PACS 42.55.Rz; 42.60.Gd

Пассивная модуляция добротности лазера на $YAlO_3$: Er^{3+} с длиной волны 1.66 мкм кристаллом ZnSe: Cr^{2+}

Б.И.Галаган, Б.И.Денкер, С.Е.Сверчков, Н.В.Кулешов, В.Э.Кисель, В.И.Левченко

Исследована возможность пассивной модуляции добротности лазеров на кристаллах $YAlO_3$: Er^{3+} с длиной волны 1.66 мкм рядом насыщающихся поглотителей. При использовании в качестве насыщающегося поглотителя кристалла ZnSe: Cr^{2+} получены гигантские импульсы длительностью 200 нс.

Ключевые слова: ИК лазер, пассивная модуляция добротности, алюминат иттрия.

1. Введение

Легированные ионами Co²⁺ кристаллы селенида цинка ZnSe и алюмомагниевой шпинели MgAl₂O₄ известны как насыщающиеся поглотители, нашедшие применение в качестве пассивных модуляторов добротности лазеров на эрбиевых стеклах с длиной волны $\lambda = 1.54$ мкм (переход ${}^4I_{13/2} - {}^4I_{15/2}$ ионов ${\rm Er}^{3+}$). Кристаллы ZnSe, легированные ионами Cr²⁺, также могут быть использованы в этом качестве [1]. Кроме того, эти кристаллы являются высокоэффективной средой для перестраиваемых (в диапазоне 2.12-2.93 мкм) лазеров. Спектр поглощения ионов хрома занимает область 1.4-2.2 мкм, что позволяет применять для их накачки лазеры на кристаллах, активированных ионами тулия, с $\lambda \sim 1.9 - 2.0$ мкм. В самое последнее время для накачки перестраиваемого лазера на $ZnSe: Cr^{2+}$ был успешно применен лазер на кристалле алюмината иттрия с эрбием $(YAlO_3: Er^{3+})$ [2], генерирующий на переходе ${}^4S_{3/2} - {}^4I_{9/2}$ (см. схему уровней иона эрбия на рис.1) на $\lambda = 1.66$ мкм.

Задача настоящей работы — исследование возможности использования указанных насыщающихся поглотителей также и в качестве модуляторов добротности YAlO₃: ${\rm Er}^{3+}$ -лазеров с $\lambda=1.66$ мкм. Особенность этих лазеров заключается в самоограниченном характере перехода (время жизни нижнего лазерного уровня ${}^4{\rm S}_{3/2}$, которое при типичной концентрации эрбия $\sim 10^{20}$ см $^{-3}$ составляет около 100 мкс). Самоограниченность лазерного перехода и небольшая (из-за концентрационного тушения люминесценции) концентрация активатора являются причинами невысокого КПД (~ 0.1 % при свободной генерации в условиях ламповой накачки). Несмотря на невысокую эффективность данных лазеров, они на-

Б.И.Галаган, Б.И.Денкер, С.Е.Сверчков. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: denker@Lst.gpi.ru

Н.В.Кулешов, В.Э.Кисель. НИИ оптических материалов и технологий БНТУ, Белоруссия, 220013 Минск, просп. Ф.Скорины, 65, корп. 17; e-mail:VEKisel@ilc.by

В.И.Левченко. Институт физики твердого тела и полупроводников НАНБ, Белоруссия, 220072 Минск, ул. П.Бровки, 17; e-mail: levchen@ifftp.bas-net.by

Поступила в релакцию 13 лекабря 2006 г.

ходят определенное применение из-за отсутствия более эффективных и удобных источников для этой спектральной области. В литературе сведений о получении «чистого» режима модуляции добротности в таких лазерах мы не нашли, однако есть публикация [3], в которой сообщается о получении цуга УКИ (с огибающей длительностью 250 нс) при помощи нелинейно отражающего зеркала.

Для формирования лазером гигантских импульсов необходимым условием (в отсутствие фокусировки излучения в затворе) является малость отношения сечения вынужденного испускания $\sigma_{\rm gen}$ в активной лазерной среде к сечению поглощения $\sigma_{\rm abs}$ в просветляющемся фильтре. В [1] имеются данные по сечению поглощения $\sigma_{\rm abs}$ на $\lambda=1.66$ мкм в кристаллах ZnSe: Cr²⁺ (около 8×10^{-19} см²) и ZnSe: Co²⁺ (около 5×10^{-19} см²). Для выращенных методом Вернейля нестехиометрических кристаллов шпинели (MgO·3.5Al₂O₃: Co²⁺) сечение $\sigma_{\rm abs}$ составляет около 1×10^{-19} см² (что заметно больше, чем в стехиометрических кристаллах MgAl₂O₄ [1, 4]). Таким образом, среди

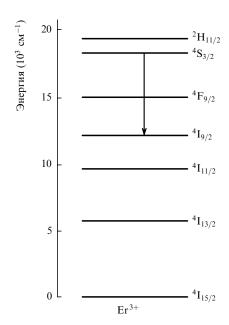


Рис.1. Схема уровней иона ${\rm Er}^{3+}$ и генерирующий переход лазера на ${\rm YAlO}_3$: ${\rm Er}^{3+}$ с $\lambda=1.66$ мкм.

перечисленных материалов – потенциальных кандидатов в пассивные модуляторы эрбиевых лазеров с $\lambda=1.66$ мкм – кристалл ZnSe: Cr $^{2+}$ обладает наибольшим сечением поглощения. Литературных же данных об эффективном сечении вынужденного излучения ионов эрбия в кристалле YAlO $_3$ при наличии самоограниченного перехода нам найти не удалось. Поэтому вопрос о возможности формирования гигантского импульса лазерами с исследуемыми насыщающимися поглотителями решался экспериментально.

Времена жизни возбужденного состояния в кристаллах алюмомагниевой шпинели, ZnSe: Co²⁺ и ZnSe: Cr²⁺ составляют 0.35, 350 и 5.4 мкс соответственно [1]. Следовательно, в последних двух случаях эти времена оказываются намного больше характерных времен формирования и длительностей гигантских импульсов лазера. В первом же случае время релаксации просветленного состояния затвора может оказаться сопоставимым с временем формирования и длительностью гигантских импульсов лазера. Это приводит к селекции поперечных мод лазера пассивным затвором (что усложняет применение кристалла MgAl₂O₄: Co²⁺ в качестве пассивного затвора в лазерах на эрбиевых стеклах с $\lambda = 1.54$ мкм). При использовании кристаллов ZnSe: Co²⁺ и ZnSe: Cr²⁺ такого рода осложнения исключены.

2. Эксперимент

В эксперименте использовался лазер с ламповой накачкой на основе кристалла алюмината иттрия (\emptyset 5 × 60 мм) с концентрацией эрбия 1 % и просветляющим покрытием на торцах. Кристалл возбуждался импульсной лампой ИФП-800 (длительность импульса составляла ~ 100 мкс). Во избежание наведения в кристалле центров окраски УФ излучением лампы осветитель лазера охлаждался 0.2 %-ным раствором хромата калия в дистиллированной воде. Резонатор лазера длиной 30 см был образован плоским глухим зеркалом и вогнутым (с радиусом кривизны 1 м) выходным зеркалом с коэффициентом пропускания, плавно изменяющимся от одного края зеркала к другому в диапазоне 10 % – 50 %. Приводимые ниже экспериментальные данные получены при положении выходного зеркала, соответствующем пропусканию 20 %. Пассивный элемент в виде плоскопараллельной пластинки (без просветляющих покрытий) помещался вблизи глухого зеркала перпендикулярно или под углом Брюстера к оптической оси резонатора лазера. Коэффициент поглощения всех исследованных пассивных элементов (при нормальном падении излучения) лежал в пределах 15 % – 17 %. В резонаторе устанавливалась диафрагма, обеспечивавшая генерацию на основной поперечной моде.

При использовании в качестве пассивных элементов кристаллов $MgAl_2O_4$: Co^{2+} и ZnSe: Co^{2+} модуляции добротности получено не было: кинетика генерации лазера

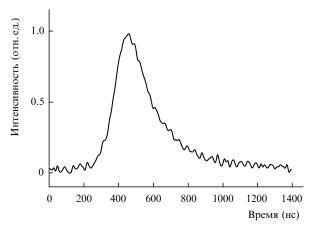


Рис.2. Осциллограмма гигантского импульса лазера с $\lambda=1.66$ мкм при пассивной модуляции кристаллом ZnSe: Cr $^{2+}$.

практически не отличалась от кинетики свободной генерации (хаотической последовательности пичков с длительностью каждого 1-2 мкс при общей длительности цуга 50-100 мкс).

При размещении кристалла ZnSe: Cr^{2+} перпендикулярно оптической оси резонатора в лазере формировались одиночные гигантские импульсы длительностью около 200 нс (рис.2). Энергия импульса составляла 0.2 мДж (при энергии свободной генерации около 1 мДж, получаемой при той же энергии накачки). Следует отметить, что невысокая параллельность (\sim 4') граней имевшегося образца ZnSe и отсутствие на них просветляющих покрытий приводили к очень существенным потерям излучения, чем и следует объяснить низкую выходную энергию.

При установлении того же образца под углом Брюстера к оси резонатора (естественно, с учетом поляризации выходного излучения лазера) режима генерации одиночных гигантских импульсов получено не было. По всей вероятности, это связано с меньшей в n раз (где n=2.44 показатель преломления ZnSe) плотностью излучения в пассивном элементе, расположенном под углом Брюстера. Таким образом, по результатам этого эксперимента можно грубо оценить сечение вынужденного излучения $\sigma_{\rm gen}$ как $\sigma_{\rm abs}/n \approx 3 \times 10^{-19}~{\rm cm}^2$.

Исследования поддержаны РФФИ и БФФИ (проект № 04-02-81015Бел2004а).

- 1. Кисель В.Э. Щербицкий В.Г., Кулешов Н.В., Постнова Л.И., Левченко В.И., Галаган Б.И., Денкер Б.И., Сверчков С.Е. Квантовая электроника, **35** (7), 611 (2005).
- Jelinkova H., Koranda P., Doroshenko M., Basiev T., Šulc J., Nêmec M., Černy P., Komar V., Kosmyna M. Laser Phys. Lett., 4 (1), 23 (2006)
- Stankov K., Hamal K., Jelinkova H., Prochazka I. Opt. Commun., 95 (1-3), 85 (2003).
- Denker B., Galagan B., Osiko V., Sverchkov S., Karlsson G., Laurell F. OSA TOPS «Advanced Solid State Photonics», 83, 216 (2003).