PACS 42.55.Wd; 42.60.Da; 42.79.Dj

Полностью волоконный иттербиевый лазер, перестраиваемый в спектральном диапазоне 45 нм

С.Р.Абдуллина, С.А.Бабин, А.А.Власов, С.И.Каблуков, А.С.Курков, И.С.Шелемба

Создан перестраиваемый иттербиевый волоконный лазер. В качестве селектирующего элемента резонатора применялась перестраиваемая волоконная брэгговская решетка. Диапазон перестройки составил 45 нм (1063-1108 нм), причем выходная мощность лазера (\sim 6 Вт) и ширина спектра излучения (\sim 0.15 нм) практически не менялись в прочессе перестройки. Предложен метод синхронной перестройки высокоотражающей и выходной решеток и реализована схема полностью волоконного перестраиваемого иттербиевого лазера.

Ключевые слова: волоконная брэгговская решетка, перестраиваемый иттербиевый волоконный лазер.

1. Введение

Лазеры на основе волоконных световодов, легированных ионами редкоземельных элементов, являются уникальными источниками непрерывного ИК излучения и характеризуются высокой эффективностью генерации и возможностью перестройки длины волны излучения в широком спектральном диапазоне. Большинство перестраиваемых волоконных лазеров содержат объемные элементы резонатора, селектирующие длину волны излучения, которые, к сожалению, ограничивают эффективность лазера. Волоконная брэгговская решетка (ВБР) позволяет сформировать резонансный отражатель непосредственно внутри волоконного световода; она записывается в сердцевине световода с помощью УФ излучения и характеризуется узким спектром отражения на брэгговской длине волны $\lambda_{\rm Br}=2n\Lambda$, где n – эффективный показатель преломления волоконного световода, а Λ – период индуцированной модуляции показателя преломления (см. напр., [1, 2]).

Перестройка резонансной длины волны ВБР возможна при воздействии механических напряжений на волоконный световод, приводящих к изменению периода решетки Λ . Аксиальные нагрузки, приложенные к волоконному световоду, приводят к изменению резонансной длины ВБР на

$$\Delta \lambda = \lambda_0 (1 - P_e) \varepsilon, \tag{1}$$

где $P_{\rm e}=0.22$ — фотоупругий коэффициент; ε — относительное удлинение волоконного световода; λ_0 — резонансная длина волны при записи ВБР. При этом диапазон перестройки при растяжении волоконного световода ограничен его малой прочностью (типичное пороговое значение ε в данном случае составляет \sim 0.01). Диапазон перестройки при сжатии световода значительно шире и также потенциально ограничен его прочностью, но в этом

С.Р.Абдуллина, С.А.Бабин, А.А.Власов, С.И.Каблуков, И.С.Шелемба. Институт автоматики и электрометрии СО РАН, Россия, 630090 Новосибирск, просп. акад. Коптюга, 1; e-mail: babin@iae.nsk.su А.С.Курков. Научный центр волоконной оптики РАН, Россия, 119333 Москва, ул. Вавилова 38; e-mail: kurkov@fo.gpi.ru

Поступила в редакцию 27 февраля 2007 г., после доработки – 26 апреля 2007 г.

случае пороговое значение ε больше ($\varepsilon\approx-0.23$). Для создания аксиальных нагрузок используются два способа: сжатие волоконного световода в обойме [3] и изгиб пластины с приклеенным к ней волоконным световодом [4]. Первый способ требует относительно сложной конструкции. При использовании второго способа достигнуты рекордные значения диапазона перестройки: 110 нм в области 1.55 мкм ($\varepsilon\approx-0.09$) [4]. Однако при использовании такой ВБР в качестве элемента резонатора волоконных лазеров диапазон перестройки не превышал 35 нм для эрбиевого лазера, генерирующего на длине волны $\lambda\approx1.55$ мкм [5], и 15 нм для неодимового лазера, генерирующего на $\lambda\approx0.9$ мкм [6].

Лазер на основе легированного иттербием волоконного световода с двойной оболочкой и диодной накачкой на длине волны 976 нм отличается высокой эффективностью генерации на переходе ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ иона Yb^{3+} с максимумом в диапазоне 1.08-1.11 нм [7]. Осуществление плавной перестройки длины волны выходного излучения иттербиевого полностью волоконного лазера позволит значительно расширить область его применений, но до настоящего времени серьезных попыток в этом направлении не предпринималось.

В настоящей работе представлены результаты применения перестраиваемой ВБР в качестве элемента резонатора, селектирующего длину волны излучения перестраиваемого иттербиевого волоконного лазера (ИВЛ). Осуществлена перестройка длины волны излучения иттербиевого лазера в диапазоне 1063—1108 нм. Предложен и реализован способ синхронной спектральной перестройки высокоотражающей и выходной решеток и создан перестраиваемый полностью волоконный иттербиевый лазер.

2. Эксперимент

Перестраиваемая ВБР записывалась на отрезке волоконного световода Flexcore-1060, предварительно выдержанном в атмосфере водорода под давлением ~ 100 атм. Запись проводилась голографическим методом с использованием второй гармоники (244 нм) излучения аргонового лазера с повышенной мощностью излучения [8, 9]. Типичный спектр отражения ВБР показан на рис.1. Участок волоконного световода с записанной ВБР приклеивался к пластине из оргстекла толщиной $d \approx 5$ мм. Изгиб

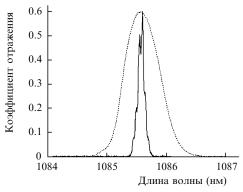


Рис.1. Типичный спектр отражения ВБР (максимальный коэффициент отражения ВБР в свободном состоянии $R_0\approx 60$ % на длине волны $\lambda_0\approx 1093$ нм) (пунктирная кривая), а также соответствующий выходной спектр ИВЛ (сплошная кривая). Коэффициент сжатия $\varepsilon\approx -0.01$.

пластины приводит к изменению длины волоконного световода, причем $\varepsilon = -0.5 d/r$ (где r – радиус кривизны пластины), вследствие чего изменяется резонансная длина волны BБР [4].

Схема перестраиваемого ИВЛ показана на рис.2. Излучение накачки многомодового лазерного диода 3 с волоконным выходом фокусируется посредством линз 4 и 5 через дихроичное зеркало 6 в волоконный световод 2 с двойной оболочкой и сердцевиной, легированной иттербием. Использовалось волокно длиной 20 м с квадратной световедущей оболочкой сечением 110 × 110 мкм и диаметром распределения поля основной моды ~ 7 мкм. Поглощение накачки составило ~1 дБ/м на длине волны 976 нм. Резонатор лазера сформирован торцом волоконного световода (широкополосный отражатель с коэффициентом отражения около 4 %) и перестраиваемой ВБР 1. Дихроичное зеркало прозрачно для излучения накачки (976 нм) и имеет высокий коэффициент отражения в диапазоне генерации ИВЛ. В данной схеме накачка волоконного лазера осуществлялась через торец волоконного световода. По сравнению с вариантом накачки через перестраиваемую ВБР, эта схема позволяет избежать поглощения мощности накачки в оболочке стандартного волоконного световода Flexcore-1060 и на участке волоконного световода, приклеенного к пластине. Параметры излучения иттербиевого лазера, отведенного дихроичным зеркалом, контролировались измерителем мощности и оптическим спектроанализатором.

В экспериментах использовалось несколько образцов ВБР с коэффициентом отражения 60%-90% на длине волны $\lambda_0=\lambda_{Br}~(\epsilon=0)\approx 1093$ нм. Мощность выходного излучения ИВЛ с разными образцами ВБР изменялась незначительно.

Для увеличения мощности накачки, вводимой в активный световод, и реализации оптимального коэффициента пропускания выходного зеркала была реализована следующая схема полностью волоконного перестраивае-

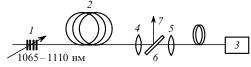


Рис.2. Схема перестраиваемого ИВЛ:

I — перестраиваемая ВБР; 2 — волоконный световод, легированный иттербием; 3 — лазерный диод накачки с волоконным выходом; 4, 5 — линзы; 6 — дихроичное зеркало; 7 — выходное излучение иттербиевого лазера.

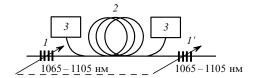


Рис.3. Схема полностью волоконного перестраиваемого иттербиевого лазера:

I и I^{\prime} – синхронно перестраиваемые ВБР (высокоотражающая и выходная соответственно); 2 – легированный иттербием волоконный световод, изготовленный по технологии GTWave; 3 – лазерные диоды накачки.

мого иттербиевого лазера (рис.3). Накачка иттербиевого волоконного световода, изготовленного по технологии GTWave (сборка из волоконного световода с сердцевиной, легированной иттербием, и дополнительного волоконного световода без сердцевины, заключенных в общую полимерную оболочку), осуществлялась двумя лазерными диодами с двух концов дополнительного волоконного световода [10]. Длина активного световода была равна 25 м, диаметр распределения поля основной моды составлял ~ 7 мкм. К иттербиевому волоконному световоду были приварены высокоотражающая и выходная решетки, формирующие резонатор лазера. Резонансная длина волны BБР $\lambda_0 = 1105$ нм. Коэффициент отражения высокоотражающей BБР составлял $\sim 90 \%$, а выходной – примерно 15%. Решетки были приклеены на единую пластину, что обеспечивало при ее изгибе синхронную перестройку резонансных длин волн обеих ВБР.

3. Результаты

На рис.4 показано изменение выходной мощности ИВЛ при перестройке длины волны генерации с использованием схемы лазера, показанной на рис.2. Перестраиваемая ВБР была записана на длину волны $\lambda_0 \approx 1093$ нм и имела начальный коэффициенто отражения $R_0 \approx 60 \%$. Область длин волн $\lambda < \lambda_0$ относится к сжатию, а область $\lambda > \lambda_0 - \kappa$ растяжению световода. Типичный выходной спектр ИВЛ с данной решеткой, полученный при небольшом сжатии ($\varepsilon \approx -0.01$), показан на рис.1 сплошной кривой. В данной схеме осуществлена перестройка длины волны излучения лазера от 1063 до 1108 нм, т. е. в диапазоне 45 нм, причем в диапазоне 40 нм – без значительного изменения выходной мощности. При растяжении, близком к разрыву волоконного световода ($\varepsilon > 0.01$), наблюдается значительное (более 10 %) уменьшение мощности, в то время как при сжатии ($\varepsilon \leqslant -0.05$) происходит небольшое ее возрастание. При этом было установлено, что

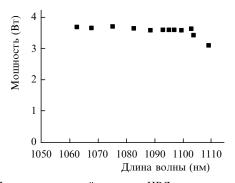


Рис.4. Изменение выходной мощности ИВЛ в зависимости от длины волны генерации, перестраиваемой с помощью ВБР (в свободном состоянии ВБР $R_0\approx60$ % на $\lambda_0\approx1093$ нм), при мощности накачки ~7 Вт.

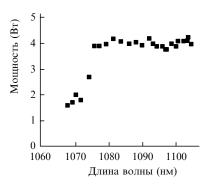


Рис.5. Изменение выходной мощности полностью волоконного иттербиевого лазера в зависимости от длины волны генерации при синхронной перестройке высокоотражающей и выходной ВБР (в свободном состоянии ВБР соответствующие коэффициенты отражения $R_0 \approx 90$ % и $R_{\rm out} \approx 15$ % на $\lambda_0 \approx 1105$ нм).

ширина спектра отражения ВБР (\sim 0.7 нм на уровне -3 дБ) и выходного спектра излучения лазера (\sim 0.15 нм) существенно не изменяются при сжатии, но коэффициент отражения возрастает от начального значения \sim 60 % до \sim 75 % при сильном сжатии ($\epsilon \approx -0.05$). Использование решеток с разными начальными коэффициентами отражения ($R_0 = 60$ % -90 %) также приводило к незначительным изменениям мощности, т. к. потери в резонаторе определялись главным образом коэффициентом пропускания торца волоконного световода. Максимальная мощность ИВЛ составила \sim 6 Вт при мощности накачки \sim 10 Вт.

Использование в качестве выходного зеркала (вместо торца волоконного световода) ВБР с коэффициентом отражения 15% в схеме лазера, показанной на рис.3, позволяет оптимизировать выходную мощность при заданной мощности накачки. На рис.5 показано изменение выходной мощности ИВЛ в процессе перестройки длины волны генерации. При синхронной перестройке высокоотражающей и выходной решеток за счет сжатия световода выходная мощность практически не изменялась при уменьшении длины волны на 30 нм, однако при дальнейшем увеличении сжатия (когда $\Delta\lambda$ достигает \sim 40 нм) наблюдается падение мощности более чем в два раза. Измерение спектров решеток показало, что этот эффект определяется рассогласованием резонансных длин волн на ~ 0.3 нм при полной ширине спектра высокоотражающей решетки ~ 0.6 нм по уровню -3 дБ. Достигнутая мощность излучения при использовании выходной решетки несколько выше, чем в случае использования торца волоконного световода.

В процессе перестройки наблюдался дрейф длины волны генерации в первый момент после ее изменения. При отстройке на 15 нм от резонансной длины волны λ_0 стабилизация длины волны генерации наступает примерно через 5 мин, после чего долговременные флуктуации за время ~ 1000 ч становятся меньше 0.1 нм.

4. Обсуждение результатов

Таким образом, в результате применения перестраиваемой ВБР для управления длиной волны генерации ИВЛ были получены максимальная выходная мощность \sim 6 Вт и диапазон перестройки 45 нм при мощности накачки \sim 10 Вт. При перестройке выходная мощность лазера и ширина его спектра излучения (\sim 0.15 нм) изменяются незначительно, в то время как коэффициент отражения ВБР возрастает в 1.2-1.3 раза с изменением сжатия решетки от $\varepsilon=0$ (свободное состояние) до $\varepsilon\approx-0.05$ (сильное сжатие). Установлено, что поляризация выходного излучения является случайной и практически не меняется при перестройке.

Незначительные изменения мощности при значительных изменениях коэффициента отражения высокоотражающей решетки связаны с тем, что потери в резонаторе определялись главным образом большим коэффициентом пропускания торца волоконного световода, используемого в качестве выходного зеркала. Кроме того, при значительном изменении длины волны генерации на мощность может влиять спектральная зависимость ненасыщенного коэффициента усиления [7]. Однако этого не наблюдалось, поскольку при однородном характере насыщения и большом превышении усилением потерь данный эффект несущественен.

При синхронной перестройке высокоотражающей и выходной решеток в схеме полностью волоконного иттербиевого лазера и изменении длины волны более чем на 30 нм наблюдается значительное уменьшение мощности, поскольку становится существенной относительная расстройка резонансных частот ВБР при сжатии, которая может быть устранена дополнительной подстройкой высокоотражающей и выходной решеток друг к другу. Данный вариант лазера имеет большие перспективы для применения в полностью волоконных схемах.

5. Заключение

Таким образом, реализован метод перестройки ВБР. Перестраиваемая ВБР применялась в качестве селектора частоты излучения ИВЛ. Диапазон перестройки лазера составил около 45 нм в области 1.1 мкм, а выходная мощность излучения была равна ~6 Вт. Разработана также конструкция с синхронной перестройкой двух ВБР (высокоотражающей и выходной), которая позволила реализовать полностью волоконный перестраиваемый иттербиевый лазер.

Авторы благодарят В.А.Акулова, Д.М.Афанасьева, М.А.Рыбакова и Д.В.Чуркина за помощь в эксперименте. Работа выполнена при финансовой поддержке фонда CRDF (грант № RUP1-1509-NO-05), программ Президиума и Отделения физических наук РАН и Интеграционной программы СО РАН.

- 1. Kashyap R. Fiber Bragg Gratings (San Diego: Acad. Press, 1999).
- Васильев С.А., Медведков О.И., Королев И.Г., Божков А.С., Курков А.С., Дианов Е.М. Квантовая электроника, 35, 1085 (2005).
- Mohammad N., Szyszkowski W., Zhang W.J., Haddad E.I., Zou J., Jamroz W., Kruzelecky R. J. Lightwave Technol., 22, 2001 (2004).
- 4. Mokhtar M.R., Goh C.S., Butler S.A., Set S.Y., Kikuchi K., Richardson D.J., Ibsen M. *Electron. Lett.*, **39**, 509 (2003).
- Yoonchan J., Alegria C., Sahu J.K., Fu L., Ibsen M., Codemard C., Mokhtar M.R., Nilsson J. *IEEE Photon. Technol. Lett.*, 16, 756 (2004).
- Fu L.B., Ibsen M., Richardson D.J., Nilsson J., Payne D.N., Grudinin A.B. *IEEE Photon. Technol. Lett.*, 17, 306 (2005).
- Курков А.С., Дианов Е.М. Квантовая электроника, 34, 881 (2004).
- Абдуллина С.Р., Бабин С.А., Власов А.А., Каблуков С.И. Квантовая электроника, 35, 857 (2005).
- Абдуллина С.Р., Бабин С.А., Власов А.А., Каблуков С.И. Квантовая электроника, 36, 966 (2006).
- Буфетов И.А., Бубнов М.М., Мелькумов М.А., Дудин В.В., Шубин А.В., Семенов С.Л., Кравцов К.С., Гурьянов А.Н., Яшков М.В., Дианов Е.М. Квантовая электроника, 35, 328 (2005).