ПРИМЕНЕНИЯ ЛАЗЕРОВ И ДРУГИЕ ВОПРОСЫ КВАНТОВОЙ ЭЛЕКТРОНИКИ

PACS 28.20.-v; 28.20.Gd

Управление кинематикой нейтронов в коаксиальной магнитной ловушке

Л.А.Ривлин

Обсуждаются физические основы способа контролируемого изменения основных кинематических параметров нейтронов (энергии, скорости, концентрации и др.) посредством вариации силы тока коаксиальной магнитной ловушки, содержащей нейтроны. Приведены количественные оценки возможных изменений параметров на несколько порядков величин и намечены области и перспективы применения обсуждаемого подхода.

Ключевые слова: квантовая нуклеоника, ускорение и торможение нейтронов, манипулирование концентрацией нейтронов, ультра-холодные нейтроны, ядерные реакции с нейтронами, нейтронная накачка гамма-лазера.

1. Введение

Целенаправленное контролируемое управление кинематикой нейтронов, затрудненное их электронейтральностью, необходимо для решения задач в нейтронной оптике, микроскопии, интерферометрии, квантовой нуклеонике и т. п. (см., напр., [1-3]). Обычно для управления движением нейтрона используют взаимодействие его магнитного момента с электромагнитным полем, обладающим конечным градиентом магнитной индукции. В настоящей работе рассматриваются физические основы способа управления кинематическими параметрами нейтронов, аккумулированных в магнитной ловушке коаксиального типа, которая была успешно применена ранее для удержания пучка нейтральных атомов натрия [4]. Рассматриваемый метод может способствовать разрешению проблем в областях, обсуждаемых в [1-3].

2. Нейтроны в коаксиальной магнитной ловушке

Основа коаксиальной ловушки – прямолинейный проводник диаметром $2r_j$ с током J, создающим на достаточном удалении от концов проводника в цилиндрической системе координат (z, r, φ) магнитное поле с индукцией

$$B = \frac{\mu_0}{4\pi} \frac{2J}{r} \qquad (r > r_j) \tag{1}$$

и кольцевыми силовыми линиями, охватывающими ток в плоскости (r, φ) (μ_0 – магнитная проницаемость свободного пространства). В этом поле вектор магнитного дипольного момента нейтрона с модулем $m = 0.95 \times 10^{-20}$ Дж/Тл устанавливается по касательной к силовой линии, и нейтрон оказывается в потенциальной яме

Поступила в редакцию 27 июля 2011 г., после доработки – 18 октября 2011 г.

$$U(r) = -\frac{\mu_0 m}{2\pi} \frac{J}{r},\tag{2}$$

испытывая в точке $r \ge r_j$ воздействие градиентно-магнитной силы с модулем

$$F_B = \left| m \frac{\mathrm{d}B}{\mathrm{d}r} \right| = \frac{\mu_0 m}{4\pi} \frac{2J}{r^2},\tag{3}$$

направленной по радиусу к r = 0.

Для описания поведения нейтрона в коаксиальной магнитной ловушке, являющейся макроскопическим устройством, вполне достаточно классического рассмотрения и едва ли необходимо привлечение квантовомеханического анализа.

В самом деле, решение уравнения Шредингера для нейтрона с массой M и энергией ε есть $\Psi^2(r, \varphi, z) = Y^2(r)$ × $\cos^2(N\varphi)\cos^2(Qz)$, где N – орбитальное целое квантовое число; $Q = (2M\varepsilon_z)^{1/2}/\hbar$; ε_z – продольная компонента энергии ε ; Y(r) – интеграл уравнения

$$\frac{\mathrm{d}^2 Y}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}Y}{\mathrm{d}r} + \left[2M\hbar^{-2} (\varepsilon - \varepsilon_z) + \frac{\mu_0 m M J}{\pi\hbar^2 r} - \left(\frac{N}{r}\right)^2 \right] Y = 0.$$

Далее, используя для анализа условий квантования, например орбитальную степень свободы нейтрона (множитель $\cos(N\varphi)$) и оценивая в соответствии с правилами Бора орбитальное квантовое число $N = (r/\hbar)(2M\varepsilon_{\varphi})^{1/2}$ как отношение длины круговой орбиты с радиусом r к орбитальной составляющей длины дебройлевской волны $\Lambda_{\varphi} = 2\pi\hbar(2M\varepsilon_{\varphi})^{-1/2}$, где ε_{φ} – орбитальная компонента энергии, нетрудно получить, что энергии двух соседних состояний с числами N + 1 и N различаются на $\Delta \varepsilon_{\varphi} \approx (\hbar/r)(2\varepsilon_{\varphi}/M)^{1/2}$. Если разность $\Delta \varepsilon_{\varphi}$ сопоставима с однородной энергетической шириной орбитального состояния $\delta \varepsilon$ ($\Delta \varepsilon_{\varphi} \leq \delta \varepsilon$), то спектр состояний становится и квантовые свойства системы.

Однородная ширина $\delta \varepsilon = 2\pi \hbar \tau_n^{-1}$ обратно пропорциональна наименьшему из времен τ_n существования состояния (например, времени пребывания нейтрона в ловушке, обратной вероятности нейтронных столкновений и т.п.,

Л.А.Ривлин. Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Лаборатория прикладной физики, Россия, 119454 Москва, просп. Вернадского, 78; e-mail: lev.rivlin@gmail.com

вплоть до наибольшего времени – времени жизни β -радиоактивного нейтрона $\tau_{\beta} \approx 1300$ с), т.е. $\delta \varepsilon = 2\pi h \tau_n^{-1} \ge 2\pi h \tau_{\beta}^{-1} \approx 3 \times 10^{-18}$ эВ, причем с большим запасом, поскольку обычно $\tau_n \ll \tau_{\beta}$, а полный энергетический спектр состояний значительно более плотен из-за квантования по двум другим степеням свободы нейтрона.

Таким образом, необходимость в квантовом подходе утрачивается при условии

$$\varepsilon_{\varphi}r^{-2} < 2\pi^2 M \tau_{\beta}^{-2} \left(\frac{\tau_{\beta}}{\tau_{\rm n}}\right)^2 \approx 10^4 \left(\frac{\tau_{\beta}}{\tau_{\rm n}}\right)^2 (\Im \mathbf{B} \cdot \mathbf{c} \mathbf{M}^{-2}), \tag{4}$$

т.е. при свойственных ловушке вполне макроскопических параметрах (например, при $r < 10^{-4}$ см даже для тепловых нейтронов с $\varepsilon \approx 25$ мэВ и без учета оговорок о $\tau_n < \tau_\beta$ и уплотнения спектра состояний за счет других степеней свободы).

В итоге при дальнейшем рассмотрении ловушки макроскопической геометрии достаточно прибегнуть к цилиндрической версии кеплеровой модели, ограничившись для определенности лишь круговыми орбитами.

3. Кеплерова модель коаксиальной магнитной ловушки

В кеплеровой модели с цилиндрической геометрией на нейтрон наряду с градиентно-магнитной силой F_B (3) воздействует также центробежная сила с модулем

$$F_{\rm c} = 2\varepsilon_{\varphi}/r.$$
(5)

Равенство сил $F_c = F_B$ задает стационарное движение нейтрона по круговой орбите с радиусом

$$r_0 = \frac{\mu_0 m}{4\pi} \frac{J}{\varepsilon_{\varphi}} \approx 6 \times 10^{-13} \frac{J}{\varepsilon_{\varphi}} \text{ (cm)}$$

и частотой обращения

$$\Omega = \frac{4\pi}{\mu_0 m J} \left(\frac{2\epsilon_{\varphi}^3}{M}\right)^{1/2} \approx 2 \times 10^{18} \frac{\epsilon_{\varphi}^{3/2}}{J} \,(\mathrm{c}^{-1}),\tag{7}$$

причем произведение

$$r_0 \varepsilon_{\varphi} = \frac{\mu_0 m}{4\pi} J \approx 6 \times 10^{-13} J \text{ (см.эB)}$$
(8)

образует семейство гипербол с силой тока J в качестве параметра (здесь и далее в численных выражениях – см, с, \mathfrak{sB} , A).

Поскольку компоненты сил, касательные к орбите нейтрона, отсутствуют, его момент количества движения остается неизменным,

$$r(2M\varepsilon_{\omega})^{1/2} = \text{const},\tag{9}$$

и, следовательно, $F_c = \text{const}^2/(Mr^3)$. Поэтому, из-за более быстрого убывания $F_c \sim r^{-3}$ по сравнению с $F_B \sim r^{-2}$ с ростом радиуса *r*, равновесная орбита с радиусом r_0 является стационарной.

Следует оговорить, что в выражении для силы F_B (3) принято допущение о сохранении параллельности векторов дипольного момента **m** и вектора **B**, поскольку при частоте прецессии нейтрона, существенно превышающей частоту Ω (7), вектор **m** успевает отслеживать направление вектора **B**. По этой же причине в орбитальное квантовое число N входит также приращение фазы Берри, кото-

рое возникает из-за поворота вектора *m*, следующего в орбитальном движении за вектором *B*.

В итоге траектория нейтрона является спиралью с радиусом r_0 и шагом $\Delta z = 2\pi v_z/\Omega$, а множество траекторий образует круговой цилиндр с радиусом r_0 (6), движущийся со скоростью $v_z = (2\varepsilon_z/M)^{1/2}$ вдоль оси z и вращающийся вокруг нее с частотой Ω (7).

Едва ли следует считать, что непременно присутствующая немонокинетичность нейтронного потока имеет чисто термодинамическое происхождение, поскольку энергетическая дисперсия нейтронов $\Delta \varepsilon$ в большей степени обусловлена технологическими особенностями загрузки нейтронов в ловушку. Тем не менее удобно приписать нейтронам условный параметр с размерностью температуры

$$T^* \equiv \Delta \varepsilon / k_{\rm B} \tag{10}$$

(*k*_в – постоянная Больцмана).

Немонокинетичный нейтронный поток заполняет цилиндрический слой со средним радиусом r_0 (6), относительной радиальной толщиной

$$\Delta r_0 / r_0 = k_{\rm B} T^* / \varepsilon_{\varphi} \tag{11}$$

и объемом единицы длины ловушки с полной протяженностью Lвдоль оси \boldsymbol{z}

$$V = 4\pi r_0 \Delta r_0 = 4\pi r_0^2 \frac{k_{\rm B} T^*}{\varepsilon_{\varphi}} = \frac{(\mu_0 m J)^2}{4\pi \varepsilon_{\varphi}^3} k_{\rm B} T^*.$$
 (12)

Нейтронный ансамбль в объеме VL можно полагать бесстолкновительным, если за время пребывания нейтрона в ловушке вероятность столкновений мала,

$$\sigma n L (k_{\rm B} T^* / \varepsilon_z)^{1/2} \ll 1, \tag{13}$$

в противном случае столкновения следует принимать в расчет (σ – сечение столкновений, n – концентрация нейтронов).

4. Нейтроны в коаксиальной магнитной ловушке (переходные процессы)

Изменение орбитальных состояний нейтрона в коаксиальной ловушке происходит при вариации силы тока *J*. Если *J* изменяется достаточно медленно, т. е. если происходящее за время $2\pi/\Omega$ относительное изменение равновесного радиуса мало ($|\delta r_0|/r_0 \ll 1$), то переходной процесс можно рассматривать как последовательность стационарных состояний, к которым применимы результаты предыдущего раздела. Это ограничивает скорость изменения силы тока неравенством

$$\frac{\mathrm{d}J}{\mathrm{d}t} \ll \frac{(2\varepsilon_{\varphi})^{3/2}}{\mu_0 m M^{1/2}} \approx 3 \times 10^{17} \varepsilon_{\varphi}^{3/2} \text{ (A/c)},\tag{14}$$

которое едва ли может вызвать заметные затруднения при проведении экспериментов даже с ультрахолодными нейтронами.

Вследствие постоянства орбитального момента количества движения (9) и при выполнении (14) изменение силы тока от J_1 до J_2 влечет за собой переход из стационарного состояния 1 в состояние 2 со следующими отношениями между начальными и конечными параметрами:

1 аол. 1						
Номер примера, состояние	$J(\mathbf{A})$	r_0 (см)	<i>ε</i> (эВ)	$T_{\varepsilon}^{*}(\mathbf{K})$	<i>n</i> (см ⁻³)	$\varepsilon n (\Im B \cdot cm^{-3})$
Nº 1						
Состояние 1	10	10^{-3}	6×10^{-13}	10 ⁻³	105	6×10^{-8}
Состояние 2	1	10^{-2}	6×10^{-15}	10^{-5}	10 ³	6×10^{-12}
№ 2						
Состояние 1	1	10^{-2}	6×10^{-11}	10^{-1}	105	6×10^{-6}
Состояние 2	10	10 ⁻³	6×10^{-9}	10	107	6×10^{-2}

Табл.1

$$\varepsilon_2/\varepsilon_1 = (J_2/J_1)^2,\tag{15}$$

$$\Delta \varepsilon_2 / \Delta \varepsilon_1 = T_2^* / T_1^* = (J_2 / J_1)^2,$$
(16)

$$r_{02}/r_{01} = J_1/J_2, \tag{17}$$

 $V_2/V_1 = (J_1/J_2)^2,$ (18)

$$n_2/n_1 = (J_2/J_1)^2, \tag{19}$$

$$\varepsilon_2 n_2 / \varepsilon_1 n_1 = (J_2 / J_1)^4,$$
 (20)

$$\Omega_2 / \Omega_1 = (J_2 / J_1)^2.$$
⁽²¹⁾

Несколько необходимых замечаний.

1. Отношения концентраций нейтронов (19) и плотности орбитальной компоненты энергии (20) справедливы при допущении, что вариация силы тока J и соответствующее изменение объема V (18) происходят без изменения числа нейтронов: Vn = const.

2. Строго говоря, в бесстолкновительном нейтронном ансамбле, подчиняющемся неравенству (13), изменения как энергии ε (15), так и условной температуры T^* (16) непосредственно относятся лишь к их орбитальным составляющим, однако при обратном знаке неравенства (13) нейтронные столкновения способны распространить эти изменения на все степени свободы нейтрона.

3. Сложности, связанные с большими значениями силы тока J и напряженности магнитного поля, поддаются устранению по меньшей мере двумя способами: использованием режима коротких импульсов тока J и/или применением доступных сверхпроводящих проводников с большим значением критического магнитного поля (см., напр., [5]).

Представление о параметрах начального (состояние 1) и конечного (состояние 2) состояний переходного процесса дают два численных примера с уменьшением (№ 1, $J_2 < J_1$) и увеличением (№ 2, $J_2 > J_1$) силы тока *J* (табл.1), которые указывают на возможность манипулировать всеми основными кинематическими параметрами нейтронов, перечисленными в (15)–(21), варьируя силу тока *J*.

5. Заключение и краткое обсуждение некоторых экспериментальных ситуаций

Нижеследующий краткий перечень экспериментальных задач, не содержащий каких-либо окончательных решений, полезен как взгляд на некоторые возможные варианты применения и развития рассмотренного метода управления кинематикой нейтронов в коаксиальной магнитной ловушке.

1. Изменение энергии ε и условной температуры T^* , включая производство ультрахолодных нейтронов с $T_{\varepsilon} \sim 10^{-3}$ К (и даже гипотетических экстремально холодных нейтронов с $T_{\varepsilon} \ll 10^{-3}$ К).

2. Изменение нейтронной концентрации и плотности энергии *пє*.

3. Возбуждение ядерных реакций нейтронами с оптимизированными параметрами – энергией ε , концентрацией *n* и др., для чего экспонируемые ядра размещаются в коаксиальном цилиндрическом слое с конечным радиусом r_{02} (пример – реакция радиационного захвата нейтрона (*n*, γ)).

4. Накачка ядерного гамма-лазера нейтронами с оптимизированными параметрами (как по мессбауэровской схеме с твердотельной матрицей, так и по схеме со скрытой инверсией свободных ядер [3], в частности, по реакции радиационного захвата нейтрона (n, γ)) с размещением ядер в протяженном финальном коаксиальном слое в соответствие с п.3.

5. Инициирование реакции деления нейтронами с оптимизированными параметрами (энергией ε , концентрацией *n* и др.) ядер, размещенных в финальном коаксиальном слое в соответствии с п.3.

6. Генерирование бинарного нейтронно-электронного(ионного) пучка в видоизмененной коаксиальной магнитной ловушке, в которой центральный токонесущий проводник замещен прямолинейным пучком свободных заряженных частиц (в частности электронов), создающим необходимое радиально-градиентное магнитное поле вида (1). Результатом такого видоизменения является образование подвижной коаксиальной магнитной ловушки в виде единства двух коаксиальных пучков частиц, перемещающейся в свободном пространстве со скоростью, равной меньшей из двух транспортных скоростей частиц (важно подчеркнуть непременное требование неравенства последних, необходимое для создания магнитного поля!). Подобная подвижная коаксиальная магнитная ловушка (разумеется, в случае установления ее достаточно продолжительного устойчивого существования) открывает перспективу дистанционной реализации процессов, перечисленных в пп.1-5.

В целом приведенный перечень свидетельствует о привлекательной перспективе построения нейтронной коаксиальной магнитной ловушки с варьируемой силой тока как инструмента управления кинематическими параметрами нейтронов (с их изменением на несколько порядков) для различных областей экспериментальной физики.

В заключение стоит упомянуть, что придание коаксиальной магнитной ловушке [4] способности варьировать силу тока существенно расширяет спектр ее применений и в атомных экспериментах, превращая ее из простого аккумулятора атомов в устройство управления их кинематическими параметрами.

Автор выражает признательность В.П.Макарову за постоянное внимание к работе и ценные замечания.

- 1. Франк И.М. УФН, **161**, 98 (1991).
- 2. Франк А.И. *УФН*, **161**, 109 (1991).
- 3. Ривлин Л.А. Квантовая электроника, 37, 723 (2007).
- 4. Schmiedmayer J. Phys. Rev. A, 52 (1), R13 (1995).
- 5. Ивановский А.Л. УФН, **178**, 1273 (2008).