НЕЛИНЕЙНО-ОПТИЧЕСКИЕ ЯВЛЕНИЯ

Нелинейное поглощение лазерного излучения фталоцианинами цинка и свинца и порфирином цинка, находящимися в композитной матрице нанопористое стекло-полимер

С.М.Долотов, Л.М.Колдунов, М.Ф.Колдунов, В.А.Петухов, А.В.Сизюхин

Исследовано нелинейное поглощение лазерного излучения на длине волны 532 нм фталоцианинами цинка (PcZn) и свинца (PcPb), а также порфирином цинка (PrZn), находящимися в твердой композитной матрице нанопористое стекло – полимер, при наносекундной длительности лазерного импульса. Определены основные характеристики нелинейного поглощения этих соединений в композите. Показано, что композитная матрица пригодна для разработки на ее основе нелинейных оптических элементов, активированных органическими соединениями. Проанализирована корреляция нелинейных характеристик исследованных соединений в композитной матрице и жидком растворителе.

Ключевые слова: нелинейное поглощение, композит, твердая матрица, нанопористое стекло – полимер, фталоцианин свинца, фталоцианин цинка, порфирин цинка, функциональное органическое соединение.

1. Введение

Нелинейное поглощение функциональных органических соединений (ФОС) активно исследуется начиная с 80-х годов прошлого века [1]. Интерес к этому явлению вызван как фундаментальной задачей идентификации механизма нелинейного поглощения ФОС, так и потребностями в разработке нелинейных оптических элементов (ограничителей мощности, оптических переключателей и др.) С практической точки зрения желательно, чтобы оптический элемент был твердотельным, тогда как в большинстве работ исследовались характеристики нелинейного поглощения ФОС в жидком растворителе [2–4].

Сложность разработки твердотельной матрицы для ФОС связана с предъявляемыми к ней требованиями. Она должна быть прозрачной в рабочей области длин волн, иметь высокую лазерную прочность, быть устойчивой к изменению температуры, влажности и т.д. Кроме того, технология изготовления матрицы должна позволять вводить в нее ФОС без его разрушения. Поскольку температура деструкции ФОС, как правило, менее 200 °С, то выбор материала матрицы существенно ограничен. К возможным типам матрицы для ФОС относятся полимеры [5–7], ормосилы [8], золь-гель стекла [9], композит нанопористое стекло–полимер [10] (НПСП).

Характеристики молекулы ФОС (сечения поглощения, скорости внутренней и интеркомбинационной кон-

М.Ф.Колдунов. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: modest@iof.ran.gpi.ru В.А.Петухов. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: petukhov@sci.lebedev.ru

Поступила в редакцию 23 мая 2011 г., после доработки – 31 октября 2011 г.

версии и др.) существенно зависят от среды, окружающей молекулу [11, 12]. Отличие характеристик ФОС в твердой матрице от таковых в жидком растворителе должно приводить к изменению характеристик нелинейного поглощения молекулы ФОС и, возможно, механизма нелинейного поглощения. По этой причине введение ФОС (ранее исследованного в жидком растворителе) в твердую матрицу требует дополнительного изучения как характеристик его нелинейного поглощения, так и механизма этого поглощения. Кроме того, большое количество данных о нелинейном поглощении ФОС в жидких растворах делает актуальной задачу поиска корреляции характеристик нелинейного поглощения ФОС в жидком растворе и твердой матрице.

Цель настоящей работы – исследование нелинейного поглощения ФОС в композитной матрице НПСП, а также поиск корреляции характеристик нелинейного поглощения ФОС в композите НПСП и жидком растворителе. Для достижения этой цели были выполнены эксперименты по измерению нелинейного поглощения фталоцианинов цинка и свинца, а также порфирина цинка, введенных в композит НПСП, и проведено сопоставление полученных результатов с данными, приведенными в литературе.

2. Образцы и их спектральные характеристики

В работе исследованы оптические элементы из композита НПСП, активированные модифицированными фталоцианинами цинка (PcZn) и свинца (PcPb), а также порфирином цинка (PrZn). Образцы изготавливались по методике, описанной в [10].

Композит НПСП [10] состоит из нанопористого стекла, формирующего его твердый каркас, и полимерного компонента, введенного в поры стекла. При изготовлении образцов композита использовалось стекло, пористость которого (отношение объема пор к полному объему образца) составляла 40%. Распределение пор по размерам, полученное методом водной порометрии [13], было узким, одномодальным, средний размер пор составлял

С.М.Долотов. Российский химико-технологический университет им. Д.И.Менделеева, Россия, 125047 Москва, Миусская пл., 9; e-mail: dolsm@mail.ru

Л.М.Колдунов, А.В.Сизюхин. Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141700 Долгопрудный, Институтский пер., 9

5 нм, а его дисперсия была равна 2 нм. Полимерный компонент композита синтезировался из мономерной смеси, включающей в себя очищенный перегонкой метилметакрилат, низкомолекулярную добавку и инициатор реакции. В этой мономерной смеси растворялся ФОС. Предел растворимости составлял 10^{-3} моль/л для PcPb и PcZn и 5×10^{-3} моль/л для PrZn. При изготовлении образцов композита максимальная концентрация ФОС в мономерной смеси была на 30% меньше предельной.

В приготовленный мономерный состав помещалось нанопористое стекло, и после заполнения пор мономерной смесью проводилась свободно-радикальная полимеризация. По завершении полимеризации образец композита извлекался из полимерного блока и обрабатывался по технологии, принятой для оптического стекла.

Изготовленные оптические элементы имели размеры $20 \times 14 \times 3$ мм, их поверхность была обработана по 4-му классу чистоты. Все элементы обладали высоким оптическим качеством и были однородно заполнены ФОС. Оптические плотности образцов на длине волны $\lambda = 532$ нм составляли 0.38 (PcPb), 0.24 (PcZn) и 0.58 (PrZn).

Кроме твердотельных оптических элементов из композита исследовался контрольный образец раствора PrZn в этилацетате, оптическая плотность которого равнялась 0.47 на $\lambda = 532$ нм.

Спектры поглощения ФОС измерялись спектрофлуориметром СМ 2203 (Solar) в области $\lambda = 200 - 800$ нм как в мономерной смеси, так и в композите. Концентрация ФОС в мономерной смеси варьировалась от 10^{-5} моль/л до предела растворимости. Для измерения спектров высококонцентрированных растворов ФОС с высокой оптической плотностью применялись кюветы Шотта малой толщины.

В результате исследований было установлено, что спектры поглощения всех выбранных ФОС в мономерном растворе остаются неизменными вплоть до предела растворимости. Контроль оптической плотности для ряда длин волн показал, что во всей области концентраций выполнялся закон Бугера: $D(\lambda) = \lg(I_0/I) = \varepsilon(\lambda)cL$, где $D(\lambda)$ – оптическая плотность; $\varepsilon(\lambda)$ – экстинкция; c – концентрация красителя; L – толщина образца; I_0 и I – интенсивности падающего и прошедшего излучения. Спектры поглощения и экстинкция ФОС в композите в пределах точности эксперимента совпадали с их спектрами и экстинкцией в мономерной смеси.

Неизменность спектров поглощения указывает на отсутствие ассоциатов во всей области концентраций растворов ФОС, так же как и в композите, а равенство экстинкций ФОС в растворе и композите – на равенство сечений переходов из основного состояния в первое возбужденное.

3. Экспериментальные исследования

Исследовались зависимость пропускания образцов от плотности энергии лазерного излучения на $\lambda = 532$ нм, фотодеградация ФОС в композите, а также лазерная прочность композита НПСП на $\lambda = 532$ нм.

Схема экспериментальной установки для исследования зависимости пропускания ФОС от плотности энергии лазерного излучения представлена на рис.1.

В качестве зондирующего излучения использовалась вторая гармоника Nd:YAG-лазера, работающего при частоте следования импульсов 1 Гц. Длительность лазерного импульса контролировалась осциллографом Wave

Рис.1. Схема установки для исследования пропускания оптического элемента:

Д – диафрагма Ø2 мм; ННС1 и ННС2 – наборы нейтральных светофильтров; Л – линза с фокусным расстоянием 8 см; ФД1 и ФД2 – фотоприемники; НС – нейтральные светофильтры; ФД3 – приемник, контролирующий длительность импульса.

Runner 6050A (LeCroy), сигнал на который подавался с фотодиода ФДЗ S7481 (Hamamatsu), и составляла 24±1 нс на полувысоте.

Распределение интенсивности излучения по сечению пучка было близко к гауссову. Диафрагма Д диаметром 2 мм выделяла приосевую часть пучка таким образом, что интенсивность излучения в ее пределах менялась незначительно и при обработке результатов эксперимента полагалась постоянной на всей диафрагме. Линза Л проецировала изображение диафрагмы на переднюю плоскость образца. Расстояние L_1 от диафрагмы Д до линзы Л выбиралось таким, чтобы можно было обеспечить необходимый диапазон плотностей энергий лазерного излучения на образце, который помещался между двумя наборами нейтральных светофильтров - ННС1 и ННС2. Путем перестановки светофильтров из набора ННС1 в ННС2 изменялась интенсивность лазерного излучения на образце. Энергия лазерного импульса измерялась фотодиодными детекторами ФД1 и ФД2 с относительной погрешностью ±1% до и после образца соответственно.

При такой постановке эксперимента пропускание исследуемых образцов T(W) (W-плотность энергии лазерного излучения) пропорционально отношению показаний фотоприемников ФД2 и ФД1, нормированному на $T(0) = T_0$, где T_0 – пропускание оптического элемента в линейном режиме.

Для определения момента фотодеградации ФОС в композите НПСП одна и та же область образца облучалась серией из 200 импульсов при $W \le 1 \text{ Дж/см}^2$. В ходе эксперимента контролировалось пропускание образца, возрастание которого указывало на наличие фотодеградации ФОС.

Исследование лазерного разрушения композита НПСП, активированного ФОС, проводилось в режиме одноимпульсного разрушения: одна область оптического элемента облучалась одним импульсом. За порог лазерной прочности композита НПСП принималась интенсивность лазерного излучения, при которой разрушение реализуется с вероятностью 0.5.

4. Результаты эксперимента

Зависимость пропускания T от плотности энергии лазерного излучения W для образца, активированного PcPb, приведена на рис.2. На рис.3 представлены зависимости T(W) для PcZn в композите НПСП и PrZn в композите НПСП и этилацетате.

Из рис.2 и 3 видно, что зависимости T(W) характеризуются двумя значениями пропускания: при малой (T(0))и большой $(T(\infty))$ плотностях энергии, а также соответ-

Рис.2. Зависимость пропускания T от плотности энергии лазерного излучения W (в Дж/см²) для РсРb.

Рис.3. Зависимости пропускания *T* от плотности энергии лазерного излучения *W* (в Дж/см²) для PcZn (*a*) и PrZn в этилацетате (\blacksquare) и композите (\bigcirc) (δ).

ствующими им плотности энергии W_{th} и плотности энергии насыщения W_{sat} . В литературе отсутствует единая методика определения W_{th} и W_{sat} . В настоящей работе их численные значения определялись в соответствии с правилом, проиллюстрированном на рис.2: W_{th} и W_{sat} соответствуют точкам пересечения касательной к зависимости T(W) в точке перегиба с прямыми линиями T(0) и $T(\infty)$ соответственно.

С практической точки зрения представляют интерес и другие характеристики нелинейных оптических элементов, являющиеся производными от T(0), $T(\infty)$, W_{th} и W_{sat} . Среди них отметим контраст $C = T(0)/T(\infty)$, диапазон нелинейности $\Delta W = W_{\text{sat}} - W_{\text{th}}$ (область плотностей энергии, в которой изменяется T(W)), а также крутизну зависимости пропускания от плотности энергии $S = \Delta T/\Delta W$. Эти величины для исследованных нами соединений представлены в табл.1.

Табл.1.						
ΦΟC	D_0	С	R_D	<i>W</i> _{th} (Дж/см ²)	<i>W</i> _{sat} (Дж/см ²)	S (см ² /Дж)
PcPb	0.38	10	3.7	0.002	0.51	0.7
PcZn	0.24	2.1	2.4	0.004	0.834	0.4
PrZn	0.58	2.5	1.7	0.001	0.121	1.3
PrZn (в этилацета	0.47 ге)	2.2	1.7	0.004	0.205	0.9
Примеча <i>R_D</i> – отно малой пло	ния: <i>D</i> ₀ шение о тностях) – оп птиче энер	тиче еских гии л	ская плотност к плотностей азерного изл	ъ образцов на образцов при учения.	λ = 532 нм; большой и

Для стабильной работы нелинейного элемента достаточно, чтобы ФОС не разрушался в рабочей области интенсивностей лазерного излучения, т.е. при $W < W_{sat}$. Исследование фотодеградации ФОС в композите НПСП показало, что при $W \le 1$ Дж/см² (что превышает W_{sat} для всех исследованных соединений) деградация не наблюдается.

При исследовании лазерного разрушения наблюдались пространственные флуктуации лазерной прочности, что обычно связывают с доминирующей ролью поглощающих включений в механизме лазерного разрушения [14]. Порог разрушения (с вероятностью 0.5) составлял 35 Дж/см², а его дисперсия равнялась 7 Дж/см². Таким образом, порог разрушения композита НПСП превышает пороговую интенсивность, при которой наблюдается фотодеградация ФОС. Отметим [10], что на $\lambda = 1064$ нм порог разрушения композита составляет ~70 Дж/см², что в два раза больше порога, полученного для $\lambda = 532$ нм. Это естественный результат с точки зрения механизма разрушения, обусловленного поглощающими включениями. Известно [15], что сечение поглощения включения малого размера обратно пропорционально длине волны, тогда как порог разрушения пропорционален сечению поглощения лазерного излучения.

5. Обсуждение

Механизм нелинейного поглощения ФОС связан с изменением населенностей энергетических уровней молекул под действием лазерного излучения (схема энергетических уровней молекулы ФОС показана на рис.4). В области интенсивностей $I_0 \ll W_{\text{th}}/\tau_p (\tau_p - длительность лазерного$ $импульса) пропускание образца <math>T(0) = \exp(-\sigma_{S_0} \times NL)$, где σ_{S_0} – сечение поглощения перехода $S_0 \rightarrow S_1$, а N – концентрация ФОС. В области $I_0 > W_{\text{sat}}/\tau_p$ из-за перераспределения электронов по уровням S_1 и T_1 поглощение на переходе $S_0 \rightarrow S_1$ пренебрежимо мало, так что $T(\infty) =$ $\exp(-\sigma_{\text{eff}}NL)$, где $\sigma_{\text{eff}} = \sigma_S h_{S_1} + \sigma_T h_{T_1} - эффективное сечение$ $поглощения; <math>h_{S_1} = n_{S_1}/N$; $h_{T_1} = n_{T_1}/N$; n_{S_1} и n_{T_1} – населенности синглетного и триплетного уровней. Следовательно, контраст определяется соотношением $C = \exp(\Delta\sigma \times NL)$ ($\Delta\sigma = \sigma_{\text{eff}} - \sigma_{S_0}$).

Сложность сопоставления результатов, представленных в литературе, связана с зависимостью характеристик нелинейного поглощения оптических элементов от их геометрических размеров и концентрации ФОС. Примером может служить контраст C, явно зависящий от концентрации молекул ФОС N и толщины образца L. Поскольку концентрация и геометрические размеры исследованных образцов варьируются в широких пределах, то это затрудняет или даже делает невозможным сопоставление результатов, приведенных в различных работах.

Среди упомянутых выше характеристик нелинейного поглощения свободной от отмеченных недостатков является величина

Рис.4. Схема уровней энергии электронов в молекуле ФОС: $\sigma_{S_0}, \sigma_S, \sigma_T$ – сечения электромагнитных переходов $S_0 \rightarrow S_1, S_1 \rightarrow S_2$, $T_1 \rightarrow T_2$ соответственно; k_{S_0}, k_S, k_T – скорости безызлучательных переходов; k_{ST}, k_{TS} – скорости интеркомбинационной конверсии.

$$R_D = \frac{\ln T(\infty)}{\ln T(0)} = \frac{\sigma_{\rm eff}}{\sigma_{\rm S_0}},$$

т.е. отношение оптических плотностей образцов при большой и малой плотностях энергии лазерного излучения. Оно определяется исключительно свойствами ФОС и может быть рассчитано по экспериментальным зависимостям пропускания образца T от плотности энергии W. К сожалению, данных, представленных во многих работах (см., напр., [16]), недостаточно для расчета R_D , что не позволяет корректно сопоставить приведенные в них результаты. Что касается работ [4, 17-19], которые содержат значения R_D или данные, по которым R_D может быть рассчитано, то значения R_D в них сильно различаются. Так, например, для раствора РсРb в толуоле [19] расчет дает $R_D = 4.7$, а для раствора в CHCl₃ [4] – $R_D = 9.6$, тогда как в настоящей работе для PcPb в композите $R_D = 3.7$. Аналогично для PrZn в этилацетате [17] получено R_D = 3.7–4.7, а в условиях нашего эксперимента $R_D = 1.7$ как в этилацетате, так и в композитной матрице.

Различия в значениях R_D , полученных на основе литературных данных, трудно объяснить влиянием среды или заместителей, входящих в состав молекул. Результаты спектроскопических измерений показывают, что в пределах точности эксперимента спектры поглощения исследованных ФОС в различных растворителях (мономерная смесь, этилацетат, толуол) и в композите совпадают. Это означает, что процессы сольватации не оказывают заметного влияния на положение энергетических уровней молекул и сечения поглощения на переходах между ними. В то же время среда и заместители влияют на скорости безызлучательной конверсии [12], что, в свою очередь, приводит к изменению W_{th} , W_{sat} , ΔW и S, но не должно влиять на контраст оптического элемента C или R_D . Конечно, изменение скоростей конверсии вызовет изменение населенностей уровней, т. е. изменение h_{S_1} и h_{T_1} и, следовательно, $\sigma_{\rm eff}$. Однако конфигурации состояний S₁ и T₁, так же как и состояний S₂ и T₂, в одноэлектронном приближении совпадают, а значит $\sigma_{\rm S} \sim \sigma_{\rm T}$, так что ожидать сильного изменения $\sigma_{\rm eff}$ вследствие изменения $h_{\rm S_1}$ и $h_{\rm T_1}$ нет оснований.

Причины различия значений R_D для одинаковых ФОС в разных работах могут быть связаны или с методикой определения зависимости T(W), или с методом обработки данных. В [4,17–19] зависимость T(W) находилась

путем измерения пропускания образца, расположенного в фокусе линзы. Для этого требуется гауссово распределение интенсивности по сечению лазерного пучка, методика контроля которого в работах [4, 17-19] не описана. Кроме того, наличие «хвостов» у гауссова распределения затрудняет точное определение плотности энергии насыщения $W_{\rm th}$ и, следовательно, пропускания $T(\infty)$, необходимого для расчета контраста ФОС. Приведенные в [18,20] значения сечений $\sigma_{\rm eff}$ также вызывают сомнение, поскольку они получены при численном расчете зависимости T(W) на основе кинетических уравнений, описывающих изменение населенностей уровней молекулы. В расчетах сечения переходов $\sigma_{\rm S}$ и $\sigma_{\rm T}$ варьировались так, чтобы найденная зависимость T(W) совпадала с данными эксперимента. Таким образом, для раствора РсРb в толуоле при наносекундной длительности импульсов было получено $R_D \approx 23$ [18]. В то же время в другой работе [19] тех же авторов для того же соединения в том же растворителе при тех же длительностях импульсов оценка R_D дает 4.7, что близко к найденному нами значению 3.6. Величина $R_D = 23$, по-видимому, не является достоверной.

С целью выяснения причин различия значений R_D для ФОС в композите и жидких растворах нами был выполнен контрольный эксперимент по исследованию нелинейного поглощения PrZn в композите НПСП и этилацетате. Результаты этого исследования приведены на рис.3. Значения R_D для PrZn в композите и этилацетате, полученные в идентичных условиях, в пределах точности эксперимента совпадают и равны 1.7.

6. Выводы

Характеристики нелинейного поглощения ФОС, введенных в композит, не коррелируют с характеристиками тех же соединений в жидких растворах, приведенными в литературе. Выяснение причин такого различия требует дополнительного исследования.

Композит НПСП удовлетворяет требованиям, предъявляемым к нелинейным оптическим элементам. Технология его изготовления позволяет ввести ФОС в матрицу без его деструкции. Порог лазерного разрушения композита на $\lambda = 532$ нм значительно превышает плотность энергии насыщения нелинейного поглощения. Характеристики нелинейного поглощения ФОС, введенных в композит, совпадают с таковыми, полученными для тех же соединений в жидких растворах.

Авторы выражают благодарность НПО «Оптроника» за оборудование, предоставленное для проведения исследований.

- 1. Materials for Optical Switches, Isolators, and Limiters (Orlando, Florida, SPIE, 1989, Vol. 1105).
- 2. Qu Shi-liang et al. Chin. Phys., 10, 1139 (2001).
- 3. Su Weijie, Cooper T.M. Chem. Mater., 10, 1212 (1998).
- Shirk J.S., Pong R.G., Bartoli F.J., Snow A.W. Appl. Phys. Lett., 63, 1880 (1993).
- 5. Дюмаев К.М., Маненков А.А., Маслюков А.П. и др. *Труды ИОФАН*, **33**, 144 (1991).
- 6. Doyle J.J. et al. J. Opt. A: Pure Appl. Opt., 10, 075101 (2008).
- Larciprete M.C., Ostuni R., Belardini A., et al. *Photon. Nanostr.: Fund. Appl.*, 5, 73 (2007).
- 8. Gu Y.Z., Liang Z.J., Gan F.X. Opt. Mater., 17, 471 (2001).
- Dou K., Sun X., Wang X., Parkhill R., Guo Y., Knobbe E.T. *IEEE J. Quantum Electron.*, 35, 1004 (1999).
- Алдэг Г.Р., Долотов С.М., Колдунов М.Ф. и др. Квантовая электроника, 30, 954 (2000).

- 11. Тихонов Е.А., Шпак М.Т. *Нелинейные оптические явления в орга*нических соединениях (Киев: Наукова думка, 1979, с. 381).
- 12. Медведев Э.С., Ошеров В.И. *Теория безызлучательных переходов в многоатомных молекулах* (М.: Наука, 1983, с. 280).
- Жданов С.П. Физика и химия силикатов (Л.: Химия, 1987, с. 195).
- 14. Колдунов М.Ф., Маненков А.А., Покотило И.Л. *Квантовая* электроника, **30**, 592 (2000).
- Ван де Хюлст Г. Рассеяние света малыми частицами (М.: ИЛ, 1961, с. 536).
- Ostuni R., Larciprete M.C., Leahu G., et al. J. Appl. Phys., 101, 033116 (2007).
- 17. Кузнецова Р.Т., Копылова Т.Н., Майер Г.В. и др. *Квантовая* электроника, **34**, 139 (2004).
- Mansour Kamjou, Alvarez D., Jr., Perry K.J., Choong I., Marder S.R., Perry J.W. Proc. SPIE Int. Soc. Opt. Eng., 1853, 132 (1993).
- Perry J.W., Mansour Kamjou, Marder S.R., et al. *Opt. Lett.*, **19**, 625 (1994).
- 20. Li Yunjing, Pritchett T.M., Huang Jiandong, Ke Meirong, Shao Pin, Sun Wenfang. J. Phys. Chem. A, **112**, 7200 (2008).