АКТИВНЫЕ СРЕДЫ

PACS 42.70.Hj; 81.05.Je; 71.36.+c

Особенности структуры диэлектрических лазерных оксидных керамик

А.А.Каминский, А.В.Таранов, Е.Н.Хазанов, М.Ш.Акчурин

Изучена связь транспортных характеристик тепловых фононов субтерагерцевых частот со структурными особенностями однофазных диэлектрических лазерных кристаллокерамик на основе кубических оксидов, синтезированных в различных технологических режимах. Проанализировано влияние процессов пластической деформации на формирование структуры зерен и межзеренных слоев (границ), теплофизические, акустические, оптические и лазерные характеристики материала.

Ключевые слова: лазерная керамика, фононы, межзеренная граница, двойникование.

1. Введение

Одним из важных достижений лазерной физики последнего десятилетия, а также физики твердого тела и оптического материаловедения является создание нового класса активных функциональных материалов – лазерных кристаллокерамик на основе кубических оксидов, активированных ионами трехвалентных лантаноидов Ln³⁺ [1–5]. С масштабами этих достижений для наиболее известных лазерных керамик знакомит табл.1.

Табл.1. Лазерные диэлектрические керамики, их генерирующие Ln³⁺-ионы и каналы стимулированного излучения (СИ).

Кристалло- керамики	Простран- ственная группа	Лазерные Ln ³⁺ -ионы и каналы их СИ						
		Pr ³⁺	Nd ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	
Оксидные								
Sc ₂ O ₃	$T_h^7 - Ia\bar{3}$	-	-	-	${}^{4}\mathrm{I}_{13/2} \!\rightarrow {}^{4}\mathrm{I}_{15/2}\left[6\right]$	-	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [7]$	
Y ₂ O ₃	$T_h^7-Ia\bar{3}$	-	${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2} \left[8 \right]$	${}^{5}\mathrm{I}_{7} \!\rightarrow {}^{5}\mathrm{I}_{8}\left[9\right]$	${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2} [10]$ ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2} [11]$	-	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [12]$	
Y ₂ O ₃ -ThO ₂	$T_h^7 - Ia\bar{3}$	-	${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2} \left[13 \right]$	-	-	_	-	
$\{Y_3\}[Al_2](Al_3)O_{12}$	$O_h^{10} - Ia\bar{3}d$	_	${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} [14]$ ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} [15]$ ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} [16]$	${}^{5}I_{7} \rightarrow {}^{5}I_{8} [17]$	${}^{4}\mathrm{I}_{13/2} \!\rightarrow {}^{4}\mathrm{I}_{15/2} \left[18 \right]$	${}^{3}\text{H}_{4}({}^{3}\text{F}_{4}) \rightarrow {}^{3}\text{H}_{6}[19]$	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ [20]	
$\{Y_3\}[Al_{0.5}Sc_{0.5}](Al_3)O_{12}$	$O_h^{10} - Ia\bar{3}d$	-	${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2}\left[21\right]$	-	-	_	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [22]$	
$\{YGd_2\}[Sc_2](Al_2Ga)O_{12}$	$O_h^{10} - Ia\bar{3}d$		_	-	-	_	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [23]$	
$\{Y_{0.5}Er_{0.5}\}[Al_2](Al_3)O_{12}$	$O_h^{10} - Ia\bar{3}d$	-	-	_	${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2} [24]$ ${}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2} [5]$	-	-	
(Y _{0.5} Gd _{0.5}) ₂ O ₃	$T_h^7 - Ia\bar{3}$	-	${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2}\left[25\right]$	-	_	_	-	
Ba(Mg,Zr,Ta)O ₃	$O_h^5 - Fm\bar{3}m$	-	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} [26]$	-	_	_	_	
Lu ₂ O ₃	$T_h^7 - Ia\bar{3}$	-	${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2}\left[27\right]$	-	-	${}^{3}\text{H}_{4}({}^{3}\text{F}_{4}) \rightarrow {}^{3}\text{H}_{6}[28]$	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [29]$	
$\{Lu_3\}[Al_2](Al_3)O_{12}$	$O_h^{10} - Ia\bar{3}d$	-	_	_	_	_	${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} [30]$	
Фторидные								
$CaF_2 - SrF_2 - YbF_3$	$O_h^5 - Fm\overline{3}m$						${}^{2}\mathrm{F}_{5/2} \rightarrow {}^{2}\mathrm{F}_{7/2} [31]$	
SrF ₂	$O_h^5 - Fm\bar{3}m$	${}^{3}P_{0} \rightarrow {}^{3}F_{2}[32]$	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} [33]$					
Оксифторидные								
Ca ₅ (PO ₄) ₃ F	$C_{6h}^2 - P6_3/m$		${}^{4}\mathrm{F}_{3/2} \!\rightarrow {}^{4}\mathrm{I}_{11/2}\left[34\right]$					
Примечание: Таблица составлена на основе пионерских работ, опубликованных в научных реферируемых журналах.								

А.А.Каминский, М.Ш.Акчурин. Институт кристаллографии им. А.В.Шубникова РАН, Россия, 119333 Москва, Ленинский просп., 59 А.В.Таранов, Е.Н.Хазанов. Институт радиотехники и электроники им. В.А.Котельникова РАН, Россия, 125009 Москва, ул. Моховая, 11, стр. 7; e-mail: taranov@cplire.ru Проведенные исследования показали, что лазерные характеристики керамик существенным образом зависят от размеров и структуры их кристаллитов (зерен) и развитой системы межзеренных слоев (границ). Также было установлено, что теплопроводность керамик и одноименных монокристаллов при $T \ge 300$ К практически одинакова, а их механические (твердостные) характеристики

Поступила в редакцию 8 июня 2012 г., после доработки – 15 августа 2012 г.

Рис.1. Эволюция 15-летних достижений в разработке керамических Y₃Al₅O₁₂: Nd³⁺-лазеров с диодно-лазерной накачкой. Представленная иллюстрационная зависимость выходной мощности составлена по данным обзоров [3, 5]. Светлые точки – достижения по материалам конференций, приведенные в [5].

заметно лучше, чем у монокристаллов. В большей степени это относится к широко используемой в настоящее время лазерной керамике на основе «гранатового» оксида Y₃Al₅O₁₂ (см., напр., [35]). Чтобы была понятна мотивация настоящей работы, которая посвящена главным образом этой «гранатовой» керамике, на рис.1 показана эволюционная картина генерационных достижений, полученных с лазерной керамикой Y₃Al₅O₁₂: Nd³⁺ за годы ее исследования и применения - от 70 мВт выходной мощности в первых экспериментах до более 100 кВт в недавних лазерных разработках. Чтобы не перегружать рисунок ссылками, на нем указаны результаты только нескольких основных работ, которые и определили этот прогресс. Другие ключевые лазерные публикации достаточно подробно описаны в ряде обзоров (см., напр., [1-5]). Справедливости ради, отметим также работу 1990 г. по спектроскопии керамики Y₃Al₅O₁₂: Nd³⁺ [40], один из авторов которой (T. Yanagitani) с сотрудниками компании Konoshima Chemical разработал революционную технологию VSN (vacuum sintering and nanotechnology) изготовления высокопрозрачной лазерной керамики Y₃Al₅O₁₂: Nd³⁺ [41]. Все достижения, показанные на рис.1, начиная с 2000 г. связаны с керамикой этой японской компании.

Основные требования, предъявляемые к данным материалам, - отсутствие напряжений в зерне, однородность распределения активатора, быстрый теплоотвод из области генерации, как будет показано ниже, контролируются структурой зерен и состоянием интерфейсных слоев в области их контакта. В настоящее время проблема улучшения качества керамики заключается в оптимизации структуры и размеров зерен и условий формирования контактных границ. Анализ характера и структуры границ в определенном объеме решается методом просвечивающей электронной микроскопии высокого разрешения. Эти исследования подтверждают существование непрерывных межзеренных слоев, толщина которых составляет единицы нанометров [42]. Вместе с тем, объем материала, анализируемого электронной и атомно-силовой микроскопией, ограничен и не позволяет делать выводы об усредненных характеристиках границ между зернами и их связи с теплофизическими, акустическими и оптическими характеристиками материала [43].

Эффективным методом исследования материалов со структурными дефектами является метод тепловых импульсов [44]. При понижении температуры (энергии) фононов, когда возникают условия для конкуренции между временами их упругого (τ_0) и неупругого (τ^*) рассеяния, возможен широкий набор режимов транспорта фононов [45]. Наиболее информативный для исследования структурных дефектов и процессов транспорта фононов режим классической диффузии, когда тепловой импульс упруго рассеивается дефектами структуры в отсутствие неупругих процессов фонон-фононного взаимодействия. Условием наблюдения такого режима за время $t < \tau^*$ является соотношение $\tau_0 \ll \tau_b \ll \tau^*$ (τ_b – время баллистического распространения фононов). Эти условия выполняются при температурах жидкого гелия (2–4 K) практически для всех плотных оксидных керамик. При этом длины волн тепловых фононов $\lambda_{\rm ph} \approx 10-50$ нм соизмеримы с характерными размерами элементов структуры керамики (межзеренные слои, поры, нанофрагменты другой фазы).

В работе [45] исследовались температурные зависимости транспортных характеристик фононов субтерагерцевых частот в режиме диффузии в области температур жидкого гелия. При данных условиях неупругими фонон-фононными процессами можно пренебречь, и эффективность упругого рассеяния фононов определяется только структурными особенностями материала. Нагрев металлической пленки инжектора до температуры $T_{\rm h}$, такой, что $\Delta T = T_{\rm h} - T_0 \ll T_0$, позволяет исследовать температурные зависимости рассеяния путем изменения температуры термостата T₀. Сигнал, регистрируемый на противоположной инжектору грани образца сверхпроводящим болометром, хорошо описывается решением уравнения диффузии. Экспериментально измеряемой величиной является время прихода максимума диффузионного сигнала $t_{\text{max}} = L^2/2D(T)$ («плоский» источник), где D(T) = lv/3, L – размер образца, D – коэффициент диффузии, *l* – длина свободного пробега фонона и *v* – средняя по поляризациям скорость акустических волн.

В работе [46] показано, что частоты упруго рассеиваемых фононов, формирующих максимум регистрируемого болометром диффузионного сигнала, соответствуют энергиям $\hbar \omega \approx (3-4)k_{\rm B}T$ (здесь $k_{\rm B}$ – постоянная Больцмана), что позволяет рассматривать транспорт фононов в рамках одночастотной модели. В экспериментах по исследованию теплопроводности фононы данных частот определяют температурную зависимость коэффициента теплопроводности $K(T) = c_V D(T) \sim T$ в интервале температур 8-16 К, что и наблюдалось в работе [47] для керамики на основе «гранатового» оксида Y_3 Al₅O₁₂.

Возможность реализации режима диффузии фононов в керамиках в области температур жидкого гелия показана в [48]. Методика чувствительна к незначительным изменениям структуры керамики и позволяет оценить средние по объему исследуемого образца значения акустического импеданса и толщины границ между зернами [49].

Задачей настоящей работы является исследование и оптимизация структуры зерен и межзеренных границ образцов лазерной кристаллокерамики на основе Y₃Al₅O₁₂:Nd³⁺ с целью улучшения акустических, теплофизических и лазерных характеристик.

2. Структура межзеренных слоев

В области температур жидкого гелия в плотных микроструктурированных керамиках, когда выполняется условие $qR \gg 1$ (q – волновой вектор фонона, R – средний размер зерна), фононный спектр аналогичен спектру колебательных возбуждений зерен, а границы между зернами могут быть представлены как плоские слои конечной толщины d с отличным от материала зерна акустическим импедансом [49]. Если длина свободного пробега фононов в керамике $l \gg R$, то можно полагать, что границы между зернами являются основным фактором, определяющим их рассеяние. При этом механизм транспорта фононов может быть представлен как баллистическое распространение фононов в зерне с вероятностью f_{ω} их перехода в соседнее зерно.

В режиме диффузии для масштаба времени $t \gg t_0$ (t_0 – время нахождения фонона в зерне) коэффициент диффузии $D \sim R^2/t_0$, где $t_0 \sim R(vf_{\omega})^{-1}$. Величина f_{ω} определяется как отношение мощности потока неравновесных фононов, прошедшего из зерна в зерно, к мощности потока, падающего на границу [49]. Тогда $D \sim Rvf_{\omega}$, откуда следует, что в рамках предложенной модели $D \sim R$, а спектральные характеристики фононов, т.е. D(T), определяются f_{ω} .

На рис.2 представлены зависимости коэффициента диффузии D от среднего размера зерен в ряде оксидных керамик (в том числе оптически прозрачных) на основе кубических оксидов при T = 3.8 К и условии $qR \gg 1$. Изменяемыми параметрами являлись температура и время отжига, определявшие средний размер зерна. Характер зависимости D(R) близок к линейному в пределах 2–3 порядков величины изменения R. Данный факт говорит о том, что свойства межзеренных слоев сохраняют стабильность в широком интервале технологических параметров. Результаты, приведенные на рис.2, свидетельствуют об увеличении коэффициента диффузии фононов в керамике Y₃Al₅O₁₂: Nd³⁺ по сравнению с керамикой Y₃Al₅O₁₂, что в соответствии с моделью [49] может быть связано с увеличением плотности межзеренного слоя из-за «стока» части более тяжелых ионов Nd³⁺ в область границы. Говоря о спектральных характеристиках коэффициента диффузии, можно предположить резонансный характер зависимости f_{ω} , когда проекция волнового вектора фонона соизмерима с толщиной межзеренного слоя. В условиях нашего эксперимента это может приводить к смене знака производной $\partial t_{\text{max}}/\partial T$ и, соответственно, $\partial D/\partial T$.

Методика определения акустического импеданса и толщины межзеренного слоя, основанная на анализе температурных зависимостей D(T), изложена в [50] на примере отработки различных методов компактирования и синтеза керамик на основе ZrO_2 : Y_2O_3 . Экспериментальные ре-

Рис.2. Зависимости D(R) в области $qR \gg 1$ при T = 3.8 К в керамиках на основе оксидов: Al₂O₃ [49] (\diamond), ZrO₂:Y₂O₃ [50] (\Box), Y₂O₃:Nd³⁺ [51] (Δ), TiO₂ (СВЧ синтез) [52] (∇), Y₃Al₅O₁₂ (\circ) и Y₃Al₅O₁₂:Nd³⁺($C_{Nd} \approx 1\%$)[53](\bullet). Сплошные линии соединяют экспериментальные точки для образцов керамики одного состава. Точка A соответствует данным для монокристалла Y₃Al₅O₁₂ [46].

Рис.3. Расчетная зависимость $f_{\omega}/(1 - f_{\omega})$ от величины q_2d для образцов $Y_3Al_5O_{12}$: Nd^{3+} ($C_{Nd} = 1\%$) с L = 0.108 см и R = 22 мкм (\diamond), L = 0.141 см и R = 31 мкм (Δ), L = 0.143 см и R = 30 мкм (\circ), L = 0.175 см и R = 11 мкм (∇), L = 0.44 см и R = 27 мкм (\Box) [56]. На вставке приведены экспериментальные данные.

зультаты сопоставлялись с выражением $l = l_0 f_\omega / (1 - f_\omega)$ из работы [54], где l – эффективная длина свободного пробега фононов в слоистой периодической структуре с периодом R в отсутствие рассеяния фононов в материале зерна. Средняя длина пробега фонона в зерне до акта рассеяния на границе $l_0 = 0.6R$ [55].

На рис.3 представлена теоретическая зависимость отношения $l/l_0 = f_\omega/(1 - f_\omega)$ от величины $q_2 d (q_2 - волновой$ вектор фонона в материале межзеренного слоя) в образцах оптически прозрачной керамики Y₃Al₅O₁₂: Nd³⁺. Зависимость представляет собой левый скат резонансной кривой при рассеянии фонона на слое конечной толщины d с акустическим импедансом, отличным от акустического импеданса материала зерна. Приведенные результаты соответствуют случаю, когда отношение импедансов материала зерна ($\rho = 4.55$ г/см³, $v = 5.6 \times 10^5$ см/с) и материала слоя (SiO₂-стеклофаза, $\rho_2 = 2.02$ г/см³, $v = 4.05 \times 10^5$ см/с) $z_2/z_1 = 0.32$. На вставке представлены экспериментальные зависимости D(T) для исследуемых образцов. Длина свободного пробега фонона для данной температуры вычислялась из значений $t_{\max}(T)$ по формуле l(T) = $3L^2/[2vt_{max}(T)]$. По данному значению l/l_0 для одной из точек (например, T = 3.8 K) из пересечения с теоретической зависимостью определялась величина q_2d , откуда в свою очередь вычислялось значение d. Координатами остальных точек температурной зависимости D(T) для данного образца были соответствующие экспериментальные значения $l(T)/l_0$ и $q_2(T)d$ (для d, вычисленного на предыдущем шаге). Точки, соответствующие экспериментальным значениям для всех образцов, ложатся на расчетную зависимость, что свидетельствует об удовлетворительном качестве предложенной модели. В общем случае, когда предположения о материале межзеренного слоя отсутствуют, зависимость $l(T)/l_0$ сопоставляется с ближайшей по форме кривой из семейства теоретических зависимостей $f_{\omega}/(1-f_{\omega})$ для различных отношений акустических импедансов зерна и межзеренного слоя. Согласно проведенным оценкам толщина межзеренного слоя *d* в исследованных образцах находится в интервале 0.21-0.45 нм.

В керамиках Y₂O₃: Nd³⁺ и Lu₂O₃, синтезированных при отсутствии SiO₂ [51, 57], оцененные значения толщины межзеренного слоя были близки к постоянной решетки материала зерна. Принципиальным отличием образцов кера-

Рис.4. ACM-изображения тройных стыков поверхностей травления (a) и скола (δ) в образце керамики Y₃Al₅O₁₂.

мик, синтезированных методом VSN, являлось наличие двойников в структуре зерен.

На рис.4. представлены изображения тройных стыков поверхностей травления (*a*) и скола (δ) образца керамики Y₃Al₅O₁₂. Углы стыков, составляющие 120°, свидетельствуют об упорядочении в структуре зерен, т. к. кубические структуры могут образовывать кристаллографические границы такой конфигурации только при соединении зерен по плоскостям (111). Двойникование в интерфейсных областях зерен (рис.4, δ) также свидетельствует о наличии естественных кристаллографических границ. Модель образования, перемещения двойниковых границ и «залечивания» пор путем вращения части структуры вокруг оси третьего порядка на 60° приведена в работах [35, 58–60].

3. Особенности кинетики фононов субтерагерцевых частот в керамиках с элементами двойникования в структуре

Уже первые исследования структуры межзеренных границ в керамике на основе $Y_3Al_5O_{12}$ (Konoshima Chemical Co.) [53] позволили установить, что во всех образцах границы между зернами хорошо стабилизированы, а средние значения их толщин меньше постоянной решетки материала зерна (a = 1.202 нм). Это и обеспечивало высокие оптические и теплофизические свойства образцов. В работе [47] приведены данные по теплопроводности в керамиках $Y_3Al_5O_{12}$ с размером зерна R = 4-5 мкм и большей на порядок длиной свободного пробега тепловых фононов в области температур жидкого гелия. Эти данные косвенным образом свидетельствовали о совершенствовании технологических процедур, позволивших улучшить структуру материала, что вступает в противоречие с предположением о межзеренном слое конечной толщины.

Полученные экспериментально кинетические характеристики фононов при T = 3.86 К в образцах керамики $Y_3Al_5O_{12}$ из работы [60] приведены в табл.2.

Максимальное значение длины свободного пробега наблюдалось в образце 1. Сопоставимые в тех же условиях эксперимента длины свободного пробега фононов наблюдались в монокристаллах 15–20-процентных твердых растворов ($Y_{1-c}Ln_c$)₃Al₅O₁₂ [46]. Анализ кинетических характеристик и структуры первых и последних образцов в таблице дает ряд различий, коррелирующих с размером зерна. Исследования сколов образцов методами растровой электронной и атомно-силовой микроскопии показало, что для образцов с R = 1-2 мкм имело место двойникование по всему объему. Расстояние между плоскостями двой-

Табл.2. Кинетические характеристики фононов в образцах керамики $Y_3Al_3O_{12}$ при T = 3.86 К [60].

Номер образца	<i>L</i> (см)	<i>R</i> (мкм)	<i>D</i> (см²/с)	<i>l</i> (см)	l/R
1	0.31	1	4.41×10^{3}	2.36×10^{-2}	236
2	0.9	7	2.37×10^{3}	1.27×10^{-2}	18
3	0.31	6.5	1.46×10^{3}	0.78×10^{-2}	12
4	0.31	6.5	1.25×10^{3}	0.67×10^{-2}	10.3
5	0.145	13.5	0.86×10^{3}	0.46×10^{-2}	3.4
6	0.16	11	5.6×10^{3}	0.3×10^{-2}	2.95
7	0.24	1 - 2	1.5×10^{3}	0.8×10^{-2}	54
8	-	3	_	1×10^{-2}	25
9	_	4	_	0.75×10^{-2}	25
10	_	7.5	_	1.5×10^{-2}	20
11	0.175	11	0.96×10^{3}	0.51×10^{-2}	4.6
12	0.44	27	3.2×10^{3}	1.73×10^{-2}	5.76
13	0.143	30	0.73×10^{3}	0.39×10^{-2}	1.3

Примечание. Образцы 1–10 (Konoshima Chemical Co.): 1–3 – $Y_3Al_5O_{12}:Nd^{3+}, 4–7-Y_3Al_5O_{12}$ [53], 8–10– $Y_3Al_5O_{12}$ [47]). Образцы 11–13 (ИРЭ РАН)– $Y_3Al_5O_{12}:Nd^{3+}$ [56].

Рис.5. Микрофотографии скола по границам зерен (*a*) и скола «по зерну» (*б*) образцов керамики.

никования составило ~100 нм (рис.5,*a*). При R > 2 мкм двойникование наблюдалось только в области границ или отсутствовало совсем (рис.5,*b*).

Можно привести ряд результатов, свидетельствующих об увеличении количества дефектов и связанных с ними напряжений в структуре зерен по мере их роста. Так, разрушение образцов с размером зерен 1-2 мкм происходит в основном по границам зерен. В керамиках с большим размером зерна ($R \ge 10$ мкм) наблюдается преимущественно разрушение самих зерен. Данный факт косвенно свидетельствует о меньшей прочности и наличии напряжений в структуре крупных зерен. Вопрос о структурных дефектах, связанных с ними напряжениях, а также анизотропии зерен до настоящего времени остается открытым. Оптическая анизотропия $\sim 5\%$ в соседних зернах наблюдалась в процессе отжига образцов в керамике Y_2O_3 [61].

На рис.6 приведены асимптотики заднего фронта диффузионного сигнала S(t) для ряда образцов из табл.2. Зависимость $S(t) \sim t^{-1/2}$, наблюдавшаяся в образцах 1 и 7, характерна для условий классической диффузии и «плоского» источника фононов. Асимптотики заднего фронта сигналов в образцах 3 и 12 (R > 10 мкм) показали «затягивание» сигнала, что может быть связано с отражением фононов от границы из-за анизотропии соседних зерен. Еще одним косвенным свидетельством увеличения количества дефектов и связанных с ними напряжений по мере увеличения размеров зерна в структуре крупных зерен ($R \ge 10$ мкм) является характер зависимости l/R от размера зерна (рис.7).

Рис.6. Асимптотики заднего фронта диффузионного сигнала, регистрируемого болометром, для образцов 1 (*I*), 3 (*2*) и 12 (*3*) из табл.2.

Рис.7. Зависимость отношения l/R от размера зерна для образцов $Y_3Al_5O_{12}$ при T = 3.86 К из табл.2.

Теоретический анализ диффузионного распространения фононов частоты 0.874 ТГц в плотной керамике на основе α -Al₂O₃ с границей «нулевой» толщины, где рассеяние фононов было обусловлено только разориентацией кристаллитов (зерен) в сочетании с их упругой анизотропией, рассмотрен в [55]. Приведенное в работе выражение для длины свободного пробега фонона имеет вид $l = l_0(1 - \langle \cos \alpha \rangle)^{-1}$, где $\langle \cos \alpha \rangle$ – средний косинус угла однократного рассеяния. Данное выражение отражает тот факт, что возникновение напряжений при увеличении размеров зерна и, как следствие, анизотропии в структуре зерен приводит к уменьшению эффективной длины свободного пробега фононов (рис.7) и затягиванию заднего фронта регистрируемого сигнала (рис.6). Представленные выше факты являются косвенным свидетельством увели-

чения напряжений при отсутствии двойникования в структуре зерен по мере их роста, что может быть связано с более жесткими условиями компактирования и синтеза и приводит к ухудшению теплофизических и оптических (деполяризация) характеристик материала.

Процессы двойникования могут приводить к более совершенной структуре [62, 63], т.к. дефектам энергетически невыгодно зарождаться и находиться в малых объемах; силами изображения они выносятся к границам, которые являются стоками для дефектов. К двойниковой границе из соседних областей зерен притягиваются дефекты, создающие напряжения противоположного знака, которые могут аннигилировать на границе. Поэтому структура отдельных зерен в таких материалах, по-видимому, более совершенна, т.е. двойниковая граница при своем перемещении может эффективно вычищать кристалл от дефектов и при этом не вносить заметного вклада в рассеяние фононов. В табл.3 представлены результаты вычислений энергий решетки исходных монокристаллов и энергий решетки с двойником по системе (111) [112], что позволило оценить энергии двойникования, а также приведены значения микротвердости исходных образцов.

Способность кристаллов к двойникованию может лежать и в основе твердотельных реакций, протекающих при измельчении соответствующих продуктов [64]. Роль процессов двойникования при синтезе лазерной керамики Y₃Al₅O₁₂ из порошков Al₂O₃ и Y₂O₃ рассмотрена в работе [65].

Другим примером позитивной роли процессов пластической деформации двойникованием является уменьшение количества дислокаций и улучшение качества структуры зерен в оптически прозрачной лазерной керамике на основе фторида лития [66].

4. Особенности фононного спектра в наноструктурированных керамиках (случай *qR* ~ 1)

Одной из тенденций в развитии технологии синтеза керамик является переход от микро- к наноструктурированным материалам. Наши исследования показали, что керамические материалы с размером зерна R < 100 нм имеют слабо стабилизированные границы. Уменьшение размера зерна, как правило, связано с уменьшением температуры и времени синтеза, что приводит к увеличению толщины, уменьшению плотности и ухудшению упругих характеристик межзеренного слоя и, как следствие, к ухудшению теплофизических свойств материала.

На рис.8 показаны зависимости D(R) для стандартных керамик на базе Al_2O_3 и ZrO_2 : Y_2O_3 [50], являющиеся продолжением зависимостей D(R) на рис.2 в область меньших значений R. Резкий спад зависимости D(R), соответ-

Табл.3. Результаты вычислений энергии решетки исходных монокристаллов и энергии решетки с двойником.

Кристалл	Твердость (ГПа)	Энергия решетки (табличная) (эВ)	Энергия решетки (расчетная) (эВ)	Энергия решетки с двойником (эВ)	Изменение энергии (%)	Энергия двойника (эВ)
$Lu_3Al_5O_{12}$	16.5	625.66	625.65	602.64	3.7	23.01
$Y_3Al_5O_{12}$	14	620.2	620.11	589.90	4.9	30.21
Lu ₂ O ₃	9	142.2	139.98	135.82	3.0	4.16
Y_2O_3	8	133.4	131.42	122.67	6.7	8.75
MgO	6	41.2	41.38	41.13	0.6	0.25
LiF	1	10.56	10.61	10.46	1.4	0.15
NaF	0.65	9.46	9.43	9.35	0.9	0.08
NaCl	0.25	7.93	7.94	7.90	0.5	0.04

ствующий значениям $qR \approx 20$, можно рассматривать как ограничение на размер зерна в диэлектрических оксидных керамиках, получаемых методом компактирования с последующим отжигом, с точки зрения оптимизации их теплофизических свойств. Этот спад можно рассматривать как начало правого крыла резонансного рассеяния фононов на зернах, что подтверждается фактом его сдвига в сторону меньших *R* в соответствии с различием в скоростях звука ($v_{Al_2O_3} > v_{YSZ}$). Реализовать условия $qR \sim 1$ и обнаружить «щель» в спектре фононов оказалось возможным в многофазной керамике на основе композита YSZ: Al₂O₃ [67], когда наряду с основной фракцией кристаллитов YSZ присутствует определенное количество (10%–15%) наноразмерной (R = 20-40 нм) метастабильной фазы Al₂O₃.

Показано, что положение верхнего края щели в спектре фононов в значительной степени определяется упругими характеристиками межзеренного слоя, а наличие включений с характерным размером, меньшим, чем размер зерна основного материала керамики (поры, включения другой фазы), приводит к смещению щели в высокочастотную область фононного спектра.

5. Заключение

Таким образом, исследования кинетики фононов в области температур жидкого гелия являются чувствительным способом сравнительной оценки степени стабилизации границ между зернами в керамических материалах в зависимости от условий их компактирования и синтеза. Результаты оценки теплофизических свойств керамических материалов отражают средние по образцу данные об акустическом импедансе и структуре межзеренных границ. Процессы пластической деформации двойникованием в структуре зерен позволяют улучшить теплофизические и оптические характеристики керамик.

Лучшее качество границ между зернами, отсутствие напряжений в структуре зерен и их упорядочение, а следовательно, лучшие акустические, теплофизические и оптические свойства материала реализуются в керамике $Y_3Al_5O_{12}:Nd^{3+}$, синтезированной методом осаждения с использованием вакуумного спекания в отсутствие внешнего давления в условиях, когда основным механизмом пластической деформации, ответственным за формирование структуры керамики, является процесс двойникования, а средний размер зерна не превышает 1-2 мкм.

Акустическая прозрачность оксидной керамики $Y_3Al_5O_{12}$ с элементами двойникования в структуре в терагерцевом

диапазоне частот сопоставима с монокристаллами твердых растворов $Y_3Al_5O_{12}$: Ln³⁺. Показано, что в области температур жидкого гелия отношение длины свободного пробега фононов к среднему размеру зерна (*l*/*R*) может составлять несколько сотен, что свидетельствует об естественной кристаллографической природе границ между зернами, отсутствии дефектов и связанных с ними напряжений в структуре зерен.

В оксидных наноструктурированных керамиках проанализированы ограничения на размер зерна с точки зрения их теплофизических свойств, связанные с возможным резонансным рассеянием фононов. Возможность образования «щели» в спектре фононов в значительной степени определяется упругими свойствами межзеренного слоя, а наличие включений с характерным размером, меньшим, чем размер зерна основного материала керамики (поры, включения другой фазы), приводит к смещению щели в высокочастотную область фононного спектра.

Работа выполнена по планам фундаментальных исследований Института кристаллографии им. А.В.Шубникова и Института радиотехники и электроники им. В.А.Котельникова РАН при частичной поддержке гранта Президента РФ НШ-4732.2012.9, программы Президиума РАН «Экстремальные оптические поля и их приложения» и грантов РФФИ. Авторы также с благодарностью отмечают, что исследованные керамики были изготовлены Х.Яги (H. Yagi) и Т.Янагитани (T.Yanagitani) в Konoshima Chemical Со. (Япония) и В.В.Кравченко и Ю.Л.Копыловым во Фрязинском филиале ИРЭ РАН.

- Lu J., Ueda K., Yagi H., Yanagitani T., Akiyama Y., Kaminskii A.A. J. Alloys Compd., 341, 220 (2002).
- Ikesue A., Aung Y.I., Taira T., Kamimura T., Yoshida K., Messing G. Ann. Rev. Mat. Res., 36, 397 (2006).
- 3. Kaminskii A.A. Laser. Photon Rev., 1, 93 (2007).
- 4. Taira T. Rev. Laser Eng., 37, 227 (2009).
- Sanghera J., Kim W., Villaiobos G., Shaw B., Baker C., Frantz J., Sadowski B., Aggarwal I. *Materials*, 5, 258 (2012).
- Ter-Gabrielyan N., Merkle L.D., Ikesue A., Dubinskii M. *Opt. Lett.*, 33, 1524 (2008).
- Lu J., Bisson J.F., Takaichi K., Uematsu T., Shirakawa A., Musha M., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. *Appl. Phys. Lett.*, 83, 1101 (2003).
- Lu J., Murai T., Takaichi K., Uematsu T., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. Jpn. J. Appl. Phys., 41, L1277 (2001).
- Newburgh G.A., Sor-Daniels A., Michel A., Merkle L.D., Ikesue A., Dubinskii M. Opt. Express, 19, 3604 (2011).
- Ter-Gabrielyan N., Merkle L.D., Newburgh G.A., Dubinskii M. Laser Phys., 19, 867 (2009).
- Sanamyan T., Simmons J., Dubinskii M. Laser Phys. Lett., 7, 569 (2010).
- Lu J., Takaichi K., Uematsu T., Shirakawa A., Musha M., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. Jpn. J. App. Phys., 41, L1373 (2001).
- 13. Greskovich C., Chernoch J.P. J. App. Phys., 44, 4599 (1973).
- Strohmaier S.G.P., Eichler H.J., Bisson J.-F., Yagi H., Takaichi K., Ueda K., Yanagitani T., Kaminskii A.A. *Laser Phys. Lett.*, 2, 383 (2005).
- Ikesue A., Kinoshima T., Kamata K., Yoshida K. J. Am. Ceram. Soc., 78, 1033 (1995).
- Lu J., Shirakawa A., Ueda K., Yagi H., Yanagitani T., Gabler V., Eichler H.J., Kaminskii A.A. *Phys. Status Solidi A*, 189, R11 (2002).
- 17. Cheng X.J., Xu J.Q., Wang M.J., Jiang B.X., Zhang W.X., Pan Y.B. Laser Phys. Lett., 7, 351 (2010).
- Ter-Gabrielyan N., Merkle L.D., Kupp E.P., Messing G.L., Dubinskii M. Opt. Lett., 35, 922 (2010).
- Zhang W.X., Pan Y.B., Zhou J., Liu W.B., Li J., Jiang B.X., Cheng X.J., Xu J.Q. J. Am. Ceram. Soc., 92, 2434 (2009).
- Takaichi K., Yagi H., Lu J.K., Shirakawa A., Ueda K., Yanagitani T., Kaminskii A.A. *Phys. Status Solidi A*, 200, R5 (2003).

- Sato Y., Saikawa J., Shoji I., Taira T., Ikesue A. J. Ceram. Soc. Jpn., 112, S313 (2004).
- Saikawa J., Sato Y., Taira T., Ikesue A. Appl. Phys. Lett., 85, 1898 (2004).
- Kaminskii A.A., Bagaev S.N., Ueda K., Yagi H., Eichler H.J., Shirakawa A., Tokurakawa M., Rhee H., Takaichi K., Yanagitani T. *Laser Phys. Lett.*, 6, 671 (2009).
- Kaminskii A.A., Bagaev S.N., Ueda K., Takaichi K., Lu J., Shirakawa A., Yagi H., Yanagitani T., Eichler H.J., Rhee H. *Laser Phys. Lett.*, 2, 30 (2005).
- Lu J.. Takaichi K., Uematsu T., Shirakawa A., Musha M., Bisson J.F., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. *Laser Phys.*, 13, 940 (2003).
- Kaminskii A.A., Kurakawa H., Shirakawa A., Ueda K., Tanaka N., Becker P., Bohatý L., Akchurin M., Tokurakawa M., Kuretake S., Kintaka Y., Kageyama K., Takagi H. *Laser Phys. Lett.*, 6, 304 (2009).
- Lu J., Takaichi K., Uematsu T., Shirakawa A., Musha M., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. *Appl. Phys. Lett.*, **81**, 4324 (2002).
- Antipov O.L., Novikov A.A., Zakharov N.G., Zinoviev A.P. Opt. Mater. Lett., 2, 183 (2012).
- Tokurakawa M., Takaichi K., Shirakawa A., Ueda K., Yagi H., Hosokawa S., Yanagitani T., Kaminskii A.A. *Opt. Express*, 14, 12832 (2006).
- Xu C.W., Luo D.W., Zhang J., Yang H., Qin X.P., Tan W.D., Tang D.Y. Laser Phys. Lett., 9, 30 (2012).
- Basiev T.T., Doroshenko M.E., Fedorov P.P., Konyushkin V.A., Kuznetsov S.V., Osiko V.V., Akchurin M.Sh. Opt. Lett., 33, 521 (2008).
- Basiev T.T., Konyushkin V.A., Konyushkin D.V., Dorioshenko M.E., Huber G., Reichert F., Hansen N.O., Fechner M. *Opt. Mater. Express*, 1, 1511 (2011).
- Basiev T.T., Doroshenko M.T., Konyushkin V.A., Osiko V.V. Opt. Lett., 35 (23), 4009 (2010).
- 34. Aklyama J., Sato Y., Taira T. Appl. Phys. Express, 4, 022703 (2011).
- Каминский А.А., Акчурин М.Ш., Гайнутдинов Р.В., Такайчи К., Ширакава А., Яги Х., Янагитани Т., Уеда К. Кристаллография, 50, 935 (2005).
- Taira T., Ikesue A., Yoshida K., in *Adv. Solid-State Lasers OSA TOPS*, 19, 430 (1998).
- Lu J., Prabhu M., Xu J., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A. Appl. Phys. Lett., 77, 3707 (2000).
- Lu J., Murai T., Uematsu T., Misawa K., Prabhu M., Xu J., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A., Kudryashov A. *Appl. Phys. Lett.*, 78, 3586 (2001).
- Lu J., Murai T., Takaichi K., Misawa K., Prabhu M., Xu J., Ueda K., Yagi H., Yanagitani T., Kudryashov A., Kaminskii A.A. *Laser. Phys.*, 11, 1053 (2001).
- Sekita M., Hanada H., Yanagitani T., Shirasaki S. J. Appl. Phys., 67, 453 (1990).
- Yanagitani T., Yagi H., Ichikawa M. Japanese Patent 10-101333 (1998); Yanagitani T., Yagi H., Hiro Y. Japanese Patent 10-101411 (1998).
- 42. Clarke D.R. J. Am. Ceram. Soc., 70 (1), 15 (1987).

- Ernst P., Kienzle O., Ruhle M. J. Europ. Ceram. Soc., 19 (6–7), 665 (1999).
- 44. Von Gutfeld R.J., Nethercot Jr. A.H. Phys. Rev. Lett., 12 (23), 641 (1964).
- 45. Левинсон И.Б. ЖЭТФ, 79 (10), 1394 (1980).
- Ivanov S.N., Khazanov E.N., Paszkiewicz T., Wilczynski M., Taranov A.V. Z. Phys. B, 99 (4), 535 (1996).
- Yagi H., Yanagitani T., Numazawa T., Ueda K. Ceramics International, 33, 711 (2007).
- Иванов С.Н., Козорезов А.Г., Таранов А.В., Хазанов Е.Н. ЖЭТФ, 102 (8), 600 (1992).
- Барабаненков Ю.Н., Иванов В.В., Иванов С.Н., Таранов А.В., Хазанов Е.Н. ЖЭТФ, 119 (3), 546 (2001).
- Барабаненков Ю.Н., Иванов В.В., Иванов С.Н., Саламатов Е.И., Таранов А.В., Хазанов Е.Н., Хасанов О.Л. ЖЭТФ, **129** (1), 131 (2006).
- Иванов В.В., Иванов С.Н., Кайгородов А.С., Таранов А.В., Хазанов Е.Н., Хрустов В.Р. *Неорганические материалы*, 43 (12), 1515 (2007).
- Иванов В.В., Иванов С.Н., Карбань О.В. Таранов А.В., Хазанов Е.Н., Хрустов В.Р. *Неорганические материалы*, 40 (11), 1400 (2004).
- 53. Барабаненков Ю.Н., Иванов С.Н., Таранов А.В., Хазанов Е.Н., Яги Х., Янагитани Т., Такаичи К., Лю Дж., Биссон Дж.-Ф., Ширакава А., Уеда К., Каминский А.А. Письма в ЖЭТФ, 79 (7), 421 (2004).
- 54. Каган В.Д., Суслов А.В. ФТТ, **36** (9), 2672 (1994).
- Каплянский А.А., Мельников М.Б., Феофилов С.Н. ФТТ, 38 (5), 1434 (1996).
- 56. Таранов А.В., Хазанов Е.Н. ЖЭТФ, 134 (9), 595 (2008).
- Kaminskii A.A., Bagayev S.N., Ueda K., Takaichi K., Shirakawa A., Ivanov S.N., Khazanov E.N., Taranov A.V., Yagi H., Yanagitani T. *Laser Phys. Lett.*, 3 (8), 375 (2006).
- Акчурин М.Ш., Закалюкин Р.М. Кристаллография, 51 (6), 1059 (2006).
- Акчурин М.Ш., Гайнутдинов Р.В., Закалюкин Р.М., Каминский А.А. ДАН, 415 (3), 322 (2007).
- Акчурин М.Ш., Гайнутдинов Р.В., Каминский А.А., Таранов А.В., Хазанов Е.Н. ЖЭТФ, 135 (1), 93 (2009).
- 61. Соловьева А.Е. *Неорганические материалы*, 21 (5), 808 (1985).
- Акчурин М.Ш., Гайнутдинов Р.В., Каминский А.А. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 9, 78 (2006).
- 63. Акчурин М.Ш., Галиулин Р.В. Кристаллография, 43 (3), 493 (1998).
- Акчурин М.Ш., Гайнутдинов Р.В., Купенко И.И., Яги Х., Уеда К., Ширакава А., Каминский А.А. ДАН, 441 (6), 743 (2011).
- Акчурин М.Ш., Закалюкин Р.М., Каминский А.А. Докл. РАН (2012) (в печати).
- 66. Хазанов Е.Н., Таранов А.В., Гайнутдинов Р.В., Акчурин М.Ш., Басиев Т.Т., Конюшкин В.А., Федоров П.П., Кузнецов С.В., Осико В.В. ЖЭТФ, 137 (6), 1126 (2010).
- Иванов В.В., Саламатов Е.И., Таранов А.В., Хазанов Е.Н. ЖЭТФ, 133 (2), 339 (2008).