ПИСЬМА

PACS 42.55.Rz; 42.60.Lh

Усилитель на неодимовом фосфатном стекле ГЛС-23 с длиной волны 1.047 мкм

Т.Т.Басиев, А.Г.Папашвили

Проведены измерения коэффициента усиления неодимового фосфатного стекла ГЛС-23 на длине волны 1.047 мкм излучения $YLiF_4$: Nd^{3+} -лазера. Для активного стержия длиной 13 см при накачке 225 Дж получены линейные коэффициенты усиления 0.035-0.036 см $^{-1}$, что позволяет прогнозировать возможность создания мощных лазеров на этой длине волны.

Ключевые слова: усилитель на неодимовом фосфатном стекле, коэффициент усиления.

Хорошо известно [1, 2], что лазерные фосфатные стекла являются одним из лучших твердотельных материалов, используемых для высокоэффективного усиления лазерного излучения высокой мощности и энергии (до 10^3-10^4 Дж). Традиционно они применяются для усиления излучения задающих лазерных генераторов, которые работают на длине волны, близкой к максимуму контура усиления ($\lambda=1.053\,$ мкм), таких, например, как YLiF₄: Nd $^{3+}$ -лазер с σ -поляризацией лазерного излучения.

Однако для ряда задач лазерной физики требуется получение мощного лазерного излучения с большими или меньшими длинами волн. Так, ранее мы показали, что излучение накачки с $\lambda=1.047$ мкм позволяет резко увеличить коэффициент усиления, КПД и расширить спектральный диапазон перестраиваемых лазеров на кристаллах LiF с F_2^- -центрами окраски [3, 4].

Последние несколько лет на широкоапертурных кристаллах LiF с F_2^- -центрами окраски разрабатываются усилители импульсов пико- и фемтосекундного диапазонов терраватного уровня мощности [5, 6], в которых источниками мощной наносекундной накачки являются лазерные системы на стекле ГЛС-23 с длиной волны генерации 1.053 мкм. Переход в системе наносекундной накачки с $\lambda=1.053$ мкм на 1.047 мкм позволил бы значительно повысить коэффициент усиления и эффективность пико- и фемтосекундных усилителей на кристалле LiF с F_2^- -центрами окраски.

В данной работе мы исследовали возможность применения лазерных фосфатных стекол в качестве усилителей излучения с $\lambda=1.047$ мкм. В качестве пробного излучения использовались наносекундные импульсы кристаллического YLiF₄: Nd ³⁺-лазера с энергией 5–15 мДж, работающего на $\lambda=1.047$ мкм с π -поляризацией излучения. В качестве усилительного каскада использовался квантрон с активным элементом из фосфатного стекла ГЛС-23 диаметром 8 мм и длиной L=13 см.

Оптическая схема измерения коэффициента усиления

Т.Т.Басиев, А.Г.Папашвили. Научный центр лазерных материалов и технологий Института общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: alex@lst.gpi.ru

Поступило в редакцию 31 мая 2007 г.

Puc.1. Схема экспериментальной установки для измерения однопроходного (сплошные линии) и двухпроходного (штриховые линии) усиления.

представлена на рис.1. Коэффициент усиления G определялся как отношение энергии $E_{\rm pr}^*$ пробного импульса, прошедшего через усилитель во время накачки, к энергии импульса $E_{\rm pr}^0$, прошедшего через усилитель в отсутствие накачки, т. е. $G=E_{\rm pr}^*/E_{\rm pr}^0$.

Проводились сравнительные измерения коэффициента усиления для излучения YLiF₄: Nd ³⁺-лазера, работающего на $\lambda=1.047$ или 1.053 мкм в одно- и двухпроходной схемах. При неизменной энергии пробного наносекундного сигнала на входе мы получили зависимость выходной энергии $E_{\rm pr}^*$ от энергии накачки $E_{\rm pump}$ лампы усилителя ГЛС-23 (рис.2).

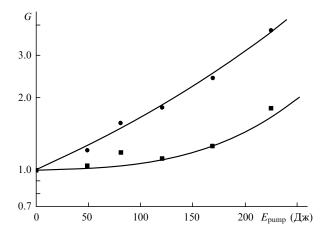


Рис.2. Зависимости коэффициента усиления однопроходного усилителя от энергии накачки лампы, возбуждающей усилитель, при $\lambda = 1.047$ (\blacksquare) и 1.053 мкм (\bullet).

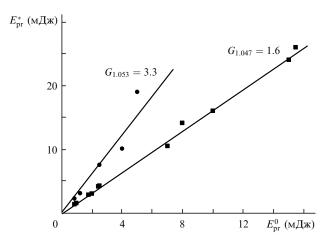


Рис.3. Зависимости энергии $E_{\rm pr}^*$ от энергии $E_{\rm pr}^0$ при задержке пробных импульсов на 150 мкс относительно начала разряда лампы накачки и при $\lambda=1.047$ (\blacksquare) и 1.053 мкм (\bullet).

Из рис.2 видно, что как для излучения с $\lambda=1.053$ мкм, так и для излучения с $\lambda=1.047$ мкм коэффициент усиления увеличивается нелинейно в зависимости от энергии накачки.

На рис. 3 приведены экспериментальные зависимости энергии $E_{\rm pr}^*$ от энергии $E_{\rm pr}^0$ пробного (наносекундного) импульса для однопроходного усиления при задержке пробного импульса на 150 мкс относительно начала разряда лампы накачки при энергии разряда 225 Дж и длительности разряда лампы 200 мкс.

Из представленных данных были определены коэффициенты усиления для излучения с $\lambda=1.053$ (G=3.3) и 1.047 мкм (G=1.6).

Коэффициенты усиления G в двухпроходной схеме оказались равными 10 и 2.5 для излучения с $\lambda = 1.053$ и

1.047 мкм соответственно. Линейные коэффициенты усиления, определенные по формуле $K=\ln G/L$, для двух случаев (L=13 см для однопроходного усиления и 26 см для двухпроходного) совпадают и составляют 0.089-0.09 см $^{-1}$ ($\lambda=1.053$ мкм) и 0.035-0.036 см $^{-1}$ ($\lambda=1.047$ мкм).

Из приведенных выше данных можно оценить ожидаемое усиление при увеличении длины канала усиления до 220 см (четырехпроходный усилитель на стекле ГЛС-23 с активным элементом диаметром 40 мм и L=55 см). Без учета неактивных и излучательных потерь для $\lambda=1.047$ мкм можно ожидать получения коэффициента усиления около 10^3 , что близко к значению, достигнутому в работе [5], и позволяет рассчитывать на успешное создание мощного лазера накачки с $\lambda=1.047$ мкм и энергией до $10~\rm Дж$.

- 1. Гаранин С.Г., Зарецкий А.И., Илькаев Р.И., Кириллов Г.А., Кочемасов Г.Г., Курунов Р.Ф., Муругов В.М., Сухарев С.А. *Квантовая электроника*, **35** (4), 299 (2005).
- Алексеев И.Е., Гапонцев В.И., Жаботинский М.Е., Кравченко В.В., Рудницкий Ю.П. В кн. Лазерные фосфатные стекла (М.: Наука, 1980, с. 219).
- Басиев Т.Т., Зверев П.Г., Папашвили А.Г., Федоров В.В. Квантовая электроника, 24 (7), 591 (1997).
- Басиев Т.Т., Папашвили А.Г., Зверев П.Г., Федоров В.В. Тез. докл. VII Всесоюз. конф. «Оптика лазеров» (Санкт-Петербург, 1993, с. 81).
- 5. Басиев Т.Т., Гарнов С.В., Вовченко В.И., Карасик А.Я., Климентов С.М., Конюшкин В.А., Кравцов С.Б., Малютин А.А., Папашвили А.Г., Пивоваров П.А., Чунаев Д.С. Квантовая электроника, **36** (7), 609 (2006).
- Basiev T.T., Garnov S.V., Vovchenko V.I., Karasik A.Ya., Klimentov S.M., Konushkin V.A., Kravtsov S.B., Malutin A.A., Papashvili A.G., Pivovarov P.A., Chunaev D.S. *Techn. Dig. IX Int. Conf. ILLA-2006* (Smolyan, Bulgaria, 2006, p. 175).