ВОЗДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ВЕЩЕСТВО

PACS 42.68Jg, 42.68Ge, 42.65-k

Просветление полидисперсного водного аэрозоля лазерным импульсом в диффузионно-конвективном режиме

А.Н.Кучеров

Исследовано распространение лазерного импульса ИК диапазона через слой водного аэрозоля (туман, облака). Учитывались относительное движение пучка и среды, дифракционное расплывание, тепловое самовоздействие лазерного пучка, поглощение и рассеяние излучения частицами, испарение частиц (просветление аэрозоля), распределение частиц по размерам. Задача распространения решалась численно на макроуровне с масштабом порядка поперечного размера пучка, воздействие излучения на капли рассматривалось на микроуровне с масштабом порядка радиуса частиц. Получено удовлетворительное соответствие теоретических результатов с экспериментальными данными.

Ключевые слова: лазерный пучок, сферические капли, испарение, просветление среды.

1. Введение

При исследовании проблемы просветления водного аэрозоля лазерным пучком вводят два масштаба: поперечный размер лазерного пучка $r_0 \sim 10^{-3} - 10^{-2}$ м (макромасштаб) и характерный радиус капель аэрозоля $a \sim$ 10^{-6} м (микромасштаб) [1 – 3]. Интерес представляет ИК диапазон длин волн лазерного излучения, в котором есть окна прозрачности в воздухе [4, 5]. Для типичных уровней водности $w \sim 10^{-5} - 10^{-4} \, \mathrm{kr/m^3}$ (масса конденсата на единицу объема) [6] лазерный импульс с относительно невысокой мощностью (~1 кВт) позволяет существенно снизить на короткое время, равное по порядку величины длительности импульса, оптическую толщину среды, пропустить по каналу просветления зондирующий пучок и осуществить дистанционное зондирование или оптическую связь. Сложная многопараметрическая проблема просветления решается, как правило, при значительных (и не всегда справедливых) упрощениях: доля поглощенной каплей энергии, идущая на испарение, полагается постоянной или заранее известной из оценок функцией других величин; используются упрощенные зависимости коэффициентов поглощения и ослабления излучения от параметров среды; влияние аэрозольной среды описывается с помощью гладкой в макромасштабе функции водности w(x, y, z, t) (приближение водности).

В настоящей работе коэффициенты поглощения и рассеяния вычисляются на основе теории Ми [7], размеры и температура частиц, а также функция распределения капель по размерам рассчитываются конечно-разностным методом, параболическое уравнение распространения пучка решается методом разложения в ряды Фурье, а доля поглощенной энергии, которая идет на испарение капли, вычисляется на каждом шаге (по времени и ко-

А.Н.Кучеров. Центральный аэрогидродинамический институт (ЦАГИ) им. проф. Н.Е.Жуковского, Россия, 140180 Жуковский, Московская обл., ул. Жуковского, 1; e-mail: ank@aerocentr.msk.su

Поступила в редакцию 19 сентября 2005 г., после доработки — 30 ноября 2005 г.

ординатам). В зависимости от интенсивности нагревающего каплю излучения (от числа Маха для скорости пара на внешней границе слоя Кнудсена) существуют следующие режимы ее испарения и разрушения: диффузионный, диффузионно-конвективный, дозвуковой, звуковой, взрывной [8]. В настоящей работе исследуется процесс просветления при умеренных скоростях испарения с поверхности капель (диффузионный и диффузионно-конвективный режимы). Отметим, что высокоскоростные режимы испарения начинаются при температурах, близких к температуре кипения [8].

2. Постановка задачи

Уравнение распространения лазерного излучения в поглощающей и рассеивающей аэрозольной среде в макромасштабе запишем для медленно меняющейся амплитуды электрического поля E (интенсивность $I = EE^*$) [9]:

$$-2\mathrm{i}kn_0\frac{\partial E}{\partial z}+\frac{\partial^2 E}{\partial x^2}+\left[2k^2n_0(n_0-1)\right]$$

$$\times \frac{\rho - \rho_0}{\rho_0} E - i(\alpha_g + \alpha) k n_0 E \bigg] = 0, \tag{1}$$

$$E|_{z=0} = E_0(x), \quad E|_{x\to\pm\infty} \to 0,$$
 (2)

$$h_0 \left[\frac{\partial (\rho - \rho_0)}{\partial t} + V_0 \frac{\partial (\rho - \rho_0)}{\partial x} \right] = -\alpha_{\rm g} I - \alpha_{\rm eff} I, \tag{3}$$

$$\rho|_{t=0} = \rho_0, \quad \rho|_{x \to -\infty} \to \rho_0. \tag{4}$$

Здесь z — продольная координата; x — поперечная пучку координата; t — время; $k=2\pi/\lambda$ — волновое число; n_0 — показатель преломления невозмущенного газа; ρ , ρ_0 — плотность газа и ее начальное невозмущенное значение; h_0 — энтальпия невозмущенного газа; V_0 — скорость поперечного потока; α — линейный коэффициент ослабления излучения аэрозолем; $\alpha_{\rm eff} = \alpha_{\rm abs} \eta$ — эффективный коэффициент поглощения излучения газом; $\alpha_{\rm g}$, $\alpha_{\rm abs}$ — коэффи

циенты поглощения излучения газом и аэрозолем; η – доля поглощенной аэрозолем энергии, уходящей в газ.

Не ограничивая общности, рассмотрим плоский пучок с начальным гауссовым поперечным распределением интенсивности $E_0(x) = \sqrt{I_0} \exp[-(x/r_0)^2/2]$, где $I_0 = P_0/\pi r_0^2$ — характерная интенсивность излучения; P_0 — полная мощность; r_0 — радиус пучка. Коэффициенты поглощения и ослабления излучения аэрозолем есть [6, 7]

$$\alpha(x,z,t) = \pi N \int_0^\infty a^2 Q_{\rm ext}(a) f(a) da, \quad \beta = \frac{\alpha}{w}, \tag{5}$$

$$\alpha_{\rm abs}(x,z,t) = \pi N \int_0^\infty a^2 Q_{\rm abs}(a) f(a) da, \quad \beta_{\rm abs} = \frac{\alpha_{\rm abs}}{w}, \quad (6)$$

$$\alpha_{\rm eff}(x,z,t) = \pi N \int_0^\infty a^2 Q_{\rm abs}(a) \eta_{\rm a} f(a) \mathrm{d}a = \alpha_{\rm abs} \eta,$$

$$w(x,z,t) = \frac{4\pi N \rho_{\rm w}}{3} \int_0^\infty a^3 f(a) da.$$

Здесь $\beta_{\rm abs}$, β – удельные (на единицу массы) коэффициенты поглощения и ослабления излучения аэрозолем; w – водность аэрозоля; $\eta_{\rm a}=j_TS/Q_{\rm abs}\sigma I=4j_T/Q_{\rm abs}I$ – доля теплопотерь в газ от поглощенной энергии на одной частице; $S=4\pi a^2$, $\sigma=\pi a^2$ – полная площадь поверхности и площадь сечения шара; N – число частиц в единице объема; $Q_{\rm ext}$ – фактор ослабления излучения на шаре радиусом a; f(a) – функция распределения частиц по размерам (радиусам).

В микромасштабе радиуса капли a изменения радиуса капли, ее температуры T и функции распределения частиц по размерам f описываются уравнениями [1,2]

$$\frac{\partial a}{\partial t} + V_0 \frac{\partial a}{\partial x} = -\frac{j}{\rho_{\text{tot}}}, \quad a|_{t=0} = a_0, \tag{7}$$

$$\rho_{\mathbf{w}} C_{\mathbf{w}} \left(\frac{\partial T}{\partial t} + V_0 \frac{\partial T}{\partial x} \right) = \alpha_{\mathbf{d}} I(x, z, t)$$

$$-\frac{3}{a}(jH_{\rm w}+j_T), \quad T|_{t=0}=T_{\infty},\tag{8}$$

$$\frac{\partial f}{\partial t} + V_0 \frac{\partial f}{\partial x} + \frac{\partial}{\partial a} \left(f \frac{\mathrm{d}a}{\mathrm{d}t} \right) = 0, \tag{9}$$

$$f|_{t=0} = f_0(a_0) \equiv \frac{\mu^{\mu+1} a_0^{\mu}}{\Gamma(\mu+1) a_m^{\mu+1}} \exp\left(-\mu \frac{a_0}{a_m}\right).$$

Здесь j (кг·м $^{-2}$ ·с $^{-1}$), j_T (Вт/м 2) – плотности потоков массы и тепла с поверхности капли; $\rho_{\rm w}$ (кг/м 3), $C_{\rm w}$ (Дж·кг $^{-1}$ ·К $^{-1}$) – плотность и удельная теплоемкость воды; $H_{\rm w}$ (Дж/кг) – удельная теплота испарения; a_0 , T_{∞} – начальные радиус капли и ее температура, равная температуре окружающей среды; $\alpha_{\rm d}=3Q_{\rm abs}/4a$ – усредненный по объему коэффициент поглощения излучения каплей; $Q_{\rm abs}$ – фактор поглощения излучения каплей радиусом a; $f_0(a_0)$ – начальное распределение частиц по размерам, выбранное в виде двухпараметрического гамма-распределения с параметрами μ и $a_{\rm m}$ ($a_{\rm m}$ – модальный (наиболее вероят-

ный) радиус). Потоки массы и тепла с поверхности капли имеют вил

$$j = \begin{cases} \frac{\langle \rho D \rangle}{a} \ln\left(\frac{1 - Y_{\infty}}{1 - Y}\right), \ T < T_{b}, \\ \rho_{K} u_{K}, \ T \geqslant T_{b}, \end{cases}$$
(10)

$$Y_{\infty} = \frac{p_{\rm s\infty} m_{\rm v}}{p_{\infty} m},$$

$$j_{T} = \begin{cases} -\langle k \rangle \frac{\partial T}{\partial r} \bigg|_{r=a} = j \langle k \rangle \left\langle \frac{C_{p}}{k} \right\rangle \frac{T - T_{\infty}}{e^{\langle ja \langle C_{p}/k \rangle \rangle} - 1}, T < T_{b}, \\ \rho_{K} u_{K} \left[h_{K}(T_{K}) - h_{s}(T) + \frac{u_{K}^{2}}{2} \right], T \geqslant T_{b}. \end{cases}$$
(11)

Здесь угловые скобки означают усреднение по температурному диапазону теплофизических характеристик - коэффициента диффузии пара D, удельной теплоемкости газа C_p и коэффициента теплопроводности воздуха k; $Y=
ho_{
m v}/
ho$ и Y_{∞} – относительная массовая концентрация пара и ее значение в окружающем воздухе; $\rho_{\rm v}$ – плотность пара; ρ – плотность смеси газа (воздуха и пара); $p_{\rm s}_{\infty}, p_{\infty}$ – давление насыщенного пара и воздуха при температуре T_{∞} ; $m_{
m v}$, m – молярные массы пара и воздуха; $ho_{
m K}$, $u_{
m K}$ – плотность и скорость пара на внешней границе слоя Кнудсена [10]; $h_s(T)$ и $h_K(T_K)$ – энтальпия пара, насыщенного при температуре поверхности капли T, и энтальпия пара на верхней границе слоя Кнудсена. Температура $T_{\rm b}$, близкая к температуре кипения, разделяет медленные и высокоскоростные режимы испарения. Анализ изменения величин по всему температурному диапазону капли, от начального T_{∞} до критического значения (647.3 K), выполнен в работе [8].

Уравнение распространения (1) решалось методом разложения в ряды Фурье с применением быстрого фурье-преобразования [11], уравнения нагрева и испарения капли, а также уравнения эволюции функции распределения частиц по размерам — с помощью конечно-разностной схемы Мак-Кормака второго порядка аппроксимации по времени и координате [12, 13].

Обезразмерим уравнения, для чего отнесем координату z к длине трассы L, координату x – к начальному радиусу r_0 , время t – к характерному значению $t_0 = r_0/V_0$, функцию поля E – к $\sqrt{I_0}$, радиусы частиц – к $a_{\rm m}$, температуру – к T_{∞} , функцию распределения частиц по размерам – к $f_{\rm m} = f_0(a_{\rm m})$, водность – к w_0 , а коэффициенты $\alpha_{\rm g}$, α , и $\alpha_{\rm eff}$ – к характерным значениям $\alpha_{\rm g0}$, α_0 , и $\alpha_{\rm eff0}$:

$$\alpha_{g0} = \alpha_{g}(T_{\infty}), \ \alpha_{0} = \pi N a_{m}^{2} Q_{\text{ext}}(a_{\text{m}}),$$

$$\alpha_{\rm eff\,0} = \eta_0 \pi N a_{\rm m}^2 Q_{\rm abs}(a_{\rm m}).$$

Параметры подобия в уравнении (1): число Френеля $F=kn_0r_0^2/L$, параметры ослабления излучения газом $(N_{\rm g}=\alpha_{\rm g0}L)$ и аэрозолем $(N_{\beta}=\alpha_{\rm 0}L)$, параметр теплового самовоздействия (самопреломления) $N_T=(L/L_T)^2$, где $L_T=r_0/[Q(n_0-1)/n_0]^{1/2}$ — длина теплового самовоздействия (длина заметного изменения поперечника пучка вследствие нагрева среды и изменения показателя преломления), $Q=\alpha_{\rm eff} o I_0 t_0/\rho_0 h_0$.

В правую часть уравнения нагрева (8) входят параметры

$$Q_I = \frac{\alpha_{\rm dm} I_0 t_0}{\rho_{\rm w} C_{\rm w} T_{\infty}}, \ Q_H = \frac{j_0 H_{\infty} t_0}{a_{\rm m} \rho_{\rm w} C_{\rm w} T_{\infty}},$$

$$Q_{jT} = \frac{j_{T0}t_0}{a_{\rm m}\rho_{\rm w}C_{\rm w}T_{\infty}}$$

(где $\alpha_{\rm dm}=\alpha_{\rm d}(a_{\rm m});\ D_{\infty}=D(T_{\infty});\ j_0,\ j_{T0}$ — характерные значения), определяющие интенсивность теплоподвода, затраты на испарение и теплопотери через поверхность капли соответственно. Оценки и решения уравнений (7),(8) показывают, что нагрев капель осуществляется за более короткое время $\Delta t \sim t_0/Q_I$, чем их испарение, которое происходит при медленном уменьшении температуры при условии $\mathrm{d}T/\mathrm{d}t \approx 0$, или $Q_I \sim Q_H + Q_{jT}$. Эффективность просветления определяет КПД или параметр испарения $\eta_{\rm v}=jH_{\rm w}/(jH_{\rm w}+j_T)$ [1, 2, 14]. При $\mathrm{d}T/\mathrm{d}t \approx 0$ имеем $\eta_{\rm v}=1-\eta_{\rm a}$. Примем $Q_I=3(Q_H+Q_{jT})$ и введем характерный КПД $\eta_{\rm v0}=j_0H_{\infty}/(j_0H_{\infty}+j_{T0})$; при этом $j_0=\alpha_{\rm dm}I_0\times a_{\rm m}\eta_{\rm v0}/3H_{\infty}, j_{T0}=j_0H_{\infty}(1-\eta_{\rm v0})/\eta_{\rm v0}$.

Поскольку параметр поглощения излучения газом $N_{\rm g}$ мал для коротких трасс ($L<10^2$ м), примем $N_{\rm g}\equiv 0$.

В уравнения (7), (9) входит безразмерный параметр

$$N_{\rm v0} = \frac{\alpha_{\rm dm} I_0 \eta_{\rm v0} r_0}{3\rho_{\rm w} H_{\rm w} V_0},\tag{12}$$

характеризующий эффективность (скорость, силу) процесса уменьшения капли и, следовательно, процесса просветления среды. Это параметр микромасштаба. Более точно процесс просветления в макромасштабе радиуса пучка r_0 характеризуется интегральным параметром

$$N_{\rm v} = \int_0^\infty \frac{\alpha_{\rm d}(a)\eta_{\rm v}(a)I_0r_0}{3\rho_{\rm w}H_{\rm w}V_0} f(a) da.$$
 (13)

Параметр $N_{\rm v}$ понадобится в дальнейших исследованиях для сравнения результатов с приближением водности. Коэффициент поглощения $\alpha_{\rm d}$ и параметр испарения $\eta_{\rm v}$ зависят от радиуса капли a и существенно меняются по времени и координатам. Удобнее пользоваться фиксированным, не зависящим от координат параметром просветления $N_{\rm v0}$. Можно также использовать некоторое характерное постоянное значение $\eta_{\rm v0}$, например

$$\eta_{\text{v,min}} = \left[1 + \frac{k_{\infty} T_{\infty}^2 m p_{\infty} R}{\rho_{\infty} D_{\infty} H_{\infty}^2 m_{\text{v}}^2 p_{\text{s}\infty}}\right]^{-1}$$

(нижний предел диффузионного испарения), или известное из оценок число, если изменяются температура, давление окружающего воздуха и другие параметры. Примем $\eta_{v0}=0.5$, $\eta_0=1-\eta_{v0}=0.5$. В результате просветления уменьшается оптическая толщина аэрозоля

$$\tau(x,z,t) = \int_0^z \alpha dz. \tag{14}$$

Вместо параметра ослабления излучения аэрозолем N_{β} можно использовать эквивалентный параметр, отличающийся на постоянный множитель, — начальную оптическую толщину $\tau_0 = \tau(x=0,L,t=0)$.

При построении численного решения шаги расчетной сетки составили: $\Delta t = 10^{-4} - 10^{-3}$, $\Delta x = 0.1$ (число узлов сетки $N_x = 64$), $\Delta z = 0.04$ ($N_z = 25$), $\Delta a = 0.1 a_{\rm m}$ ($N_a = 40$). Потоки массы пара и тепла с поверхности капли рассчитывались до температуры $T_{\rm b}$ (близкой к точке кипения) и после ее достижения соответственно по формулам диффузионно-конвективного и дозвукового (в пределе – звукового) режимов с интерполяцией в промежуточном ин-

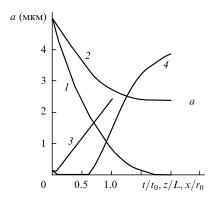
тервале. В настоящей работе анализируются результаты диффузионно-конвективного режима испарения.

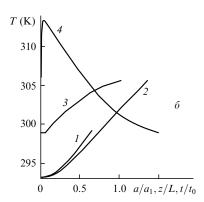
3. Основные результаты

Рассмотрим несколько вариантов, существенно различающихся давлением и температурой окружающего воздуха.

Вариант I. При атмосферном давлении окружающей среды $p_{\infty}=1.01325\times 10^5$ Па и температуре $T_{\infty}=293.15$ К (плотность воздуха $\rho_{\infty}=1.225$ кг/м³, давление насыщенного пара $p_{s\,\infty}=2.337\times 10^3$ Па или параметр относительного давления насыщенного пара $N_p=p_{s\infty}/p_{\infty}=2.30\times 10^{-2}$ и $T_b=373$ К) рассмотрим однородный водный аэрозоль с числом частиц N в единице объема 10^8 м $^{-3}$, модальным радиусом капель $a_{\rm m}=5$ мкм, с начальным распределением Хргиана – Мазина $\mu=2$ и, следовательно, с начальной водностью $w(x,z,t=0)\equiv w_0=3.14\times 10^{-4}$ кг/м³. При построении численного решения примем $a\subset [a_{\rm min},a_{\rm max}]$, где $a_{\rm min}=0.1a_{\rm m}=0.5$ мкм, $a_{\rm max}=3.9a_{\rm m}=19.5$ мкм.

Вариант II. Давление $p_{\infty}=0.89876\times 10^5~\Pi a,~T_{\infty}=281.65~\mathrm{K}$ (плотность воздуха $\rho_{\infty}=1.11~\mathrm{kr/m^3},$ давление насыщенного пара $p_{\mathrm{s}_{\infty}}=1.1916\times 10^3~\Pi a,~N_p=0.01326,$ $T_{\mathrm{b}}=369.7~\mathrm{K}).$ Здесь и в вариантах III, IV остальные физические параметры те же, что и в варианте I.


Вариант III. Давление $p_{\infty}=5.0535\times 10^4$ Па, температура $T_{\infty}=252.38$ К ($\rho_{\infty}=0.697$ кг/м³, $p_{s_{\infty}}=167$ Па, $N_p=2.378\times 10^{-3}$, $T_b=354.8$ K).


Вариант IV. Давление $p_\infty=0.0756\times 10^5$ Па, температура $T_\infty=216.66$ К ($\rho_\infty=0.12159$ кг/м³, $p_{\rm s_\infty}=4.00$ Па, $N_p=5.291\times 10^{-4},~T_{\rm b}=313.6$ К). Примем, что $N_\beta=0.1$ ($\tau_0=0.5664$), $N_T=0,1,N_{\rm v0}=1$,

Примем, что $N_{\beta}=0.1$ ($\tau_0=0.5664$), $N_T=0,1$, $N_{v0}=1$, длина волны излучения $\lambda=10.6$ мкм (тогда $Q_{\rm abs}(a_{\rm m})=0.524$, $Q_{\rm ext}(a_{\rm m})=0.972$, $\alpha_{\rm dm}=7.86\times 10^4$ м $^{-1}$, $\alpha_0=7.64\times 10^{-3}$ м $^{-1}$, $\alpha_{\rm eff0}=2.06\times 10^{-3}$ м $^{-1}$, L=13.09 м), мощность пучка $P_0=1$ кВт (при этом $r_0=0.0234$ м, $V_0=0.0726$ м/с, $t_0=0.323$ с, $I_0=5.80\times 10^5$ Вт/м 2 , характерная энергия импульса $E_0=P_0t_0=323$ Дж).

На рис. 1, a показано, как радиус капли изменяется по времени t, а также по продольной координате z вдоль трассы и по поперечной координате x (в момент $t/t_0 =$ 1.5). На рис.1, δ приведены изменения температуры при переходе от мелких капель (минимальный диаметр 0.5 мкм) к крупным (максимальный диаметр 19.5 мкм), вдоль трассы г для капли, начальный радиус которой равен максимальному ($a_0 = 19.5 \,\mathrm{mkm}$), а также с течением времени t. Типичные изменения температуры капли – быстрое достижение максимального значения за характерное время $\Delta t/t_0 \sim lpha_{
m dm} I_0/
ho_{
m w} C_{
m w} T_\infty = 1/Q_I$ (в рассматриваемом примере $T_{\text{max}} = 313 \text{ K}$), а затем медленное остывание с уменьшением размеров капли за характерное $\Delta t/t_0 \sim \rho_{\rm w} a_{\rm m}/t_0 j_0 = 3\rho_{\rm w} H_{\infty}/(\alpha_{\rm dm} I_0 t_0 \eta_{\rm v0}) = 1/N_{\rm v0}$ (кривая 4). На рис. 1, 6 приведены функции распределения f(a) капель по размерам в центре пучка (x = 0) в различные моменты времени.

На рис.2 представлены полученные в различные моменты времени поперечные распределения интенсивности излучения после прохождения слоя аэрозоля протяженностью $L=13.09\,$ м и поперечные распределения оптической толщины $\tau(x,L,t)$. Тепловое самовоздействие учитывалось $(N_T=0.1)$, но, как показал анализ, было мало. Заметные отличия от случая $N_T=0$ наблюдались при $N_T\geqslant 0.2$.

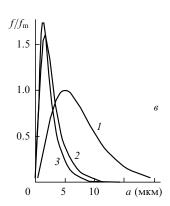


Рис.1. Изменения радиуса капли с течением времени t при z=0 (I), z=L, $a_0=5$ мкм (2), вдоль трассы z при $t/t_0=1.5$, x=0 (3) и по поперечной координате x при z=0, $t/t_0=1.5$ (4) (a), изменения температуры при переходе от мелких капель κ крупным при z=0 (I), z=L, $t/t_0=1.5$, x=0 (2), вдоль трассы z при $a_0=19.5$ мкм, $t/t_0=1.5$, x=0 (3) и с течением времени t при $a_0=19.5$ мкм, z=0, x=0 (4), $a_1=10$ мкм (6) и функция распределения частиц по радиусам f(a) в моменты времени $t/t_0=0$ (I), 1.0 (2) и 2.0 (3) (координаты x=0, z=L) (a). Результаты приведены для варианта a=0: мощность пучка a=010.3 Вт, длина волны a=02.6 мкм, модальный радиус a=03 мкм, параметр a=04, начальная водность a=05 мкм, длина трассы a=06.1 Параметры подобия: a=07.1 (a=0.56641), a=0.11, a=0.12, a=0.13, a=0.14, a=0.13, a=0.14, a=0.15, a=0.15, a=0.16, a=0.16, a=0.16, a=0.16, a=0.16, a=0.16, a=0.17, a=0.18, a=0.18, a=0.19, a=0.19, a=0.19, a=0.19, a=0.19, a=0.19, a=0.19, a=0.11, a=0.11, a=0.11, a=0.12, a=0.13, a=0.14, a=0.14, a=0.15, a=0.15, a=0.15, a=0.16, a=0.16, a=0.16, a=0.16, a=0.17, a=0.18, a=0.19, a=0.19, a=0.19, a=0.19, a=0.19, a=0.11, a=0.11, a=0.11, a=0.11, a=0.12, a=0.13, a=0.14, a=0.14, a=0.14, a=0.15, a=0.15, a=0.15, a=0.15, a=0.16, a=0.16, a=0.16, a=0.16, a=0.17, a=0.18, a=0.18, a=0.19, a=0.19, a=0.19, a=0.19, a=0.19, a=0.11, a=0.11, a=0.11, a=0.11, a=0.11, a=0.11, a=0.11, a=0.12, a=0.13, a=0.14, a

Исследования, результаты которых приведены на рис.3, проводились в диапазоне параметров подобия N_{β} =0-0.5 ($au_0=0-2.832$) и $N_{v0}=0-2$. Им предшествовало создание нескольких вариантов численных алгоритмов и программ построения решения полной системы уравнений в нестационарных условиях и в стационарном пределе как при относительно небольших, так и при значительных изменениях температуры капель. Например, в стационарном пределе реализованы два алгоритма. В одном для построения решений уравнений (1)—(11) использовалась явная схема с очень малым шагом по х: $\Delta x/r_0 = 0.00625$. В другом алгоритме шаги по координате x были крупными ($\Delta x/r_0 = 0.1$) и на каждом шаге осуществлялась итерационная процедура. Получено соответствие результатов с погрешностью менее 1 %. В нестационарных вариантах погрешность могла достигать 10%.

Для варианта I получены уровни пропускания излучения – уровни функции прозрачности ${\rm Tr}=I(x=0,z=L,t)/I_0=0.9,\,0.7,\,0.5,\,0.3,\,0.1$ в плоскости параметров подобия $\tau_0-N_{\rm v0}$ (при $N_T=0.1$) в различные моменты времени и в стационарном пределе $t/t_0=\infty$. По виду кривые аналогичны приведенным на рис.3 из работы [3] для приближения водности. Отметим, что погрешность

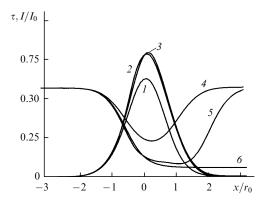


Рис.2. Поперечные распределения интенсивности I пучка лазерного излучения, прошедшего через аэрозольный слой толщиной L (I-3), и оптической толщины τ (4-6) в моменты времени $t/t_0=0.5$ (I, I), 1.5 (I, I) и I0 (I1, I3) и I3 (I4), I5 и I5 и I7 и I8 и I9 и параметрах подобия I9 и I

расчетов возрастает при уменьшении параметров τ_0 и N_{v0} . Некоторые данные приведены в табл.1.

На рис.3 показаны уровни уменьшения оптической толщины $\Delta \tau/\tau_0$ в различные моменты времени t/t_0 и в стационарном пределе $t/t_0=\infty$.

В табл.2 для вариантов I и II сравниваются результаты по просветлению аэрозольного слоя одинаковой оптической толщины τ_0 лазерным пучком мощностью

Табл.1. Прозрачность просветленной среды ${\rm Tr}=I(x=0,z=L)/I_0$ в центре пучка в конце трассы для варианта $I\left(N_p=2.30\times 10^{-2}\right)$.

$ au_0$	$N_{ m vo}$		t/t_0		
		0.5	1.5	∞	
1.133	1 2	0.277 0.531	0.500 0.726	0.504 0.786	
2.266	1 2	0.0356 0.105	0.0920 0.391	0.0948 0.394	
2.833	1 2	0.0118 0.0371	0.0323 0.188	0.0337 0.192	

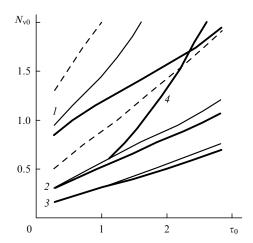


Рис.3. Уровни уменьшения оптической толщины $\Delta \tau/\tau_0=(\tau_0-\tau_{\min})/\tau_0=0.9$ (I), 0.7 (2) и 0.5 (3) в моменты времени $t/t_0=1$ (штриховые кривые), 2.0 (сплошные кривые) и ∞ (жирные кривые) на плоскости параметров подобия начальная оптическая толщина τ_0 – параметр просветления $N_{\rm V0}$ при $N_T=0.1$, $F\gg 1$, $N_p=2.30\times 10^{-2}$ (вариант I). Кривая $4-\Delta \tau/\tau_0=0.3$, вариант III ($N_p=2.378\times 10^{-3}$, $t/t_0=\infty$).

Табл.2. Прозрачность среды ${\rm Tr}=I(x=0,z=L)/I_0$ в центре пучка в конце трассы и относительные изменения оптической толщины $\Delta \tau/\tau_0=(\tau_0-\tau_{\rm min})/\tau_0$ аэрозольной среды в стационарном пределе для вариантов I $(N_p=2.30\times 10^{-2})$ и II $(N_p=1.326\times 10^{-2})$; $P_0=1$ кВт, $N_T=0.1, N_{v0}=0.3$.

Вариант	$ au_0$	Tr	$\Delta au/ au_0$	
II	0.5664	0.476 0.468	0.608 0.571	
I II	1.133	0.177 0.165	0.459 0.402	
I II	1.699	0.0608 0.0556	0.351 0.300	

 $1~{\rm кBT}$ при одних и тех же параметрах N_T и $N_{\rm v0}$ и разных значениях N_p . Различия в прозрачности среды и в оптической плотности возрастают с ростом τ_0 и превышают 15~% при $\tau_0 \approx 1.7~{\rm B}$ случае уменьшения N_p в $1.73~{\rm pasa}$.

В табл.3 приведены уровни интенсивности прошедшего через аэрозоль излучения в центре пучка и максимальные уменьшения оптической толщины аэрозоля по сечению пучка для вариантов I и III $(N_p \approx 2.38 \times 10^{-3})$. При изменении N_p на порядок различия между ними превышают 100 %. Наконец, в табл.4 сопоставлены прозрачности и оптические толщины аэрозоля в зоне пучка для вариантов I и IV (при $N_p \approx 5.3 \times 10^{-4}$, что на два порядка меньше, чем в варианте I). Характеристики прозрачности канала просветления, представленные в табл.4, оказываются в варианте IV почти на порядок меньше, чем в исходном варианте I. Приведенные на рис.3 и в табл.2-4 результаты для вариантов I-IV демонстрируют существенную роль параметра $N_p = p_{s_{\infty}}/p_{\infty}$, который зависит от температуры окружающей среды T_{∞} и давления p_{∞} .

Во всех рассмотренных ситуациях температура капель не превышала $T_{\rm b}$, т. е. испарение происходило в диффузионно-конвективном режиме. При $N_T \geqslant 0.1$ реализуются режимы высокоскоростного испарения, которые в настоящей работе не рассматривались. Отметим, что эффект теплового самовоздействия влияет на результаты незначительно. При $N_T > 0.2$ наблюдается заметное смещение профиля интенсивности излучения навстречу потоку газа, но значения $\Delta \tau/\tau_0$ при $N_T = 0.2$ изменяются слабо. Дифракционное расширение пучка не играло существенной роли в рассмотренных ситуациях при числе Френеля $F \gg 1$.

Заметим, что для полного подобия рассматриваемых ситуаций недостаточно выдерживать постоянными N_T , N_β , N_{v0} и N_p . На микроуровне задачи есть и другие параметры, влияющие на результат, например на просветление влияет длина волны или дифракционный параметр $2\pi a/\lambda$. Также влияют, хотя и менее сильно, параметры,

Табл.3. Прозрачность среды ${\rm Tr}=I(x=0,z=L)/I_0$ в центре пучка в конце трассы и относительные изменения оптической толщины $\Delta \tau/\tau_0$ аэрозольной среды в стационарном пределе для вариантов I и III $(N_p=2.378\times 10^{-3});\, P_0=1$ кВт, $N_T=0.1,\, N_{\rm v0}=2.$

Вариант	$ au_0$	Tr	$\Delta au/ au_0$	
III	1.133	0.755 0.256	0.928 0.684	
I III	1.699	0.562 0.0786	0.924 0.482	
I III	2.266	0.328 0.0243	0.918 0.358	

Табл.4. Прозрачность среды ${\rm Tr}=I(x=0,z=L)/I_0$ и изменение оптической толщины $\Delta \tau/\tau_0$ аэрозольного слоя в стационарном пределе для вариантов I и IV $(N_p=5.29\times 10^{-4});\ P_0=1\ {\rm kBr},\ N_T=0.1,\ \tau_0=0.5664.$

Вариант	$N_{ m v0}$	Tr	$\Delta au/ au_0$
I	1	0.763	0.901
IV		0.336	0.0948
I	2	0.890	0.930
IV		0.338	0.0988
I	3	0.913	0.933
IV		0.341	0.1181

связанные с начальным законом распределения капель по размерам и с начальным радиусом капель. Вместе с тем установлено, что при постоянных параметрах N_T , N_{β} , N_{v0} и N_p изменения водности w_0 , числа частиц в единице объема и длины трассы L на результате не сказываются. Заметно влияют изменения мощности пучка.

4. Сравнение с экспериментом

Сопоставим расчетные результаты с экспериментальными данными [1]. Эксперименты были выполнены с CO_2 -лазером (длина волны $\lambda=10.6$ мкм) мощностью $P_0=800$ Вт с диаметром пучка $2r_0=40$ мм в движущемся перпендикулярно (со скоростью 30 см/с) аэрозольном слое толщиной 4 м [15]. Зондирующее излучение создавалось ртутной лампой ДРШ-100 ($\lambda=0.57$ мкм), узкий (2×2 мм) пучок направлялся поперек просветляемой зоны в направлении движения среды. Излучение собиралось с помощью линзы и поступало на ФЭУ-69. Измерения проводились при оптической толщине слоя $\tau=0.2-2.8$ на длине волны просветляющего пучка 10.6 мкм или $\tau_0=1.02-6.57$ на длине волны зондирующего излучения 0.57 мкм.

На рис.4 представлены зависимости функции прозрачности ${\rm Tr}=I(x=r_0,L,t)/I(r_0,0,t)$ зондирующего излучения от времени для разных начальных оптических толщин. Соответствие с экспериментальными точками удовлетворительное. На рис.5 показаны зависимости функ-

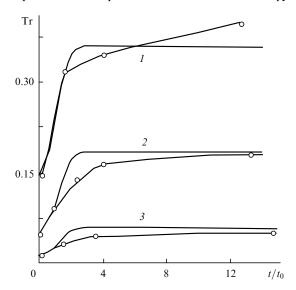


Рис.4. Зависимости прозрачности аэрозольного слоя (L=4 м) ${\rm Tr}=I(x=r_0,z=L,t)/I(r_0,0,t)$ от времени t на длине волны 0.57 мкм при начальных оптических толщинах $\tau_0=1.91$ (I), 2.95 (I) и 4.27 (I). Точки – эксперимент [I, 15].

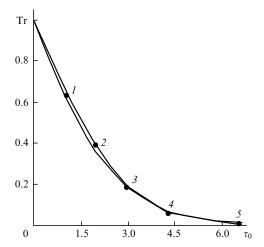


Рис.5. Прозрачность аэрозольного слоя Тг в стационарном пределе как функция начальной оптической толщины τ_0 . Экспериментальные точки I-5 [1, 15] получены при $a_{\rm m}=1.75,\,\mu=5,\,\tau_{0\,(10.6)}=0.206$ (1.02 при $\lambda=0.57$ мкм) (I), $a_{\rm m}=1.75,\,\mu=4,\,\tau_{0\,(10.6)}=0.445$ (1.91) (2), $a_{\rm m}=2.0,\,\mu=4,\,\tau_{0\,(10.6)}=0.814$ (2.95) (3), $a_{\rm m}=2.5,\,\mu=5,\,\tau_{0\,(10.6)}=1.413$ (4.27) (4) и $a_{\rm m}=3.0,\,\mu=5,\,\tau_{0\,(10.6)}=2.80$ (6.57) (5); параметры подобия $N_{\rm V0}\approx0.24,\,F=59.1\gg1$ и $N_T=0.00924,\,0.0159,\,0.0279,\,0.0562,\,$ и 0.106 (для точек I-5 соответственно).

ции прозрачности Тг в стационарном пределе при больших значениях t во всем вышеупомянутом диапазоне начальных оптических плотностей аэрозольной среды. Следует ожидать, что с увеличением параметра просветления $N_{\rm v0}$ результаты существенно улучшатся. Приведенные в табл.5 функции прозрачности на расстоянии экспоненциального радиуса пучка, а также изменения оптических толщин на длинах волн 10.6 и 0.57 мкм показывают, что в эксперименте можно было добиться значительного увеличения характеристик просветленной зоны только за счет изменения радиуса пучка и скорости движения среды.

5. Заключение

Таким образом, в настоящей работе представлены основные физические характеристики и параметры подобия нестационарного процесса просветления мелкодисперсного водного аэрозоля лазерным пучком. Ранее такая задача решалась при сильном упрощении в предположении квазипостоянной температуры $\mathrm{d}T/\mathrm{d}t\approx0$ [1, 2]. Показано, что на результат существенно влияют

Табл.5. Прозрачность среды на расстоянии экспоненциального радиуса ${\rm Tr}_{10.6}(r_0)=I(x=r_0,z=L)/I(r_0,0),{\rm Tr}_{0.57}(r_0)$ на длинах волн 10.6 и 0.57 мкм соответственно. Изменения оптической толщины аэрозольного слоя $\Delta {\rm T}_{10.6}/{\rm \tau}_0, \Delta {\rm \tau}_{0.57}/{\rm \tau}_0$ в стационарном пределе в условиях эксперимента [1, 15] при $P_0=800$ Вт, $\tau_0=1.413$ ($\tau_{0.57}=4.27$), $N_T=0.0562, N_p=2.30\times 10^{-2}, N_{v0}=0.238, 0.5, 1 (<math>r_0=0.02, 0.0289, 0.0409$ м, $V_0=0.30, 0.0994, 0.0351$ м/с).

$N_{ m v0}$	$\mathrm{Tr}_{10.6}(r_0)$	$Tr_{0.57}(r_0)$	$\Delta\tau_{10.6}/\tau_0$	$\Delta au_{0.57}/ au_0$
0.238	0.231	0.0586	0.513	0.360
0.5	0.523	0.1699	0.798	0.613
1	0.811	0.3870	0.934	0.791

параметр просветления N_{v0} , параметр теплового самовоздействия N_T , параметр оптической толщины N_β (или τ_0) и параметр относительного давления насыщенного пара N_a .

Продемонстрирована возможность существенного увеличения прозрачности просветляемой среды путем увеличения параметра $N_{\rm v0}$ при постоянной мощности прямоугольного импульса за счет изменения радиуса пучка и скорости движения среды.

Получено удовлетворительное соответствие расчетных и экспериментальных результатов.

- 1. Волковицкий О.А., Седунов Ю.С., Семенов Л.П. *Распространение интенсивного лазерного излучения в облаках* (Л.: Гидрометеоиздат, 1982).
- 2. Зуев В.Е., Землянов А.А., Копытин Ю.Д., Кузиковский А.В. *Мощное лазерное излучение в атмосферном аэрозоле* (Новосибирск: Наука, 1984).
- 3. Кучеров А.Н. *Квантовая электроника*, **22** (3), 253 (1995).
- Справочник по лазерам. Т.2. Под ред. А.М.Прохорова (М.: Сов. радио, 1978).
- 5. Борейшо А.С. Квантовая электроника, 35 (5), 393 (2005).
- Облака и облачная атмосфера. Справочник. Под ред. И.П.Мазина. А.Х. Хргиана (Л.: Гидрометеоиздат, 1989).
- 7. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами (М.: Мир, 1986).
- 8. Кучеров А.Н. *ТВТ*, **29** (1), 144 (1991).
- 9. Виноградова М.Б., Руденко О.В., Сухоруков А.П. *Теория волн* (М.: Наука, 1979).
- 10. Knight J. AIAA J., 17(5), 519 (1979).
- 11. Fleck J.A., Jr., Morris J.R., Feit M.D. Appl. Phys., 10 (2), 129 (1976).
- 12. McCormack. AIAA Paper, No. 69-354 (1969).
- 13. Пейре Р., Тэйлор Т. *Вычислительные методы в задачах механики жидкости* (Л.: Гидрометеоиздат, 1986).
- Kucherov A.N. Intern. J. Heat and Mass Transfer, 43 (15), 2793 (2000).
- Волковицкий О.А., Мамонов В.К. Квантовая электроника, 4 (5), 1113 (1977).