ПРИМЕНЕНИЯ ЛАЗЕРОВ

PACS 42.55.Lt; 42.62.Cf; 43.28.Mw

Лазерный воздушно-реактивный двигатель: воздействие ударных волн при низких частотах следования лазерных импульсов

В.В.Аполлонов, В.Н.Тищенко

Проведены оценки ударного и термического воздействия лазерных искр на рефлектор лазерного двигателя, в котором тяга создается импульсно-периодическим излучением. Показано, что при низкой частоте следования импульсов термический контакт плазмы с рефлектором и сильные динамические резонансные нагрузки неизбежны. Эти трудности преодолимы при использовании метода, основанного на объединении ударных волн при высокой частоте следования импульсов.

Ключевые слова: лазерный воздушно-реактивный двигатель, импульсно-периодическое лазерное излучение, лазерные искры, ударные волны.

В лазерном воздушно-реактивном двигателе (ЛВРД) используется импульсно-периодическое (ИП) лазерное излучение, рабочим телом служит атмосферный воздух [1-4]. В хвостовой части ракеты расположен фокусирующий излучение рефлектор. Тяга формируется в результате воздействия на рефлектор периодических ударных волн (УВ), создаваемых лазерными искрами. ЛВРД привлекателен своей простотой и экономичностью. В работах [3, 4] отмечалось, что ЛВРД сможет найти применение при запуске космических аппаратов, если будут решены следующие задачи: созданы ИП лазеры с энергией импульсов ~ 100 кДж при частоте следования сотни герц и исключено разрушение оптического рефлектора под действием УВ и лазерной плазмы. Эти трудности преодолимы при использовании ИП излучения с высокой частотой следования импульсов ($f \sim 100 \text{ к}\Gamma\text{ц}$), оптического пульсирующего разряда и механизма объединения ударных волн [5, 6]. Эффективность использования лазерного излучения в случае коротких импульсов с высокой частотой следования существенно выше. В настоящей работе показано, что при низких частотах факторы, разрушающие рефлектор и запускаемое устройство, неустранимы и носят резонансный характер.

Оценим основные параметры ЛВРД: действующие на ракету силы при импульсном и стационарном ускорении, длину волн сжатия, возбуждаемых в корпусе ракеты ударными волнами, радиус R_k плазменной области (каверны), образующейся при расширении лазерной искры. Использовались формулы для характеристик УВ и каверны, полученные авторами. Искра рассматривалась как сферическая область радиусом r_0 , в которой поглощение энергии за время ~ 1 мкс сопровождается скачком

В.В.Аполлонов. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38;

e-mail: vapollo@kapella.gpi.ru

В.Н.Тищенко. Институт лазерной физики СО РАН, Россия, 630090 Новосибирск, просп. акад. Лаврентьева, 13; e-mail: tishenko@mail.nsk.ru

Поступила в редакцию 31 июля 2006 г.

давления в десятки или сотни атмосфер. Это справедливо для ЛВРД, в котором фокусное расстояние и диаметр луча на рефлекторе сравнимы, а длина искр мала. Рефлектор представляет собой полусферу радиусом $R_{\rm r}$. Частота f определяется необходимостью замены горячего воздуха в рефлекторе атмосферным воздухом.

Оценим, во сколько раз пиковое значение $F_{\rm m}$ импульсно-периодической силы тяги превышает стационарную силу $F_{\rm s}$ при ускорении ракеты массой M. Очевидно,что $F_{\rm s}=Ma$, где ускорение $a=(10-20)g_0\approx 100-200~{\rm M/c^2}$. Пиковое значение ИП силы тяги достигается в момент прихода фронта УВ на рефлектор. Избыточное давление в УВ (по отношению к атмосферному давлению P_0) создает силу тяги $F_{\rm i}(t)$ и ускорение a ракеты массой M. Приращение импульса под действием УВ

$$\delta p_{i} = \int_{0}^{1/f} F_{i}(t) dt \simeq F_{a} t_{a} [H \cdot c]. \tag{1}$$

Здесь $F_{\rm a}$ — среднее значение силы за время $t_{\rm a}$ действия фазы сжатия УВ на рефлектор; $F_{\rm m}\approx 2F_{\rm a}$. Приравнивая $\delta p_{\rm i}$ приращению импульса $\delta p_{\rm s}=F_{\rm s}/f=aM/f$ на периоде под действием стационарной силы $F_{\rm s}$, находим

$$\Delta = F_{\rm m}/F_{\rm s} = 2/(ft_{\rm a}).$$

Величина Δ , как показано ниже, зависит от многих параметров. Приращение импульса на одном периоде можно выразить через коэффициент связи J: $\delta p_i = JQ$, где Q [Дж] — энергия лазерного излучения, поглощенного в искре. Из условия $\delta p_i = \delta p_s$ следует соотношение между основными параметрами задачи:

$$W = aM/J (2)$$

(W = Qf – поглощаемая средняя мощность ИП излучения; $J \approx 0.0001 - 0.0012 \; \text{H·c·} \ \text{Дж}^{-1} \; [3,4,6]$).

Время действия фазы сжатия УВ на рефлектор $t_a \sim R_{\rm c}/V$, где $V \approx k_1 C_0$ — скорость УВ перед стенкой ($k_1 \sim$

1.2); $C_0 \approx 3.4 \times 10^4 \, {\rm cm/c} - {\rm скорость}$ звука в воздухе. Длина $R_{\rm c}$ фазы сжатия УВ находится из соотношения

$$\frac{R_{\rm c}}{R_{\rm d}} = 0.26 \left(\frac{h}{R_{\rm d}}\right)^{0.32}.$$
 (3)

Здесь h – расстояние от центра искры до поверхности рефлектора; $R_{\rm d}\approx 2.15\,(Q/P_0)^{1/3}$ – динамический радиус искры (расстояние, на котором давление в УВ становится близким к давлению воздуха P_0). В этом выражении $R_{\rm d}$ измеряется в см, а P_0 – в атм. Радиус каверны находим из соотношения

$$\frac{R_{\rm k}}{R_{\rm d}} = 0.6 \left(\frac{r_0}{R_{\rm d}}\right)^{0.29} = 0.22 - 0.3 \approx 0.25.$$
 (4)

Окончательное выражение (4) соответствует неравенству $r_0/R_{\rm d} < 0.03 - 0.1$, типичному для лазерных искр (r_0 – их начальный радиус). Найдем диапазон P_0 , в котором одновременно выполняются два условия: нет контакта плазмы с поверхностью рефлектора и коэффициент связи J близок к максимальному [3, 4, 7]. Этому соответствует неравенство $R_{\rm k} < h < R_{\rm d}$. Деля обе его части на $R_{\rm d}$, получаем $R_{\rm k}/R_{\rm d} < h/R_{\rm d} < 1$, или $0.25 < h/R_{\rm d} < 1$. При наборе высоты давление воздуха, а значит и $h/R_{\rm d}$, уменьшаются. Если принять, что на старте ($P_0 = 1$ атм) отношение $h/R_{\rm d} = 1$, где h и $R_{\rm d}$ выбираются исходя из (2), то неравенство $0.25 < h/R_{\rm d} < 1$ выполняется при $P_0 = 1 - 0.015$ атм, что ограничивает высоту полета ракеты величиной 30-40 км (h= const).

Оптимальное расстояние h удовлетворяет соотношению $h/R_{\rm d}\approx 0.25b_{\rm i}$, где $b_{\rm i}\approx 4-5$. Подставляя $h/R_{\rm d}$ в (3), находим длину фазы сжатия УВ и время ее действия на рефлектор:

$$\frac{R_{\rm c}}{R_{\rm d}} \approx 0.17b_{\rm i}^{0.32},\tag{5}$$

$$t_{\rm a} = \frac{0.17b_{\rm i}^{0.32}R_{\rm d}}{k_1C_0} = \frac{s_1Q^{1/3}}{P_0^{1/3}} = \frac{s_1}{P_0^{1/3}} \left(\frac{aM}{Jf}\right)^{1/3},\tag{6}$$

где $s_1=0.37b_{\rm i}^{0.32}/(k_1C_0)\approx 9\times 10^{-6}b_{\rm i}^{0.32}.$ Отсюда, используя $\varDelta=F_{\rm m}/F_{\rm a}=2/(ft_{\rm a}),$ находим

$$\Delta = \frac{2P_0^{1/3}}{s_1 f^{2/3} W^{1/3}} = \frac{2P_0^{1/3} Q^{2/3} J}{s_1 a M} = \frac{2}{s_1 f^{2/3}} \left(\frac{P_0 J}{a M}\right)^{1/3}.$$
 (7)

Из трех параметров (Q, W и f) независимыми являются два. Для определения третьего можно использовать выражение (2). Условия $1/f \sim t_a$ и $\Delta \approx 1-2$ соответствуют объединению ударных волн [5].

Важным параметром является отношение $t_{\rm a}$ к времени прохождения звука по всей длине L ракеты $t_{\rm z}=L/C_{\rm m}$ ($C_{\rm m}$ – скорость звука в металле), а также отношение $t_{\rm z}$ к 1/f. Для стали и алюминия $C_{\rm m}=5.1$ и 5.2 км/с соответственно. С использованием (6) получим

$$U = \frac{t_{\rm a}C_{\rm m}}{L} = \frac{s_1C_{\rm m}}{LP_0^{1/3}}Q^{1/3}.$$
 (8)

В этой формуле L измеряется в см, а $C_{\rm m}$ – в см/с. Из (8) можно определить энергию

$$Q = \frac{35.4P_0}{b_i^{0.96}} \left(U \frac{C_0}{C_{\rm m}} \right)^3 L^3. \tag{9}$$

В практическом отношении наибольший интерес представляет случай $U\gg 1$, когда по всей длине L создается равномерная нагрузка. Если $U\ll 1$, то ускорение не стационарно, длина возбуждаемой в корпусе ракеты волны много меньше L. Если же еще и $C_{\rm m}/f\ll L$, то на длине L укладывается большое число волн сжатия. Случай $U\approx 1$ соответствует резонансной раскачке волн. Очевидно, что случай $U\leqslant 1$ неприемлем с позиций прочности ракеты.

С использованием полученных выше выражений оценим A, U и R_k для лабораторных опытов и ракеты малой массы. Примем $b_i=4$, $J=5\times 10^{-4}$ H·с·Дж $^{-1}$, $s_1=1.4\times 10^{-5}$. Для лабораторных условий $M\approx 0.1$ кг, $R_r\approx 5$ см, L=10 см, a=100 м/с 2 . Среднее значение ИП силы $F_{\rm IP}$ равно стационарной: $F_{\rm IP}=F_{\rm s}=10$ H; средняя мощность ИП излучения $W=F_{\rm IP}/J=20$ кВт, энергия импульсов $Q_{\rm p}=W/f$. Частоту f, а значит и $Q_{\rm p}\approx Q$, оценим для двух предельных случаев.

На старте $P_0 \approx 1$ атм и радиус каверны $R_{\rm k}$ существенно меньше $R_{\rm r}$. Здесь, так же как и в неограниченном пространстве, лазерная плазма охлаждается в результате турбулентного тепломассопереноса. При $Q_{\rm p} < 20~{\rm Дж}$ характерное время этого процесса равно 2-5 мс [8,9], что соответствует f = 500 - 200 Гц. Если $R_{\rm k} \sim R_{\rm r}$ ($P_0 <$ 0.1 атм), то горячий газ с температурой несколько тысяч градусов занимает большую часть объема рефлектора. Частота f определяется необходимостью смены газа во всем объеме и составляет $\sim 0.5C_0/R_{\rm r} \sim 850$ Гц [3, 4]. Примем для дальнейших оценок f = 200 Γ ц, откуда $Q_{\rm p}=100$ Дж. Из (7) и (8) находим $\varDelta=74$ и U=3.5. Это означает, что максимальное значение динамической силы многократно превышает силу, соответствующую стационарному ускорению. Время действия УВ в 3.5 раза больше времени прохождения УВ по длине модели. При $P_0 = 1$ и 0.01 атм радиус каверны $R_k = 2.5$ и 11.6 см соответственно.

Сделаем оценку для ракеты. Примем $M\approx 20~{\rm kr},~R_{\rm r}\approx 20~{\rm cm},~L=200~{\rm cm},~a=100~{\rm m/c^2}.$ Среднее значение ИП силы $F_{\rm IP}=F_{\rm s}=2000~{\rm H},$ средняя мощность ИП излучения $W=4~{\rm MBr},$ при $f=200~{\rm \Gamma L}$ энергия импульсов $Q_{\rm p}=20~{\rm kДm},~\Delta=12.6,~U=1,~R_{\rm k}=14.7$ и 68 см ($P_0=1~{\rm u}~0.01~{\rm atm}$), $F_{\rm m}=25.6~{\rm kH}=2560~{\rm kr}.$ Видно, что ИП режим ускорения сопровождается на порядок более сильными по сравнению с $F_{\rm s}$ динамическими нагрузками на конструкцию ракеты. Они имеют резонансный характер, т. к. условие $U\sim 1~{\rm o}$ означает, что длины волн сжатия сравнимы с длиной ракеты. Кроме того, при увеличении длины ракеты до 4 м и частоты следования импульсов до 1 к ${\rm \Gamma}_{\rm L}$ собственная частота колебаний корпуса ракеты $C_{\rm m}/L$ ракеты близка к f (резонанс).

Таким образом, оценки показывают, что при низкой частоте следования импульсов термический контакт плазмы с рефлектором и сильные динамические нагрузки неизбежны. Ситуация усугубляется возбуждением резонансных колебаний в теле ракеты. Эти трудности преодолимы при использовании метода, основанного на объединении ударных волн [4, 5]. Расчеты и проведенный эксперимент [10] подтвердили возможность создания стационарной силы тяги при использовании ИП излучения с большой частотой следования импульсов, методика масштабирования выходной мощности которого представлена в [11].

Работа поддержана РФФИ (грант № 06-08-01192).

- 1. Kantrowitz A.R. Astronautics and Aeronautics, 10 (5), 74 (1972).
- Пирри А.Н., Монслер М., Небольсайн Р. Ракетная техника и космонавтика, 12 (9), 112 (1974).
- Агеев В.П., Барчуков А.И., Бункин Ф.В., Кононов В.И., Прохоров А.М., Силенок А.С., Чаплиев Н.И. Квантовая электроника, 4 (12), 2501 (1977).
- 4. Бункин Ф.В., Прохоров А.М. УФН, 119 (3), 425 (1976).
- Тищенко В.Н., Аполлонов В.В., Грачев Г.Н., Гулидов А.И, Запрягаев В.И., Меньшиков Я.Г., Смирнов А.Л., Соболев А.В. Квантовая электроника, 34 (10), 941 (2004).
- Аполлонов В.В., Тищенко В.Н. Квантовая электроника, 34 (12), 1143 (2004).

- 7. Коробейников В.П. Задачи теории точечного взрыва (М.: Наука, 1985).
- 8. Кабанов С.Н., Маслова Л.И., Тархова Т.И., Трухин В.А., Юров В.Т. ЖТФ, **60** (6), 37 (1990).
- 9. Тищенко В.Н., Антонов В.М., Мелехов А.В., Никитин С.А., Посух В.Г., Третьяков П.К., Шайхисламов И.Ф. *Письма в ЖТФ*, **22** (24), 30 (1996).
- Грачев Г.Н., Тищенко В.Н., Аполлонов В.В., Гулидов А.И., Смирнов А.Л., Соболев А.В., Зимин М.И. Квантовая электроника, 37 (7), 669 (2007).
- 11. Аполлонов В.В., Егоров А.Б. Кийко В.В., Кислов В.И., Суздальцев А.Г. *Кваитовая электроника*, **33** (9), 753 (2003).