PACS 42.79.Bh; 07.60.Ly; 42.25.Gy

Зеркало с изменяемым амплитудно-фазовым коэффициентом отражения. 1. Моделирование зеркала с изменяемым амплитудно-фазовым коэффициентом отражения

В.В.Кийко, В.И.Кислов, Е.Н.Офицеров

На базе интерферометра Фабри— Перо разработана операторная модель зеркала как отражателя с изменяемым по апертуре коэффициентом отражения. Исследованы основные характеристики интерферометра (зеркала) в геометрическом, дифракционном и модальном приближениях. Обсуждаются различия в результатах расчетов с использованием традиционного геометрического и представленного в работе дифракционного подходов. Показано, что при эффективных числах Френеля, сравнимых с единицей, необходимо использовать дифракционное приближение. Продемонстрирована возможность использования зеркала на базе интерферометра в качестве селектора поперечных мод лазерного излучения.

Ключевые слова: зеркало с изменяемым амплитудно-фазовым коэффициентом отражения, интерферометр Фабри— Перо, лазерный резонатор, микрочип-лазер, селекция поперечных мод.

1. Введение

Зеркала с переменным по апертуре коэффициентом отражения нашли широкое применение в лазерных системах [1-3]. Установка аподизирующих зеркал в лазерный резонатор позволяет уменьшить расходимость излучения в 1.5 – 2.5 раза и приблизить качество пучка к дифракционному пределу [2-4]. Переменный по апертуре коэффициент отражения зеркала может быть получен несколькими способами: нанесением профилированных диэлектрических покрытий [5], использованием двулучепреломляющих элементов [2] или интерферометра Фабри – Перо с неплоскими зеркалами [1]. Последний способ отличается широким спектром возможностей по формированию различных распределений профиля коэффициента отражения. Кроме того, он представляется единственно пригодным для применения в современных миниатюрных лазерах и в микрочип-лазерах, характеризующихся малым поперечным размером выходного пучка. Описание формирования амплитудного распределения поля в многолучевом интерферометре Фабри-Перо сводится, как правило, к рассмотрению распространения волн в геометрическом приближении [1, 6]. Однако, к примеру, в микрочип-лазерах с апертурой ~ 100 мкм существенную роль при формировании поля зеркалом-интерферометром могут играть дифракционные эффекты. Известен ряд работ, в которых изучается роль дифракции в лазерных резонаторах (см. [7, 8] и ссылки в этих работах). В то же время роль дифракции в интерферометрах Фабри-Перо с неплоскими зеркалами исследована недостаточно полно.

В.В.Кийко, В.И.Кислов, Е.Н.Офицеров. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: hkww@ran.gpi.ru, oficerov@ran.gpi.ru

Поступила в редакцию 26 ноября 2009 г., после доработки — 30 апреля 2010 г.

В настоящей работе представлен способ дифракционного расчета резонаторного зеркала на основе интерферометра Фабри – Перо, составленного из неплоских зеркал. Обсуждаются различия результатов расчетов с помощью дифракционного и традиционного геометрического подходов. Продемонстрирована возможность использования зеркала на основе интерферометра в качестве селектора поперечных мод лазерного излучения.

2. Математическая модель зеркала-интерферометра

Рассмотрим интерферометр, схема которого представлена на рис.1. Интерферометр составлен двумя полупрозрачными отражателями с заданными амплитудно-фазовыми коэффициентами отражения $R_q \exp{(\mathrm{i}\alpha_q)}$ (q=1,2 для отражателей I,2 соответственно). Здесь R_q – коэффициент отражения; α_q – фазовая добавка, которая за-

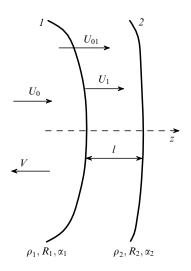


Рис.1. Схема интерферометра.

висит от формы зеркала и возникает в функции распределения поля внутри интерферометра при отражении излучения от этого зеркала; U_0 — падающее на интерферометр со стороны отражателя I поле излучения произвольного вида; U_{01} — прошедшее в интерферометр излучение в плоскости апертуры отражателя I; $U_{01} = U_0 T_1$; T_1 — коэффициент пропускания отражателя I по амплитуде поля; U_1 — отраженное от зеркала I и распространяющееся к отражателю I поле излучения, определенное в плоскости апертуры зеркала I; I — отраженное от интерферометра поле. В общем случае I0, I1, I1 и I2 зависят от координат точки на соответствующей апертуре отражателя, I1 и I2 приняты действительными константами, полупрозрачные отражатели считаются бесконечно тонкими.

Одной из основных физических характеристик интерферометра является коэффициент отражения. Поле отраженного от интерферометра излучения

$$V = \exp(-i\alpha_1)[(T_1/R_1)U_1 - R_1U_0], \tag{1}$$

коэффициент отражения интерферометра по мощности

$$R_{\rm int}^2 = \int |V|^2 dS / \int |U_0|^2 dS;$$
 (2)

здесь интегрирование ведется по апертуре отражателя 1.

Поле внутри интерферометра может рассматриваться как суперпозиция волны, прошедшей напрямую через отражатель, и волн, образующихся в результате всех многократных отражений. Поле на выходе получается путем суммирования всех полей с учетом соответствующих набегов фазы и изменений амплитуды. Эффективное число *F* проходов [7] через интерферометр туда-обратно (число интерферирующих пучков) зависит от величины $|R_1R_2|$: $F \approx \pi \sqrt{|R_1 R_2|}/(1-|R_1 R_2|)$. Амплитудно-фазовые распределения полей в различных интерферирующих пучках различаются из-за их дифракционной и геометрической расходимостей. Дифракционную расходимость необходимо учитывать в том случае, когда эффективное число Френеля $N_{\rm eff}=N_{\rm int}/2F\lesssim 1$. Здесь $N_{\rm int}=d^2/(4\lambda l)$ число Френеля для интерферометра; d – диаметр пучка; λ – длина волны излучения; l – длина интерферометра.

В работах [1,9] в геометрическом приближении подробно исследовались характеристики интерферометра со сферическими зеркалами. Получим в дифракционном приближении соотношение для поля U_1 . С учетом результатов работ [10,11], посвященных многопроходным телескопам, рассмотрим интерферометр как стационарную систему с самовоспроизводящимся полем. Поле U_1 , отраженное от зеркала I, складывается с полем U_{01} , в результате чего формируется поле $U_1 + U_{01}$, распространяющееся к отражателю 2. Это поле совершает круговой обход по интерферометру и трансформируется в U_1 . Пусть круговой обход описывается оператором распространения K. Тогда операторное уравнение интерферометра имеет следующий вид:

$$K(U_1 + U_{01}) = U_1. (3)$$

В отсутствие нелинейных по полю эффектов

$$KU_1 + KU_{01} = U_1. (4)$$

В этом уравнении U_1 – искомое поле. Решив уравнение (4) относительно U_1 , из соотношения (1) найдем отраженное поле:

$$V = \frac{\exp(-i\alpha_1)}{R_1} \left(\frac{T_1^2 K}{E - K} - R_1^2 \right) U_0, \tag{5}$$

где E – единичный оператор.

В дифракционном приближении оператор K – интегральное, с известным ядром, преобразование поля [8, 12]. При переходе к дискретной сетке по отдельным субапертурам отражателя выражение (5) принимает матричную форму. В этом случае E – единичная матрица размером $N \times N$; N^2 – число узлов в дискретной сетке; K – квадратная матрица размером $N \times N$; $\exp(-i\alpha_1)$ – диагональная матрица того же размера.

В геометрическом приближении квазиплоских волн оператор кругового обхода задается соотношением $K=R_1R_2\exp{(2ikl)}\exp{[i(\alpha_1+\alpha_2)]},$ которое входит в (4) как сомножитель. Здесь $k=2\pi/\lambda$ — волновое число; оператор F=1

С помощью соотношений (5), (1) и (2) могут быть рассчитаны основные характеристики интерферометра как лазерного зеркала. Однако анализ его селектирующих свойств довольно сложен. Рассмотрим интерферометр, применяя теорию лазерных резонаторов. Решим уравнение (4) путем разложения по модам. Введем в рассмотрение ортонормированные собственные функции (СФ) Ψ_n и собственные значения (СЗ) γ_n (n=0,1,2,...) оператора распространения $K/(R_1R_2)$. Тогда

$$K\Psi_n = (R_1 R_2) \gamma_n \Psi_n. \tag{6}$$

Решение уравнения (6) относительно Ψ_n , γ_n совпадает с решением (6) для лазерного резонатора [8], форма зеркал которого совпадает с формой отражателей интерферометра при их коэффициентах отражения, равных единице. Используем в (4) разложение по СФ падающего на интерферометр поля U_0 и поля U_1 :

$$U_0 = \sum U_0^{(n)} \Psi_n, \quad U_1 = \sum U_1^{(n)} \Psi_n. \tag{7}$$

Коэффициенты разложения $U_0^{(n)}$ рассчитываются из известных функций U_0 и Ψ_n , коэффициенты $U_1^{(n)}$ — искомые. После подстановки (7) в (4) находим

$$U_1^{(n)} = \frac{R_1 R_2 \gamma_n T_1}{1 - R_1 R_2 \gamma_n} U_0^{(n)}.$$
 (8)

В итоге отраженное от интерферометра поле (1) записывается в следующем виде:

$$V = \exp(-\mathrm{i}\alpha_1) \sum V^{(n)} \Psi_n,$$

где $V^{(n)} = R_{\text{int}}^{(n)} U_0^{(n)};$

$$R_{\text{int}}^{(n)} = \frac{R_2 \gamma_n - R_1}{1 - R_1 R_2 \gamma_n} \tag{9}$$

— коэффициент отражения интерферометра по полю для n-й моды; $\gamma_n = |\gamma_n| \exp(\mathrm{i} \varphi_n); |\gamma_n| \leqslant 1; \ \varphi_n = 2kl - \Delta \varphi_n; \ \Delta \varphi_n -$ добавка к геометрическому набегу фазы за один обход резонатора [12]. Мощность n-й моды поля

$$|V^{(n)}|^2 = |R_{\text{int}}^{(n)}|^2 |U_0^{(n)}|^2, \tag{10}$$

гле

$$|R_{\text{int}}^{(n)}|^2 = \frac{(R_1 - R_2^{(n)})^2 + 4R_1R_2^{(n)}\sin^2(\varphi_n/2)}{(1 - R_1R_2^{(n)})^2 + 4R_1R_2^{(n)}\sin^2(\varphi_n/2)}$$

— коэффициент отражения интерферометра по мощности для n-й моды; $R_2^{(n)} = |\gamma_n| R_2$ — эффективный коэффициент отражения отражателя 2 для для n-й моды. При этом коэффициент отражения интерферометра по мощности (2)

$$R_{\rm int}^2 = \frac{\sum |R_{\rm int}^{(n)}|^2 |U_0^{(n)}|^2}{\sum |U_0^{(n)}|^2}.$$

Соотношение (10) по форме схоже с известной формулой для коэффициента отражения плоского интерферометра. Отличие состоит в том, что фаза распространяющейся моды учитывает не только геометрический набег, но и дифракционный, $\Delta \varphi_n$ [13]. Кроме того, эффективный коэффициент отражения $R_2^{(n)}$ в общем случае уменьшается с ростом n. Величины $\Delta \varphi_n$ и $R_2^{(n)}$ для разных мод различны. Именно эти обстоятельства позволяют использовать интерферометр как селектор поперечных мол.

Пусть интерферометр представляет собой устойчивый резонатор с безграничными сферическими зеркалами. В этом случае $|\gamma_n|=1$ и селективные свойства интерферометра определяются параметром $\varphi_n=2kl-\Delta\varphi_n$. Мощность селектируемой n-й моды максимальна, когда выполняется условие $kl=\pi m+\pi/2+\Delta\varphi_n/2,\ m=1,\ 2,\dots$ Однако, если межмодовые расстояния по фазе невелики ($|\varphi_n-\varphi_{n+1}|\ll 1$), длину интерферометра целесообразно выбирать с учетом скорости изменения функции (10) в зависимости от $\Delta\varphi_n$.

3. Результаты вычислительных экспериментов

Основные свойства зеркала-интерферометра исследовались численно на основе соотношений (2) и (5) в дифракционном и геометрическом приближениях с использованием матричного описания полей и операторов распространения. В вычислительном эксперименте рассматривался интерферометр (см. рис.1), предназначенный для работы в качестве выходного зеркала микрочиплазера [14]. Изучались его селективность по коэффициенту отражения (2) и согласованность результатов расчетов в рамках геометрического и дифракционного подходов. Интерферометр состоял из двух сферических отражателей. Фазовые добавки, вводимые в поле внутри интерферометра при отражении от зеркал 1 и 2, задавались соотношениями

$$\alpha_1(\mathbf{r}) = \frac{kr^2}{\rho_1}, \quad \alpha_2(\mathbf{r}) = \frac{kr^2}{\rho_2},$$
(11)

где ρ_1 , ρ_2 — радиусы кривизны отражателей I и 2 соответственно, знаки которых выбирались так же, как и в теории резонаторов [8]; r — радиус-вектор точки на апертуре отражателя в цилиндрической системе координат с осью z, совпадающей с оптической осью интерферометра; r = (x, y); x, y — декартовы координаты точки.

При расчетах предполагалось, что интерферометр, если его рассматривать как резонатор, имеет устойчивую конфигурацию. Входное поле U_0 задавалось функциями, описывающими моды $\mathrm{TEM}_{\mu,\nu}$ (μ,ν – поперечные индексы) внешнего по отношению к интерферометру резонатора. Поле U_0 и поле, соответствующее Ψ_n , имели одинаковые радиусы кривизны, но различались распределениями амплитуды. При этом амплитудно-фазовое распределение U_0 задавалось через полиномы Эрмита [8].

На рис.2 представлены результаты расчетов амплитудно-фазового распределения поля лазерного пучка, отраженного от интерферометра длиной l ($l=l_0+\Delta l$, где l_0 – базовая длина интерферометра, кратная целому числу полуволн, а Δl — варьируемое при расчетах смещение одного из зеркал интерферометра вдоль его оптической оси). Рассматривался одномерный входной пучок с распределением поля моды TEM_0 . Эффективное число Френеля для интерферометра $N_{\rm eff}\approx 0.35$. При этом, как и следовало ожидать, рассчитанные в дифракционном и геометрическом приближениях поля существенно различались.

Результаты расчетов коэффициента отражения (2) интерферометра для нескольких низших поперечных мод внешнего устойчивого резонатора приведены на рис.3, 4. Зависимости на рис.3 получены для конфигурации интерферометра с $\rho_2 = -\rho_1$, $\rho_1 > 0$. В этом случае коэффициент отражения в геометрическом приближении зависит только от длины интерферометра l и коэффициентов отражения составляющих его зеркал R_1 и R_2 . При этом интерферометр действует на прошедшее и отраженное поля аналогично полупрозрачному зеркалу с тем же радиусом

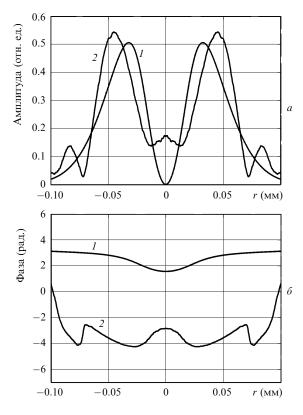


Рис.2. Распределения амплитуды (a) и фазы (δ) отраженного от интерферометра поля, рассчитанные в геометрическом (I) и дифракционном (2) приближениях при $\rho_1=\infty,\ \rho_2=0.02$ м, $l_0=500\lambda,\ \lambda=1.064$ мкм; $\Delta l=0,\ d=140$ мкм и $R_1=R_2=0.88$.

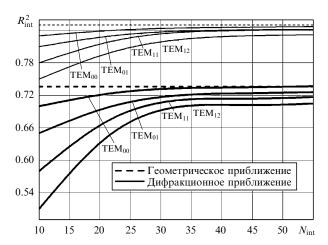


Рис.3. Зависимости коэффициентов отражения $R_{\rm int}^2$ интерферометра от числа Френеля $N_{\rm int}$ для $\Delta l=0.05\lambda$ (тонкие линии) и $\Delta l=0.03\lambda$ (жирные линии) при $\lambda=1.064$ мкм, $\rho_2=-\rho_1,~\rho_1=0.07$ м, d=100 мкм, $R_1=R_2=0.88$.

кривизны, что и у отражателя 1. Однако в дифракционном приближении отмечается заметное различие коэффициентов отражения для разных мод.

На рис.4 представлены результаты расчета $R_{\rm int}^2$ для зеркала-интерферометра с $\rho_2=-\rho_1+1100\lambda$. Его селективность оказалась значительно выше селективности интерферометра с $\rho_2=-\rho_1$. Это объясняется тем, что межмодовые фазовые расстояния существенно зависят от ρ_1 , ρ_2 (как и в устойчивых резонаторах), и они больше при $\rho_2=-\rho_1+1100\lambda$.

С ростом числа Френеля $N_{\rm int}$, которое в расчетах варьировалось путем изменения длины интерферометра, все коэффициенты отражения приближаются к геометрическим. При этом коэффициенты отражения зеркал интерферометра R_1 , R_2 выбирались такими, чтобы эффективное число Френеля $N_{\rm eff}$ изменялось от 0.2 до 1. Заметим, что для мод ${\rm TEM}_{\mu\nu}$ с одинаковой суммой индексов $\mu + \nu$ коэффициенты отражения интерферометра (2) по результатам расчетов оказываются практически одинаковыми. Объясняется это тем, что дополнительный к геометрическому набег фазы $\Delta \phi_{\mu+\nu}$ при разложении поля ${\rm TEM}_{\mu\nu}$ по функциям $\Psi_{\mu+\nu}$ для таких мод одинаков. Поэтому на рис. 3, 4 представлены результаты расчетов не для всех

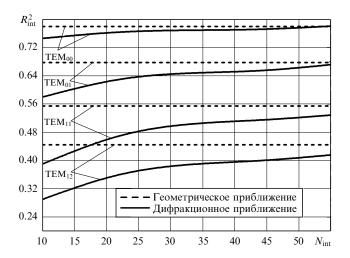


Рис.4. Зависимости коэффициентов отражения $R_{\rm int}^2$ интерферометра от числа Френеля $N_{\rm int}$ при $\Delta l=\lambda/40,~\rho_2=-\rho_1+1100\lambda,~\rho_1=0.07$ м, d=100 мкм, $R_1=R_2=0.88$ и $\lambda=1.064$ мкм.

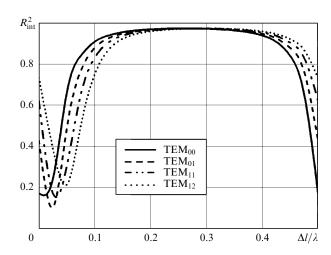


Рис.5. Зависимости коэффициентов отражения $R_{\rm int}^2$ интерферометра от расстройки Δl при $\rho_1=\infty,\,\rho_2=-0.06$ м, $l_0=100\lambda,\,\lambda=1.064$ мкм, d=200 мкм и $R_1=R_2=0.88$.

низших поперечных мод, а только для мод с различающимися суммами индексов $\mu + \nu$.

Необходимо отметить, что величина $l=l_0+\Delta l$ ($l_0=m\lambda/2, m$ – целое) в представленных расчетах изменялась при изменениях m дискретно (расстройка Δl фиксировалась), соответственно величина $N_{\rm int}=N_{\rm int}(m)$ также изменялась дискретно. На рис. 3, 4 для удобства восприятия зависимость $R_{\rm int}^2(N_{\rm int})$ представлена непрерывной линией, полученной путем экстраполяции расчетных значений

Селективность интерферометра существенно зависит и от расстройки Δl (рис.3, 5). Данные рис.5 позволяют оптимизировать Δl с учетом требований к селективности и значению $R_{\rm int}^2$. Как видно из рис.5, например, для селекции моды ${\rm TEM_{00}}$ предпочтительной является область расстроек $\Delta l \approx 0.05 \lambda - 0.12 \lambda$. В этой области различие коэффициентов отражения для соседних мод достигает 1.5-2 раз. Однако в областях расстроек $\Delta l \approx 0-0.01 \lambda$ и $\Delta l \approx 0.43 \lambda - 0.5 \lambda$ мода ${\rm TEM_{00}}$ подавляется и доминирующей становится мода ${\rm TEM_{01}}$. В области расстроек, где доминируют высшие моды, $\Delta N_{\rm eff}$ уменьшается от значений Δl , близких к 0.5λ .

Представленные результаты подтверждают возможность использования интерферометра в качестве селектора поперечных резонаторных мод. При оптимизации параметров интерферометра необходимо учитывать амплитудно-фазовые распределения резонансных полей, которые формируются внутри внешнего лазерного резонатора и являются входными для интерферометра.

4. Заключение

На основе разработанной операторной модели зеркала-интерферометра как отражателя с изменяемым и переменным по апертуре коэффициентом отражения проведены исследования основных характеристик интерферометра в геометрическом, дифракционном и модальном приближениях. Показано, что сферический интерферометр может использоваться в качестве селектора поперечных мод лазерного пучка. При оптимальном выборе параметров зеркала-интерферометра (база, расстройка, радиусы кривизны отражателей) относительное различие в коэффициентах отражения для соседних мод может достигать 1.5—2 раз. В тех случаях, когда эффективное число Френеля $N_{\rm eff}\lesssim 1$, при оптимизации параметров зеркала-интерферометра необходимо использовать дифракционное приближение.

В представленной работе зеркало-интерферометр рассматривалось как пассивное устройство, которое преобразует лазерное излучение, но не влияет на работу самого лазера. Во второй части работы планируется проведение исследований свойств интерферометра и лазерного резонатора как единой системы.

Настоящая работа выполнена при поддержке РФФИ (грант № 09-02-00343).

- De Silvestri S., Laporta P., Magni V., Svelto O. Opt. Lett., 12, 84 (1987).
- 2. Giuliani G., Parkt Y.K., Byer R.L. O. Opt. Lett., 5, 491 (1980).
- Белашенков Н.Р., Карасев В.Б., Назаров В.В., Путилин Э.С., Фимин П.Н., Храмов В.Ю. Оптич. журн., 67, 25 (2000).
- 4. Morin M. Opt. Quantum Electron., 29, 819 (1997).

- Emiliani G., Piegari A., De Silvestri S., Laporta P., Magni V. *Appl. Opt.*, 28, 2832 (1989).
- 6. Троицкий Ю.В. *Многолучевые интерферометры отраженного света* (Новосибирск: Наука, 1985).
- 7. Звелто О. Принципы лазеров (СПб.: Изд-во «Лань», 2008).
- 8. Ананьев Ю.А. *Оптические резонаторы и лазерные пучки* (М.: Наука, 1990).
- De Silvestri S., Laporta P., Magni V. J. Opt. Soc. Am. A, 4, 1413 (1987).
- 10. Артемов Д.В., Кислов В.И. Квантовая электроника, 23, 76 (1996).
- 11. Бондаренко А.В., Даньщиков Е.В., Елкин Н.Н., Лебедев Ф.В., Лиханский В.В., Напартович А.П., Трощиева В.Н. *Квантовая* электроника, **15**, 30 (1988).
- 12. Борн М., Вольф Э. Основы оптики (М.: Наука, 1970).
- 13. Быков В.П., Силичев О.О. *Оптические резонаторы* (М.: Физматлит, 2004).
- 14. Grechin S.G., Koshechkina V.V., Shestakov A.V., in *Techn. Program XIII Conf. on Laser Optics* (St. Petersburg, 2008, p. 68).