PACS 42.62.Fi; 78.47. + p; 74.25.Gz; 78.20.Bh

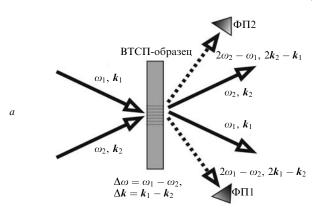
Асимметрия стоксовой и антистоксовой компонент нелинейного отклика высокотемпературных сверхпроводников в методе пикосекундной бигармонической накачки

Ю.В.Бобырев, В.М.Петникова, Г.А.Роянова, К.В.Руденко, В.В.Шувалов

В рамках предположения о нелинейном отклике высокотемпературных сверхпроводников (ВТСП), обусловленном межсзонными переходами в спектре состояний с метастабильной энергетической щелью, показано, что стоксова и антистоксова компоненты отклика ВТСП на пикосекундную бигармоническую накачку асимметричны, и при частотных расстройках импульсов возбуждения свыше 100 см⁻¹ эффективность самодифракции в соответствующих этим двум компонентам направлениях различна.

Ключевые слова: нелинейный отклик высокотемпературных сверхпроводников, пикосекундная бигармоническая накачка, эффективность стоксовой и антистоксовой компонент самодифракции.

1. Введение


В работах [1-5] спектрально-временные и температурные особенности нелинейного отклика высокотемпературных сверхпроводников (ВТСП), наблюдавшиеся при разных уровнях возбуждения разными методами фемто- и пикосекундной спектроскопии [6-17], были интерпретированы в рамках модели, основанной на двух допущениях. Предполагалось, что энергетическая щель в спектре состояний ВТСП является метастабильной [18] и что электронная часть нелинейного отклика обусловлена межзонными переходами [12, 19-26]. В [4, 5], в частности, было показано, что характерный провал на зависимости эффективности η самодифракции (генерация поля на частоте $2\omega_1-\omega_2$) от расстройки $\Delta\omega=\omega_1-\omega_2$ частот $\omega_{1,2}$ компонент пикосекундной бигармонической накачки (БН) (рис.1,*a*), о появлении которого вблизи точки $T_0 \simeq T_c$ (переход в сверхпроводящее состояние) сообщалось в [7, 9, 10], позволяет определить зависимость ширины щели Δ от T_0 – начальной температуры BTCП-образца.

В отсутствие вырождения по частотам ($\Delta\omega\neq0$, метод БН) построенная в [4, 5] модель допускает появление в нелинейном отклике определенной асимметрии, т. е. разных зависимостей $\eta(\Delta\omega,T_0)$ для двух разных направлений ($2k_{1,2}-k_{2,1}$) и частот ($2\omega_{1,2}-\omega_{2,1}$) сигнала самодифракции (рис.1,a), где $k_{1,2}$ – волновые векторы компонент БН. Это связано с тем, что в электронной части зависимости $\Delta\varepsilon(\omega)$ имеются спектральные особенности [6, 12], обусловленные существованием однофотонных межзонных резонансов [1–5]. Здесь $\Delta\varepsilon(\omega)=\varepsilon(\omega;E_{\rm e}^{\rm F},T_{\rm e})-\varepsilon(\omega;E_{\rm e}^{\rm F},T_{\rm o})$ – изменение диэлектрической проницаемости образца ε на частоте ω , вызванное отклонением по-

Ю.В.Бобырев, В.М.Петникова, Г.А.Роянова, К.В.Руденко, В.В.Шувалов. Международный учебно-научный лазерный центр МГУ им. М.В.Ломоносова, Россия, 119992 Москва, Воробьевы горы; e-mail: vsh@vsh.phys.msu.ru

Поступила в редакцию 5 июля 2006 г.

ложения уровня Ферми $E_{\rm e}^{\rm F}$ и электронной температуры $T_{\rm e}$ от своих равновесных значений $E_0^{\rm F}$ и T_0 соответственно. Качественно это утверждение иллюстрирует рис. $1, \delta$, на котором показана асимметрия положения частот $\omega_{1,2}$

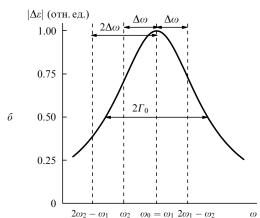


Рис.1. Геометрия взаимодействия компонент накачки на частотах $\omega_{1,2}$ с волновыми векторами $\pmb{k}_{1,2}$ – сигнал самодифракции на частотах $2\omega_{1,2}-\omega_{2,1}$, детектируемый фотоприемниками $\Phi\Pi1,2$ в направлениях $2\pmb{k}_{1,2}-\pmb{k}_{2,1}$ (a) и изменение положения частот $\omega_{1,2}$ и $2\omega_{1,2}-\omega_{2,1}$ относительно однофотонной резонансной особенности в $|\Delta\varepsilon|$ шириной Γ_0 при введении частотной расстройки $\Delta\omega=\omega_1-\omega_2$ (δ).

и $2\omega_{1,2}-\omega_{2,1}$ взаимодействующих волн на оси ω (при $\Delta\omega\neq 0$) относительно точки $\omega_0=\omega_1$ однофотонного резонанса шириной Γ_0 . В дальнейшем в соответствии с установившейся терминологией компоненты нелинейного отклика на частотах $2\omega_2-\omega_1$ и $2\omega_1-\omega_2$ мы будем называть стоксовой и антистоксовой (см. рис. $1,\delta$). Отметим, что асимметрия этих компонент в методе пикосекундной БН уже наблюдалась ранее в экспериментах с тонкими пленками узкозонных полупроводников \Pr Ba₂Cu₃O_{7- δ} [27].

Ниже, основываясь на приведенной в [3, 5] расчетной кинетике $E_{\rm e}^{\rm F}(t)$ и $T_{\rm e}(t)$ и на модели нелинейного отклика ВТСП в методе БН, описанной в [4, 5], будет показано, что при совмещении импульсов накачки во времени t указанная асимметрия действительно существует, но лишь в области больших частотных расстроек ($\Delta\omega > 100~{\rm cm}^{-1}$).

2. Модель нелинейного отклика

Описание процесса самодифракции проводилось в рамках модели когерентного четырехфотонного отклика, развитой в [4, 5]. При этом считалось, что полная кубическая нелинейная восприимчивость ВТСП-образца включает в себя несколько составляющих [28]:

$$\chi = \chi_{\rm nr} + \chi_{\rm r} + \chi_{\rm s} + \chi_{\rm 0}. \tag{1}$$

Здесь $\chi_{\rm nr}$ и $\chi_{\rm r}$ — нерезонансная и резонансная (см. [4, 5]) части электронного нелинейного отклика, обусловленные прямыми и непрямыми межзонными переходами; $\chi_{\rm s}$ — составляющая, связанная с процессами возбуждения акустических фононов; χ_0 — константа, обусловленная погрешностями используемой модели. Расчет вкладов всех перечисленных выше составляющих в χ для антистоксовой компоненты отклика на частоте $2\omega_1$ — ω_2 полностью повторял процедуры, подробно описанные в [5], и поэтому на их деталях мы здесь останавливаться не будем.

Расчет χ_{nr} для стоксовой компоненты на частоте $2\omega_2-\omega_1$ проводился аналогичным образом, однако при этом в резонансных знаменателях P_0 и P_{\pm} (формулы (58), (59) из работы [5]) совершалась замена $\omega_1 \to \omega_2 = \omega_1 +$ $\Delta\omega$. Частота $\Delta\omega$ комбинационного резонанса в знаменателях K_{\pm} (формула (60) из работы [5]) при этом, естественно, не менялась. Частоты однофотонных резонансов в P_0 и P_{\pm} находились интерполяцией тех же [29] данных о зонной структуре (энергии $E_i(\mathbf{k}_e)$ электрона в состоянии (i, k_e) , где i нумерует зоны электронных состояний, k_e – квазиимпульс) для La₂CuO₄ при комнатной температуре с учетом требований симметрии и периодичности [30]. Охлаждение ВТСП-образца моделировалось той же заменой, $E_i(\mathbf{k}_e) \to E_0^{\mathrm{F}} \pm \{ [E_i(\mathbf{k}_e) - E_0^{\mathrm{F}}]^2 + \Delta^2(T_0) \}^{1/2}$ при $E_i(\mathbf{k}_e) > E_0^F$ и $E_i(\mathbf{k}_e) < E_0^F$ соответственно, описывающей перераспределение плотности состояний вблизи поверхности Ферми при фазовом переходе. Ширина энер-

$$\Delta(T_0) = \begin{cases} 3.12k_{\rm B}T_{\rm c}(1 - T_0/T_{\rm c})^{1/2} & \text{при } T_0 \leqslant T_{\rm c}, \\ 0 & \text{при } T_0 > T_{\rm c} \end{cases}$$
(2)

считалась константой, зависящей только от T_0 и $T_{\rm c}$ («замороженная» [18] щель s-симметрии в приближении слабой связи теории БКШ [31]). Здесь $k_{\rm B}$ — постоянная Больцмана. Учитывались зоны, попадающие в диапазон $|E_i(k_{\rm e})\pm E_0^{\rm F}|\leqslant 2.5$ эВ. Как и в [4, 5], величина $\chi_{\rm r}$ рассчитывалась в рамках модели эффективной двухуровневой

системы, а χ_s – из традиционного соотношения для нелинейности мандельштам-бриллюэновского типа [28], свернутого со спектрами компонент БН шириной $\delta\omega = 1.5 \, \text{см}^{-1}$ [8, 9] с учетом малости скорости затухания звука.

При численном моделировании считалось, что в точке $\Delta\omega=0$ обе компоненты БН имеют длины волн $\lambda_0=$ 625, 630 и 650 нм. Как и в [3, 5], моделировалась ситуация с совмещенными во времени моментами прихода импульсов БН длительностью $\tau_p = 20$ пс (использовались средние по τ_p значения E_e^F и T_e) в пленку $YBa_2Cu_3O_{7-\delta}$ $(T_{\rm c}=91~{
m K})$ на подложке из SrTiO₃, поглощающей 30 % (толщина пленки ~ 200 нм) полной энергии 4×10^{-7} Дж импульсов накачки, сфокусированных в пятно диаметром 150 мкм [7, 9, 10]. Значения всех свободных параметров модели соответствовали приведенным в работе [5], т. е. относительные амплитуды составляющих χ_r , χ_s и χ_0 были определены так, чтобы при $\lambda_0 = 625$ нм зависимость $\eta(\Delta\omega,T_0)\propto |\chi(\Delta\omega,T_0)|^2$ для антистоксовой компоненты нелинейного отклика соответствовала данным эксперимента [9], т. е. имела провалы в точках $\Delta \omega = 10$ и 63 см $^{-1}$ при $T_0 = 90$ и 80 К. Скорости релаксации поляризации при расчете χ_{nr} и χ_{r} имели те же, что и в [4, 5], значения $\Gamma=150$ и 50 см $^{-1}$, что обеспечивало согласие расчетной ширины спектральных особенностей $\Delta \varepsilon(\omega)$ и данных реальных экспериментов [6, 12].

3. Результаты моделирования

Характер изменения действительной (Re) и мнимой (Im) частей χ_{nr} на плоскости ($\Delta \omega$, T_0) для антистоксовой и стоксовой компонент нелинейного отклика и точек совмещения частот компонент БН $\lambda_0 = 625, 630$ и 650 нм показан на рис.2 и 3. Легко убедиться, что в диапазоне частотных расстроек $\Delta\omega < 100~{
m cm}^{-1}$ при всех T_0 и λ_0 зависимости $\chi_{nr}(\Delta\omega)$ для компонент отклика на частотах $2\omega_2$ – ω_1 и $2\omega_1-\omega_2$ идентичны. И лишь при $\Delta\omega>100~{
m cm}^{-1}$ появляется асимметрия, особенно заметная в мнимой части $\chi_{\rm nr}$ (рис.3), которая заметно растет с увеличением $\Delta\omega$. На первый взгляд, с учетом использованного в рамках расчета $\chi_{\rm nr}$ значения $\Gamma=150~{\rm cm}^{-1}$ этот результат кажется достаточно очевидным. Однако это не совсем так, поскольку речь здесь идет об интегральных выражениях, описывающих $\chi_{\rm nr}(\Delta\omega)$, в которых даже слабая асимметрия множества интерферирующих слагаемых может привести к резкой асимметрии результата интерференции.

Зависимости $\chi_{\rm r}(\Delta\omega,T_0)$ и $\chi_{\rm s}(\Delta\omega,T_0)$ здесь не приведены, т. к. они не изменяются при вариации λ_0 , симметричны относительно перестановки $\omega_1 \leftrightarrow \omega_2$ и просто повторяют зависимости, приведенные в [5]. В принципе, ничего удивительного в этом нет, поскольку использованные при описании вкладов этих составляющих нелинейного отклика модели симметричны уже по характеру своего построения.

На рис.4 показан расчетный характер трансформации зависимости модуля полного нелинейного отклика $|\chi(\Delta\omega,T_0)|$ для антистоксовой и стоксовой компонент и тех же точек совмещения частот $\lambda_0=625,\,630$ и 650 нм. Естественно, что в диапазоне частотных расстроек $\Delta\omega<100~{\rm cm}^{-1}$ при всех T_0 и λ_0 зависимости $|\chi(\Delta\omega)|$ для компонент отклика на частотах $2\omega_2-\omega_1$ и $2\omega_1-\omega_2$ также оказываются идентичными. И лишь при $\Delta\omega>100~{\rm cm}^{-1}$ в них появляется асимметрия, растущая с ростом $\Delta\omega$ и обусловленная асимметричностью вклада $\chi_{\rm nr}$ в полный нелинейный отклик.

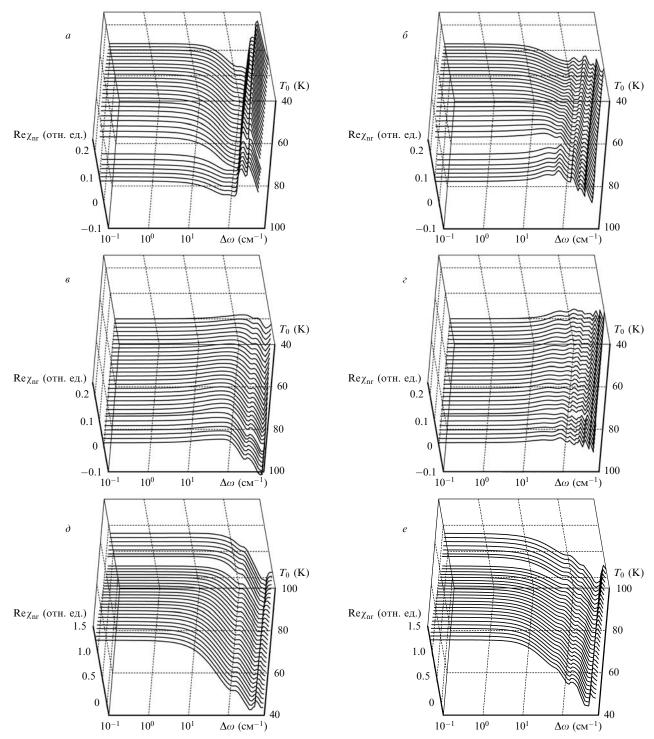


Рис.2. Изменение действительной части $\text{Re}\chi_{\text{nr}}$ нерезонансной составляющей полной нелинейной восприимчивости образца на частотах $2\omega_1-\omega_2$ (a,s,δ) и $2\omega_2-\omega_1$ (δ,ε,e) на плоскости $(\Delta\omega,T_0)$. Точка $\Delta\omega=0$ соответствует $\lambda_0=625$ (a,δ) , 630 (s,ε) и 650 нм (δ,e) .

Отметим, что этот результат отличается от данных эксперимента [27], согласно которым уже при сравнительно малых ($\Delta\omega\sim10~{\rm cm^{-1}}$) частотных расстройках компонент БН зависимости $\eta(\Delta\omega)$ для антистоксовой и стоксовой компонент нелинейного отклика пленок узкозонных полупроводников ${\rm PrBa_2Cu_3O_{7-\delta}}$ заметно отличаются друг от друга.

4. Заключение

Итак, в рамках описанной в [4, 5] модели нелинейного отклика ВТСП для метода пикосекундной бигармониче-

ской накачки с учетом рассчитанных в [3, 5] средних (по длительности совмещенных импульсов накачки) изменений положения уровня Ферми $E_{\rm c}^{\rm F}$ и электронной температуры $T_{\rm e}$ нами показано, что стоксова и антистоксова компоненты нелинейного отклика ВТСП асимметричны. Это означает, что при частотных расстройках компонент БН $\Delta\omega=\omega_1-\omega_2>100\,$ см $^{-1}\,$ генерация сигнала самодифракции в направлениях $2{\bf k}_{1,2}-{\bf k}_{2,1}\,$ на частотах $2\omega_{1,2}-\omega_{2,1}\,$ идет с разной эффективностью η за счет наличия однофотонных межзонных резонансов. Тем не менее благодаря симметрии нелинейного отклика ВТСП в области малых частотных расстроек ($\Delta\omega<100\,$ см $^{-1}$) по

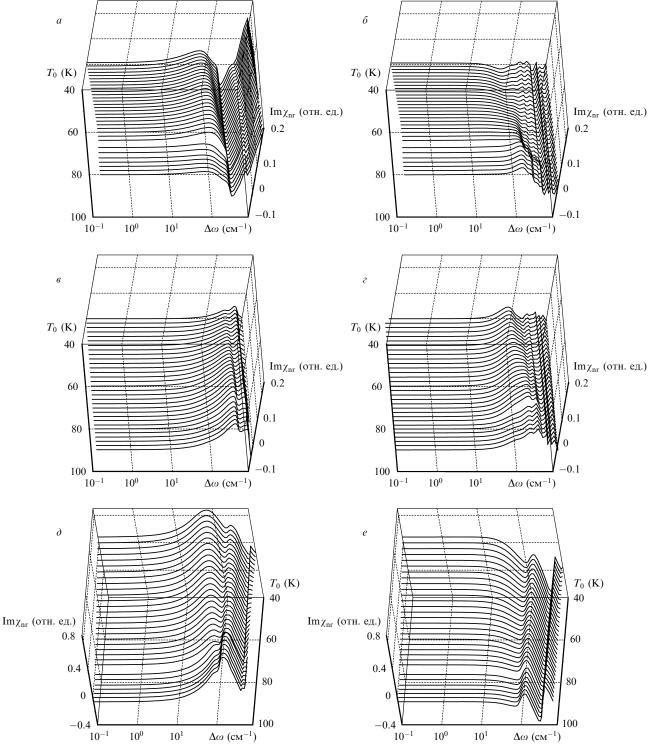


Рис.3. Изменение мнимой части $\text{Im}\chi_{\text{nr}}$ нерезонансной составляющей полной нелинейной восприимчивости образца на частотах $2\omega_1-\omega_2$ (a, θ, ∂) и $2\omega_2-\omega_1$ (δ, ε, e) на плоскости $(\Delta\omega, T_0)$. Точка $\Delta\omega=0$ соответствует $\lambda_0=625$ (a, δ) , 630 (e, ε) и 650 нм (∂, e) .

экспериментально измеренной зависимости $\eta(\Delta\omega,T_0)$ как стоксовой, так и антистоксовой компонент сохраняется возможность определить зависимость ширины энергетической щели Δ в спектре состояний ВТСП-образца от его начальной температуры T_0 по наличию характерного двухфотонного резонанса.

- 1. Бобырев Ю.В. и др. Квантовая электроника, 35, 720 (2005).
- Бобырев Ю.В. и др. Квантовая электроника, 35, 729 (2005).
- 3. Бобырев Ю.В. и др. Квантовая электроника, 35, 1039 (2005).

- 4. Бобырев Ю.В. и др. *Квантовая электроника*, **36**, 408 (2006).
- Бобырев Ю.В. и др. Квантовая электроника, 36, 895 (2006).
- 6. Chekalin S.V. et al. Phys. Rev. Lett., 67, 3860 (1991).
- 7. Bagratashvili V. et al. Phys. Lett. A, 164, 99 (1992).
- 8. Bonn D.A. et al. Phys. Rev. B, 47, 11314 (1993).
- 9. Zherikhin A.N. et al. Phys. Lett. A, 179, 145 (1993).
- 10. Therilchin A.N. et al. Physica C 221 211 (1004)
- 10. Zherikhin A.N. et al. *Physica C*, **221**, 311 (1994).
- Quinlan S.M. et al. *Phys. Rev. B*, **49**, 1470 (1994).
 Farztdinov V.M. et al. *Brazilian J. Phys.*, **26**, 482 (1996).
- 13. Smith D.C. et al. J. Low Temperature Phys., 117, 1059 (1999).
- 14. Demsar J. et al. Phys. Rev. B, 63, 054519 (2001).

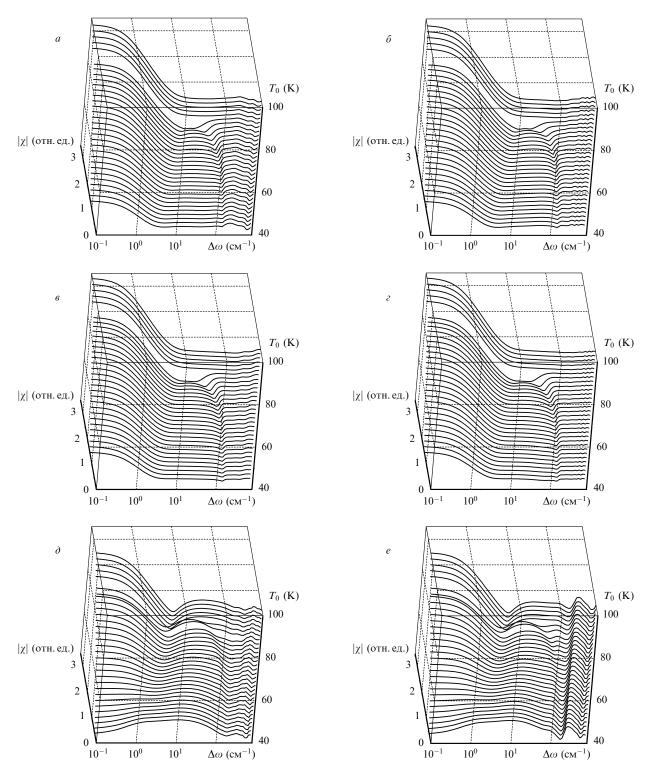


Рис.4. Изменение модуля $|\chi|$ полной нелинейной восприимчивости образца на частотах $2\omega_1-\omega_2$ (a,s,∂) и $2\omega_2-\omega_1$ (δ,ε,e) на плоскости $(\Delta\omega,T_0)$. Точка $\Delta\omega=0$ соответствует $\lambda_0=625$ (a,δ) , 630 (s,ε) и 650 нм (∂,e) .

- 15. Segre G.P. et al. Phys. Rev. Lett., 88, 137001 (2002).
- 16. Schneider M.L. et al. Europhys. Lett., 60, 460 (2002).
- 17. Schneider M.L. et al. Eur. Phys. J. B, 36, 327 (2003).
- 18. Воронов А.В. ЖЭТФ, **12**0, 1256 (2001).
- 19. Dobryakov A.L. et al. *Phys. Scripta*, **60**, 572 (1999).
- 20. Farztdinov V.M. et. al. Phys. Scripta, 60, 579 (1999).
- 21. Lozovik Yu.E. et. al. Laser Phys., 9, 557 (1999).
- 22. Петникова В.М. и др. Квантовая электроника, **28**, 69 (1999).
- 23. Kuznetsova L.P. et al. J. o Raman Spectroscopy, 31, 755 (2000).
- 24. Бобырев Ю.В. и др. Квантовая электроника, 31, 1067 (2001).
- 25. Devos A., Lerouge C. Phys. Rev. Lett., 86, 2669 (2001).
- 26. Бобырев Ю.В. Квантовая электроника, 32, 789 (2002).
- 27. Жерихин А.Н. и др. Квантовая электроника, 21, 574 (1994).
- 28. Schubert M., Wilhelmi B. *Nonlinear Optics and Quantum Electronics* (New York: Wiley, 1986).
- 29. Perry J.K. et al. *Phys. Rev. B*, **63**, 144501 (2001).
- 30. Kornienko A.G. et al. *J. Appl. Phys.*, **80**, 2396 (1996); Петникова В.М. и др. *Квантовая электроника*, **28**, 69 (1999).
- 31. Лифшиц Е.М., Питаевский Л.П. Статистическая физика. Ч.2. Теория конденсированного состояния (М.: Наука, 1978).