $\langle \Delta z^{(k)} \rangle$ – средняя длина смещения фотона вдоль оси z при k-кратном рассеянии. Из выражения (6) следует, что

$$k = \frac{\ln\left[1 - \mu_{s}\langle\Delta z^{(k)}\rangle(1 - g_{1})\right]}{\ln\sigma_{1}} - 1,\tag{7}$$

а общая средняя длина траектории при такой кратности рассеяния

$$\langle \Delta l^{(k)} \rangle = \mu_{\rm s}^{-1} \frac{\ln[1 - \mu_{\rm s} \langle \Delta z^{(k)} \rangle (1 - g_1)]}{\ln g_1}.$$
 (8)

Легко убедиться, что, хотя $\langle \Delta l^{(k)} \rangle \to \infty$ при $k \to \infty$, среднее смещение $\langle \Delta z^{(k)} \rangle$ фотона вдоль оси z не может

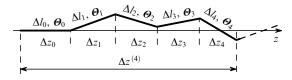


Рис.2. Схематическое изображение траектории фотона при четырехкратном рассеянии (см. текст).

превысить $\Delta z^{(\infty)} = (\mu_s')^{-1}$, где $\mu_s' = \mu_s (1-g_1)$ – транспортный коэффициент рассеяния. Этот хорошо известный результат (см. формулу (28) работы [17]) является следствием того, что рост $\langle \Delta z^{(k)} \rangle$ происходит только за счет регулярной (средняя проекция на ось z отлична от нуля) составляющей скорости фотона, направленной строго вдоль оси z. Собственно именно расстояние $\Delta z^{(\infty)}$ и определяет возможность перехода к диффузионному приближению, в котором дальнейшее продвижение фотонов описывается уже через момент второго порядка, учитывающий и нерегулярную (средняя проекция на ось z равна нулю) составляющую полного перемещения.

Для того чтобы учесть эту составляющую перемещения, рассчитаем величину

$$\left\langle \left[\Delta z^{(k)}\right]^{2}\right\rangle = \left\langle \left(\sum_{i=0}^{k} \Delta z_{i}\right)^{2}\right\rangle = \sum_{i=0}^{k} \left\langle \Delta z_{i}^{2}\right\rangle + 2\sum_{j>i=0}^{k} \left\langle \Delta z_{i} \Delta z_{j}\right\rangle. \tag{9}$$

Отметим сразу, что основная сложность при этом будет состоять в том, что Δz_i и Δz_j во втором члене правой части выражения (9) статистически зависимы. Действительно, направление распространения фотона после j-го акта рассеяния, описываемое углом $\sum_{m=0}^{j} \Theta_m$, зависит от всех предыдущих событий, т. к. включает в себя и сумму $\sum_{m=0}^{i} \Theta_m$, характеризующую направление распространения фотона после i-го акта однократного рассеяния. Однако с учетом устойчивости фазовой функции Хеньи — Гринштейна (см. выше) и статистической независимости длин свободного пробега Δl_i и углов Θ_i однократного рассеяния провести точное усреднение в (9) оказывается все-таки можно, поскольку

$$\sum_{i=0}^{k} \langle \Delta z_{i}^{2} \rangle = \langle \Delta l^{2} \rangle \sum_{i=0}^{k} \left\langle \cos^{2} \left(\sum_{m=0}^{i} \boldsymbol{\Theta}_{m} \right) \right\rangle = \langle \Delta l^{2} \rangle \sum_{i=0}^{k} \frac{1 + 2g_{1}^{2i}}{3}$$

$$= \frac{1}{3} \langle \Delta l^{2} \rangle \left(k + 3 + 2g_{1}^{2} \frac{1 - g_{1}^{2k}}{1 - g_{1}^{2}} \right), \qquad (10)$$

$$2 \sum_{j>i=0}^{k} \langle \Delta z_{i} \Delta z_{j} \rangle = 2 \langle \Delta l \rangle^{2} \sum_{j>i=0}^{k} \left\langle \cos \left(\sum_{m=0}^{j} \boldsymbol{\Theta}_{m} \right) \cos \left(\sum_{m=0}^{i} \boldsymbol{\Theta}_{m} \right) \right\rangle$$

$$= 2 \langle \Delta l \rangle^{2} \left(\sum_{j=1}^{k} g_{1}^{j} + \sum_{j>i=0}^{k} \frac{g_{1}^{j-i} + 2g_{1}^{j+i}}{3} \right)$$

$$= 2 \langle \Delta l \rangle^{2} \left[g_{1} \frac{1 - g_{1}^{k}}{1 - g_{1}} + \frac{1}{3} \frac{g_{1}}{1 - g_{1}} \left(k - \frac{1 - g_{1}^{k}}{1 - g_{1}} \right) \right]$$

$$+ \frac{2}{3} \frac{g_{1}^{2}}{1 - g_{1}} \left(g_{1} \frac{1 - g_{1}^{2k}}{1 - g_{1}^{2}} - g_{1}^{k} \frac{1 - g_{1}^{k}}{1 - g_{1}} \right) \right]. \qquad (11)$$

Отсюда после серии несложных преобразований с учетом соотношения $\langle \Delta l^2 \rangle = 2 \langle \Delta l \rangle^2$ получаем точное аналитическое выражение

$$\left\langle \left[\Delta z^{(k)} \right]^2 \right\rangle = \frac{2}{3} \frac{\left\langle \Delta I \right\rangle^2}{1 - g_1} \left[k + 3(1 - g_1) + g_1(2 - g_1) \frac{1 - g_1^k}{1 - g_1} \right] - 2g_1^3 \frac{1 - g_1^{2k}}{1 - g_1^2} \right]. \tag{12}$$

Отметим, что при k=0-3 соотношение (12) переходит в формулы, полученные ранее в [17]. В то же время выписанный нами результат точного усреднения отличается

от выражения (13), приведенного в работе [18]. Это связано с тем, что указанное выражение несправедливо для малых значений k, т. к. при его получении все три пространственные проекции второго момента смещения исходно предполагались равноправными.

Выражения для моментов второго порядка $\langle [\Delta x^{(k)}]^2 \rangle = \langle [\Delta y^{(k)}]^2 \rangle$ смещения фотона по двум ортогональным друг другу и оси z осям x и y при k-кратном рассеянии также легко записать с учетом точного аналитического соотношения

$$\left\langle \left[\Delta x^{(k)} \right]^2 \right\rangle + \left\langle \left[\Delta y^{(k)} \right]^2 \right\rangle + \left\langle \left[\Delta z^{(k)} \right]^2 \right\rangle$$

$$= 2 \frac{\left\langle \Delta I \right\rangle^2}{1 - g_1} \left(k - \frac{1 - g_1^k}{1 - g_1} \right), \tag{13}$$

соответствующего выражению (25) работы [19].

5. Быстрое решение задачи распространения методом интегрирования по путям

С учетом приведенных выше точных аналитических соотношений эффективная фазовая функция (2), интегрально описывающая распределение вероятности прохождения фотонов по отрезку траектории длиной Δz с изменением направления распространения на 2D угол $\boldsymbol{\Theta} = (\theta, \varphi)$, теперь принимает вид

$$P_{s}(\boldsymbol{\Theta}, \Delta z) = \exp\left\{-\left[k_{\text{eff}}(\Delta z) + 1\right] \frac{\mu_{a}}{\mu_{s}}\right\}$$

$$\times \frac{1}{4\pi} \frac{1 - g_{1}^{2k_{\text{eff}}(\Delta z)}}{\left[1 + g_{1}^{2k_{\text{eff}}(\Delta z)} - 2g_{1}^{k_{\text{eff}}(\Delta z)} \cos\theta\right]^{3/2}},\tag{14}$$

где $k_{\rm eff}(\Delta z)$ определяется решением трансцендентного уравнения (12). Типичную зависимость $k_{\rm eff}$ от Δz , нормированного на транспортную длину рассеяния $(\mu_s')^{-1}$, при $g_1=0.95$ иллюстрирует рис.3. Здесь в двойном логарифмическом масштабе сплошной кривой показана точная зависимость $\Delta z(k_{\rm eff})$, рассчитанная из полученного нами аналитического выражения (12), а штриховой – ее аналог, вычисленный из соотношения (13) работы [18]. Легко убедиться в том, что при $\Delta z < (2 \div 3)(\mu_s')^{-1}$ различие ре-

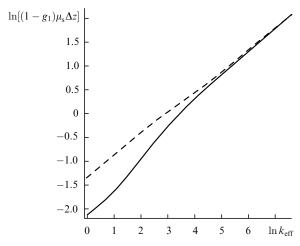
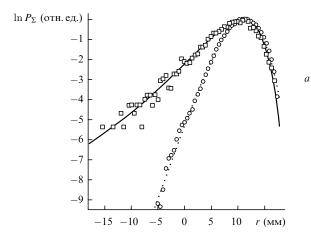


Рис.3. Зависимости $(1-g_1)\mu_s\Delta z$ от $k_{\rm eff}$ для $g_1=0.95$. Сплошная кривая—зависимость $\Delta z(k_{\rm eff})$, рассчитанная из (12), штриховая кривая—ее аналог, рассчитанный из выражения (13) работы [18].



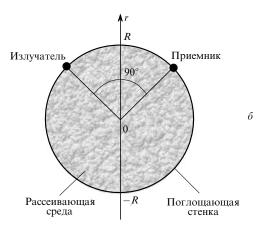


Рис.4. Центральные сечения распределений вероятности $P_{\Sigma}(r)$ прохождения фотонов (a) и геометрия эксперимента (δ). Расчет проведен методами Монте-Карло (\square) и интегрирования по путям при $\langle \Delta z \rangle = 8\mu_{\rm s}^{-1}$ и $k_{\rm eff}(\Delta z)$, определенном через $\langle k \rangle (\Delta z)$ (пунктирная кривая) и из выражения (12) (сплошная кривая).

зультатов двух вариантов расчета оказывается весьма существенным, и лишь в диффузионном пределе $\Delta z \gg (\mu_s')^{-1}$ они совпадают.

Поскольку использованное для записи (14) точное аналитическое соотношение (12) выражено через те же параметры, которые исходно описывали информацию о процессах рассеяния (μ_s и g_1) и поглощения (μ_a) в исходной постановке проблемы, и является точным, возможность быстрого и точного (в описанном выше смысле) решения задачи многократного малоуглового рассеяния методом интегрирования по путям можно считать доказанной [5, 6, 12, 13]. Последнее утверждение иллюстрируется рис.4,а, на котором показаны центральные сечения распределений вероятности $P_{\Sigma}(r)$ прохождения фотонов через разные точки модельного объекта, роль которого играет сильно рассеивающая и слабо поглощающая ($\mu_{\rm a}=0.01~{\rm Mm}^{-1}$ и $\mu_{\rm s}=14~{\rm Mm}^{-1}$, $g_1=0.95$) среда в цилиндрическом сосуде диаметром 2R = 35 мм с поглощающими стенками (r – расстояние до оси цилиндра). Приемник расположен на боковой поверхности цилиндра под углом 90° к излучателю (рис.4,6). Распределения $P_{\Sigma}(r)$ рассчитаны методами Монте-Карло и интегрирования по путям по методике работы [13] при $\langle \Delta z \rangle =$ $8\mu_{\rm s}^{-1}$ с использованием фазовой функции Хеньи – Гринштейна, причем $k_{\rm eff}(\Delta z)$ определено через $\langle k \rangle (\Delta z)$ и рассчитано из выражения (12). Угловая апертура излучателя для метода Монте-Карло составляла 10° при площади приемной площадки $1~{\rm Mm}^2$.

6. Заключение

Итак, решение задачи распространения света через сильно рассеивающие объекты можно существенно ускорить за счет введения фазовой функции многократного рассеяния (2). При независимых актах однократного рассеяния и устойчивых распределениях $P_{\mathrm{s}}^{(1)}(\boldsymbol{\theta})$ для этого используется абсолютно та же априорная информация об объекте ($\mu_{a,s}$ и $P_s^{(1)}(\boldsymbol{\Theta})$). В случае малоуглового рассеяния скорость расчета может быть увеличена в $\sim 10^4$ раз $(g_1=0.95)$ и более при изменении Δz от $\Delta z < \mu_s^{-1}$ до $\Delta z \sim (\mu_s')^{-1}$, хотя такое увеличение и сопровождается постепенным снижением точности расчета от точности метода Монте-Карло до точности диффузионного приближения [8]. Это позволяет оптимизировать (по скорости и точности) схему решения задачи многократного рассеяния и верифицировать быстрые приближенные алгоритмы, предложенные нами ранее для диффузионной оптической томографии объектов с размерами порядка 1000 длин рассеяния [19].

Отметим также, что описанный выше подход достаточно легко переносится на известные более сложные модели процессов однократного рассеяния, в которых $P_s^{(1)}(\boldsymbol{\theta})$ определяется через линейную суперпозицию двух или более фазовых функций Хеньи – Гринштейна [8, 9].

- Duderstadt J.J., Martin W.R. Transport Theory (New York: John Wiley & Sons, 1979).
- Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах (М.: Мир, 1981).
- 3. Metropolis N., Ulam S. J. Am. Statistical Association, 44, 335 (1949).
- 4. Соболь И.М. Метод Монте-Карло (М.: Наука, 1985).
- Feynman R.P., Hibbs A.R. Quantum Mechanics and Path Integrals (New York: McGraw-Hill Higher Education, 1965).
- Kleinert H. Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (Singapore: World Scientific, 1995).
- 7. Perelman L.T. et al. Phys. Rev. Lett., 72, 1341 (1994).
- 8. Van de Hulst H.C. *Multiple Light Scattering* (New York: Acad. Press, 1980).
- 9. Zege E.P. et al. *Image Transfer Through a Scattering Medium* (Berlin: Springer, 1991).
- 10. Kim A., Ishimaru A. Appl. Opt., 37, 5313 (1998).
- Kokhanovsky A.A. J. Phys. D, 30, 2837 (1997); Meas. Sci. Technol., 13, 233 (2002).
- 12. Premoze S. et al. *Proc. Eurographics 14th Symp. Rendering' 2003* (Leuven, Belgium, 2003, pp 1 12).
- 13. Воронов А.В. и др. Квантовая электроника, **34**, 547 (2004).
- Turcu I. J. Opt. A: Pure Appl. Opt., 6, 537 (2004); Appl. Opt., 45, 639 (2006).
- Henyey L.G., Greenstein J.L. Astrophys. J., 93, 70 (1941); Jacques S.L. et al. Lasers Life Sci., 1, 309 (1987).
- Uchaikin V.V., Zolotarev V.M. Chance and Stability. Stable Distributions and their Applications (The Netherlands, Utrecht: VSP, 1999).
- 17. Zaccanti G. et al. Pure Appl. Opt., 3, 897 (1994).
- 18. Gandjbakhche A.H. et al. *J. Statistical Physics*, **69** (1/2), 35 (1992).
- Чурсин Д.А. и др. Квантовая электроника, 29, 83 (1999); Третьяков Е.В. и др. Квантовая электроника, 31, 1095 (2001).