ПАРАМЕТРЫ ОПТИЧЕСКИХ ПОЛЕЙ

PACS 07.60.Ly; 42.25.Hz; 42.25.Kb

Оценка минимальной длины когерентности зондирующего оптического излучения в интерферометрии

П.А.Бакут, В.И.Мандросов

Дана оценка минимальной длины когерентности зондирующего оптического излучения, достаточной для формирования однородной интерференционной структуры. Эта оценка основана на анализе интерференционной структуры в распределении интенсивности поля, рассеянного шероховатыми поверхностями и точечными объектами, а также формируемого в интерферометрах. Анализ проводится для интенсивности поля, регистрируемой за время $T>10\tau_c$ (при условии, что время когерентности зондирующего излучения $\tau_c>3/\omega_0$, ω_0 — центральная частота спектра излучения). Показано, что минимальная длина когерентности L_c зондирующего излучения, при которой еще обеспечивается формирование однородной стратифицированной интерференционной структуры рассеянного поля, составляет $\delta\lambda$ (λ — его центральная длина волны). Проанализирована возможность использования этого результата для определения максимальной информативности метода оптической низкокогерентной томографии.

Ключевые слова: оптическая когерентность, контраст спекл-картины в рассеянном поле, видность и контраст интерференционных полос.

1. Введение

Явления, связанные с оптической когерентностью, начали исследоваться давно, еще со времен работы [1], в которой они впервые объяснялись интерференцией света. В частности, при рассеянии на шероховатых поверхностях эти эффекты проявляются в виде случайных пятнистых спекл-картин, возникающих в результате интерференции пучков света, рассеянных различными участками поверхности [2]. И хотя такие явления считаются детально исследованными [2-6], тем не менее в работах [7, 8]нашел отражение ряд не освещенных ранее вопросов. Прежде всего - это взаимосвязи между хроматическими характеристиками зондирующего оптического излучения, когерентными свойствами рассеянных зондируемыми шероховатыми поверхностями световых полей, проявляющимися в формировании пятнистой структуры этих полей, и геометрическими характеристиками рассеивающих поверхностей. Основную роль в таких взаимосвязях играет длина когерентности зондирующего излучения $L_{\rm c}=c/\Delta\omega$, где c – скорость света, $\Delta\omega$ – ширина спектра зондирующего излучения. В этих же работах представление о когерентности зондирующего излучения впервые было увязано с условиями формирования рассеянным полем однородных интерференционных стратифицированных структур, т. е. структур с четко выраженными и приблизительно одинаковыми экстремумами в распределении интенсивности. Именно такие структуры (пятнистые, например, в случае шероховатых

П.А.Бакут, В.И.Мандросов. Московский физико-технический институт (государственный университет), Россия, 141700 Долгопрудный, Московская обл., Институтский пер., 9; e-mail: bakut@astroinform.ru, mandrosov@mail.ru

Поступила в редакцию 4 апреля 2006 г.

объектов) обычно используются в классической, голографической и спекл-интерферометрии [9].

Было показано, что усредненное по времени $T > 10\tau_{\rm c}$ $(\tau_{\rm c} - {\rm время} \ {\rm когерентности} \ {\rm зондирующего} \ {\rm излучения}) \ {\rm pac-}$ пределение интенсивности рассеянного поля $\bar{I}(\rho)$ (ρ – радиус-вектор в плоскости приемной апертуры (рис.1)) является статистически однородным, если ширина спектра зондирующего излучения $\Delta \omega = 1/\tau_{\rm c} \leqslant 0.125 \omega_0 \pi^{-1} M^{-1/2}$, т. е. при длине когерентности $L_{\rm c} \geqslant 4\lambda M^{1/2}$. Здесь M= $(d_{\rm oh}d)^2/(2\lambda r_{\rm c})^2$ – число пятен в рассеянном поле на приемной апертуре в пределах области однородности; $d_{\rho h}$ – размер этой области; ω_0 – центральная частота спектра зондирующего излучения; λ — соответствующая длина волны; d – поперечный размер области обратного рассеяния; $r_{\rm c}$ – расстояние между приемной апертурой и поверхностью. Такое зондирующее излучение было определено как узкополосное. При рассеянии на шероховатых поверхностях оно формирует на приемной апертуре пятни-

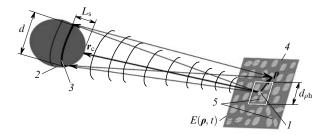


Рис.1. Рассеяние света шероховатой поверхностью:

I — точечный источник зондирующего излучения; 2 — шероховатая рассеивающая поверхность; 3 — граница области обратного рассеяния; 4 — приемная апертура; 5 — спекл-картина; $E(\rho,t)$ — рассеянное объектом поле; $L_{\rm s}$ — глубина области обратного рассеяния. При подсветке шероховатой поверхности зондирующим излучением с минимальной длиной когерентности $L_{\rm cmin}=8\lambda$ в центре приемной апертуры расположена область (выделена белым контуром), содержащая четыре пятна (спекла), в которой рассеянное поле однородно.

стую структуру, которая в области однородности имеет практически одинаковый контраст.

Очевидно, что при небольшом числе экстремумов в области однородности вне ее интерференционная структура рассеянного поля сильно неоднородна, что не может не сказаться на точности интерферометрических измерений. Поэтому оставался открытым вопрос: какова минимально возможная длина когерентности зондирующего оптического излучения, при которой формируется однородная структура рассеянного поля? Цель данной работы заключается в определении такой длины и в анализе возможности применения этого результата в оптической низкокогерентной томографии, в которой используется интерферометр Майкельсона [10].

2. Минимально возможная длина когерентности зондирующего оптического излучения в случае его рассеяния шероховатыми поверхностями

Следуя работе [6], напомним вначале, что в случае шероховатого объекта распределение интенсивности $\bar{I}(\rho)$ рассеянного им поля – случайный процесс, контраст которого $C(\rho) = [\langle \bar{I}^2(\rho) \rangle_r - \langle \bar{I}(\rho) \rangle_r^2]/\langle \bar{I}(\rho) \rangle_r^2$ целесообразно анализировать посредством измерения введенного в работах [7, 8] пространственного контраста

$$C_{\rm s}(\boldsymbol{\rho}) = \frac{\langle \bar{I}^2(\boldsymbol{\rho})\rangle_{\rm s} - \langle \bar{I}(\boldsymbol{\rho})\rangle_{\rm s}^2}{\langle \bar{I}(\boldsymbol{\rho})\rangle_{\rm s}^2},\tag{1}$$

где $\langle P(\boldsymbol{\rho})\rangle_{\rm s} = (1/d_{\rho})^2 \int P(\boldsymbol{\rho}) \mathrm{d}\boldsymbol{\rho}$, d_{ρ} – размер приемной апертуры, а скобки $\langle \rangle_r$ обозначают операцию усреднения по различным реализациям высот неровностей рассеивающей поверхности. При этом предполагается, что поверхность зондируется точечным источником, излучающим сигнал вида $E_0\,U(t)\exp{(\mathrm{i}\omega_0t)}$, где E_0 – амплитуда поля источника, U(t) – относительно медленно меняющаяся непериодическая функция модуляции, характеризуемая временем когерентности $\tau_{\rm c}=1/\Delta\omega\geqslant 3/\omega_0$. Для детерминированного процесса U(t) параметр $\tau_{\rm c}$ – длительность импульса зондирующего излучения, а для случайного процесса — временной интервал его корреляции. При $M \geqslant$ 400 выполняется условие $C(\rho) \approx C_{\rm s}(\rho)$ [8]. При M < 400контраст $C(\rho)$ можно определить путем измерений различных функций $C_{si}(\rho)$ по нескольким статистически независимым реализациям $\bar{I}_i(\rho)$ как арифметическое среднее этих функций:

$$C(\boldsymbol{\rho}) \approx C_{\mathrm{s}}(\boldsymbol{\rho}) = \frac{1}{N_{\mathrm{r}}} \sum_{i=1}^{j=N_{\mathrm{r}}} C_{\mathrm{s}j}(\boldsymbol{\rho}),$$

где $N_{\rm r}$ – число реализаций.

Выберем на приемной апертуре некоторую, например центральную, область с размером $d_{\rho h}$. Из работы [8] следует, что при условии $L_{\rm c} \geqslant 4\lambda M^{1/2}$ в ее пределах контраст $C(\rho)$ рассеянного поля практически одинаков. Это означает, что распределение интенсивности в рассеянном поле в этой области однородно, а значит, и распределение интенсивности в пятнах (спеклах) имеет в среднем приблизительно одинаковые максимумы и минимумы, что свидетельствует о проявлении когерентности зондирующего излучения. Минимальное число пятен $M_{\rm min}$ в рассеянном шероховатой поверхностью поле, при котором

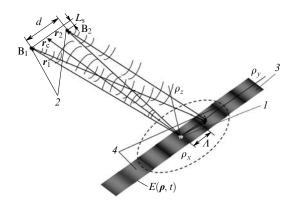


Рис.2. Рассеяние света двухточечным объектом B_1B_2 : I — точечный источник зондирующего излучения; 2 — двухточечный рассеивающий объект; 3 — приемная апертура; 4 — интерференционные полосы. При подсветке двухточечного объекта зондирующим излучением с минимальной длиной когерентности $L_{\rm cm}=8\lambda$ в центре приемной апертуры (выделен овалом) формируются четыре практически одинаковых максимума интерференционной картины.

усредненная интенсивность $\bar{I}(\rho)$ имеет стратифицированную пространственную структуру, позволяющую уверенно судить, является распределение $\bar{I}(\rho)$ однородным или нет, равно четырем ($M_{\min} = 4$). Поэтому минимальная длина когерентности $L_{\rm c\,min}$ зондирующего излучения, при которой еще может сформироваться область с однородным распределением $\bar{I}(\pmb{\rho})$, равна $4\lambda M_{\min}^{1/2}=8\lambda$. Отсюда следует, что размер этой области $d_{\rho h}\approx 4\rho_{\rm c}=4(\lambda r_{\rm c})d$, где $\rho_{\rm c} = (\lambda r_{\rm c})/d$ – радиус корреляции пятнистой структуры рассеянного поля [6]. На рис. 1 она выделена белым контуром. В пределах этой области однородное распределение $ar{I}(oldsymbol{
ho})$ формируется при $L_{
m c}\geqslant 4\lambda M_{
m min}^{1/2}=8\lambda$. Следовательно, $L_{\rm c\,min}=8\lambda$ – это минимальная длина когерентности, при которой еще может сформироваться область с интерференционной стратифицированной структурой с однородным распределением $\bar{I}(\rho)$. Вне этой области распределение $I(\rho)$ неоднородно, поэтому зондирующее шероховатую поверхность излучение целесообразно считать когерентным при $L_{\rm c} \geqslant L_{\rm c\,min} = 8\lambda$ и некогерентным при $L_{\rm c} < L_{\rm cmin} = 8\lambda$.

Выше определялась минимально возможная длина когерентности зондирующего излучения в случае его рассеяния шероховатыми поверхностями. Представляется интересным определить эту длину в случае рассеяния зондирующего излучения на других объектах. Наиболее простым из них является двухточечный объект $B_1B_2^*$ (рис.2). Ниже будет показано, что структура рассеянного им поля во многом аналогична структуре поля, рассеянного шероховатыми поверхностями, и что минимально возможная длина когерентности зондирующего излучения в этом случае также равна 8λ .

3. Минимально возможная длина когерентности зондирующего оптического излучения в случае его рассеяния двухточечным объектом

Проанализируем структуру поля, рассеянного двухточечным объектом B_1B_2 , который подсвечивается то-

^{*} Под двухточечным объектом B_1B_2 здесь подразумевается объект, состоящий из двух небольших (точечных) рассеивающих объектов B_1 и B_2 , интенсивности обратного рассеяния которых практически постоянны в пределах приемной апертуры.

чечным источником, излучающим сигнал вида $E_0U(t) \times \exp(i\omega_0 t)$ (рис.2). Рассеянное объектом поле имеет вид

$$E(\boldsymbol{\rho},t) = E_1(\boldsymbol{\rho},t) + E_2(\boldsymbol{\rho},t),$$

где во френелевском приближении

$$E_{j}(\boldsymbol{\rho},t) = \frac{-\mathrm{i}k_{j}S_{j}E_{0}}{\lambda r_{\mathrm{c}}} \ U\left(t - \frac{\alpha_{j}}{c}\right) \exp\left[\mathrm{i}\omega_{0}\left(t - \frac{\alpha_{j}}{c}\right)\right];$$

 $lpha_j = 2|{m r}_j| + {m \rho}\cdot{m r}_j/r_{\rm c}; k_1$ и k_2 – коэффициенты отражения по амплитуде от точечных объектов ${m B}_1$ и ${m B}_2$; S_1 и S_2 – площади их эффективных поверхностей рассеяния; ${m r}_1$ и ${m r}_2$ – радиус-векторы точечных объектов ${m B}_1$ и ${m B}_2$. Усредненное по времени $T>10\tau_{\rm c}$ распределение интенсивности на приемной апертуре имеет вид интерференционных полос:

$$\bar{I}(\boldsymbol{\rho}) = \langle I(\boldsymbol{\rho}, t) \rangle_t = \frac{1}{T} \int_{t_0}^{t_0 + T} I(\boldsymbol{\rho}, t) dt$$

$$\sim 1 + \frac{K_1 K_2}{K_1^2 + K_2^2} |G(\alpha_1, \alpha_2)| \cos \left[\varphi + \arg G + \frac{2\pi \rho_y}{\Lambda} \right], \quad (2)$$

гле

$$I(\boldsymbol{\rho},t) = |E(\boldsymbol{\rho},t)|^2;$$

$$G(\alpha_1, \alpha_2) = \frac{1}{T} \int_{t_0}^{t_0 + T} U\left(t - \frac{\alpha_1}{c}\right) U^*\left(t - \frac{\alpha_2}{c}\right) dt;$$

$$K_j = \frac{k_j S_j E_0}{\lambda r_c}; \quad \varphi = \frac{4\pi (r_1 - r_2)}{\lambda};$$

 $\Lambda = r_{\rm c} \lambda/d$ – период интерференционных полос. Нетрудно показать, что

$$G(\alpha_1, \alpha_2) = \gamma_{12}(\alpha_1, \alpha_2) = \frac{E_1 E_2^*}{\overline{I}},$$

где γ_{12} — комплексная степень взаимной когерентности полей E_1 и E_2 [4, 5]. Полагая, что при $T>10\tau_{\rm c}$ функция

$$G(\alpha_1, \alpha_2) = G(w),$$

гле

$$w(\rho_y) = -\frac{(\alpha_1 - \alpha_2)^2}{L_c^2} = -\left[\frac{2(r_1 - r_2) + d\rho_y/r_c}{L_c}\right]^2,$$

 $L_{\rm c}=c au_{\rm c}$ – длина когерентности излучения точечного источника [8], и учитывая соотношение (2), получаем, что видность интерференционных полос

$$V[w(\rho_y)] = \frac{\bar{I}_{\max}(\rho_y) - \bar{I}_{\min}(\rho_y)}{\bar{I}_{\max}(\rho_y) + \bar{I}_{\min}(\rho_y)} = \frac{2K_1K_2}{K_1^2 + K_2^2} G(w),$$
(3)

где $\bar{I}_{\max}(\rho_y)$ и $\bar{I}_{\min}(\rho_y)$ – максимальное и минимальное значения $\bar{I}(\rho_y)$. Если, например, $G(w)=\exp{(-w^2)}$, то $V(w)=[2K_1K_2/(K_1^2+K_2^2)]\exp{(-w^2)}$. В дальнейшем, не умаляя общности, будем полагать, что $K_1=K_2$. Тогда $V(w)=\exp{(-w^2)}$.

Вернемся к соотношению (1). Оно позволяет единым образом проводить описание интерференционных полос, формируемых при рассеянии на двухточечных объектах, и пятнистых структур, формируемых при рассеянии на шероховатых поверхностях. С учетом соотношений (1) и (3) нетрудно показать, что для распределения $\bar{I}(\rho)$ пространственный контраст интерференционных полос $C_{\rm s}(\rho_{\rm v}) = V^2(\rho_{\rm v})$. Максимальных значений он достигает в центре приемной апертуры ($\rho_v = 0$). Например, при $L_c >$ $20L_{\rm s}$ контраст $C_{\rm s}(\rho_{\rm s}) \approx \exp\{-2[d\rho_{\rm v}/(L_{\rm c}r_{\rm c})]^2\}$ и максимальное $C_{\rm s}\approx 1$. В интервале $|\rho_y|\leqslant d_{
ho h}/2$, где $d_{
ho h}=M_{\rm f}/\Lambda=r_{
m c}L_{
m c}(4d)^{-1}$ и $M_{
m f}=d_{
ho h}/\Lambda$, контраст $C_{
m s}\approx \exp[-8(L_{
m s}/L_{
m c})^2]$ и практически постоянен (здесь $M_{\rm f}$ – число интерференционных полос в интервале $|\rho_{\nu}| \leq d_{\rho h}/2$). Это означает, что при условии $|\rho_v| \leqslant d_{\rho h}/2$ интерференционная картина является однородной и стратифицированной. В частности, при $L_{\rm c} \geqslant 20 L_{\rm s}$ в центре приемной апертуры $C_{\rm s} = 1$ и $e^{-0.12}$ – на ее краю. В этом случае структура интерференционных полос аналогична пятнистой структуре поля, рассеянного шероховатой поверхностью, при условии, что $L_{\rm c}$ существенно превышает глубину $L_{\rm s}$ области обратного рассеяния поверхности [8]. Условие $|\rho_{\nu}| \leq d_{\rho h}/2$ означает также, что внутри области размером $d_{\rho h}$ экстремумы (максимумы и минимумы) в распределении $\bar{I}(\rho_{v})$ приблизительно равны.

Условие $|\rho_y|\leqslant d_{\rho \rm h}/2$ можно переписать в виде $\Delta\omega\leqslant 0.5\omega_0 M_{\rm f}^{-1}$ и в виде $L_{\rm c}\geqslant 2M_{\rm f}\lambda$. Неравенство $\Delta\omega\leqslant 0.5\omega_0\times M_{\rm f}^{-1}$ напоминает упомянутое выше условие узкополосности ($\Delta\omega\leqslant 0.125\omega_0\pi^{-1}M^{-1/2}$) излучения, зондирующего шероховатую поверхность. При $L_{\rm c}<2M_{\rm f}\lambda$ контраст $C_{\rm s}$, а также максимумы и минимумы $\bar{I}(\rho_y)$ начинают заметно зависеть от ρ_y и с ростом ρ_y быстро убывают по мере приближения к периферии приемной апертуры. Следовательно, при $|\rho_y|>d_{\rho \rm h}$ интерференционная картина ближе к периферии приемной апертуры становится сильно неоднородной.

С уменьшением длины когерентности $L_{\rm c}$ область, в пределах которой распределение $\bar{I}(\rho_y)$ однородно, сужается к центру приемной апертуры. Минимально возможная длина когерентности $L_{\rm cmin}$ и размер этой области $d_{\rm ph}$ (на рис.2 она выделена овалом) определяются минимальным числом полос в интерференционной картине, таким, что распределение $\bar{I}(\rho)$ имеет стратифицированную структуру и по ней еще можно судить, является эта структура однородной или нет. Это число $(M_{\rm f})$ равно четырём (см. рис.2), откуда следует, что $L_{\rm cmin}=8\lambda$ и $d_{\rm ph}=4\Lambda$. При любой длине когерентности зондирующего излучения, не меньшей, чем $L_{\rm cm}$, в центре приемной апертуры всегда формируется область размером $d_{\rm ph}=4\Lambda$, в пределах которой распределение $\bar{I}(\rho)$ однородно.

Интересно отметить, что хотя контраст $C_{\rm s}$ интерференционных полос в середине этой области достигает максимального значения, само оно при $L_{\rm s}\gg L_{\rm c}$ может быть очень малым. В данном случае картина рассеянного поля не отличается от той, которая формируется в естественном свете даже при достаточно высокой когерентности, когда, например, $L_{\rm c}=10$ см и $L_{\rm s}=50$ см. Аналогичная картина рассеянного поля имеет место и в случае шероховатой рассеивающей поверхности при глубине области обратного рассеяния $L_{\rm s}\gg L_{\rm c}$ [8] с тем отличием, что с уменьшением отношения $L_{\rm c}/L_{\rm s}$ контраст пятнистой структуры этого поля убывает существенно медленнее, чем контраст полос.

4. Минимально возможная длина когерентности зондирующего оптического излучения в интерферометрах

Интерферометры широко используются для высокоточных измерений параметров исследуемого объекта. Эти измерения проводятся с помощью анализа распределения $\bar{I}(\rho)$ в интерференционных полосах, формируемых в результате сложения волн, распространяющихся по объектному и опорному плечам интерферометра [9]. Пусть минимальное число полос в интерференционной картине, при котором эти полосы имеют стратифицированную структуру, позволяющую судить, является она однородной или нет, равно четырем. Тогда, как показывает анализ (см. разд.3), минимально возможная длина когерентности $L_{\rm cmin}$ зондирующего излучения, используемого в интерферометре, также равна 8λ .

Зная эту длину, можно оценить, например, максимальную информативность метода оптической низкокогерентной томографии [10]. Эта информативность определяется максимальным числом разрешаемых по глубине элементов объемной среды в получаемой с помощью данного метода картине распределения оптических микронеоднородностей в среде. Метод основан на фокусировке зондирующего излучения в исследуемую среду и анализе интерференционных полос в поле, которое формируется путем сложения обратнорассеянных волн, распространяющихся по объектному плечу интерферометра Майкельсона, и опорной волны, распространяющейся по его опорному плечу.

Поскольку продольный размер области фокусировки $d_{\rm len}=f^2\lambda/d_{\rm f}^2$, где $d_{\rm f}$ – размер апертуры фокусирующей системы, f – ее фокусное расстояние, а разрешение по глубине равно длине когерентности зондирующего излучения $L_{\rm c\,min}$ [10], то максимальное число разрешаемых по глубине элементов среды, попадающих в область фоку-

сировки, $N_{\rm max}=d_{\rm len}/L_{\rm c\,min}=f^2/(8d_{\rm f}^2)$. Например, если $d_{\rm f}/f=0.125$, то $N_{\rm max}=8$.

5. Выводы

Проведенный в данной работе анализ усредненного по времени распределения интенсивности $\bar{I}(\rho)$ в полях, которые формируются путем смешения волн, пришедших из опорного и объектного плеч интерферометров, и в полях, рассеянных шероховатыми поверхностями и двухточечными объектами, позволяет сделать следующий вывод. В зависимости от длины когерентности $L_{\rm c}$ зондирующего излучения эти поля ведут себя аналогичным образом, вследствие чего они способны формировать однородные интерференционные стратифицированные структуры при $L_{\rm c}$ не менее 8λ . Поэтому минимально возможная длина когерентности $L_{\rm cmin}$ используемого в интерферометрии зондирующего излучения, начиная с которой проявляется его когерентность, т. е. способность формировать такие структуры, равна 8λ .

- 1. Young T. Phil. Tranc. Roy Soc., 12, 387 (1802).
- 2. Гудмен Д. Статистическая оптика (М.: Мир, 1988).
- Ахманов С.А., Дьяков Ю.Е., Чиркин А.С. Введение в статистическую радиофизику и оптику (М.: Наука, 1981).
- 4. Лоудон Р. Квантовая теория света (М.: Мир, 1976).
- Мандель Л., Вольф Э. Оптическая когерентность и квантовая оптика (М.: Физматлит, 2000).
- 6. Бакут П.А., Мандросов В.И., Матвеев И.Н., Устинов Н.Д. Теория когерентных изображений (М.: Радио и связь, 1987).
- Mandrosov V. Coherent Fields and Images in Remote Sensing (Bellingham: SPIE press, 2004, Vol. PM130).
- Бакут П.А., Мандросов В.И. Квантовая электроника, 36, 239 (2006).
- Джоунс Р., Уайкс К. Голографическая и спекл- интерферометрия (М.: Мир, 1986).
- Кириллин М.Ю., Меглинский И.В., Приезжев А.В. Квантовая электроника, 36, 247 (2006).