PACS 81.15.Fg

Лазерно-индуцированное осаждение меди из водных растворов, не содержащих восстановителей

В.А.Кочемировский, Л.Г.Менчиков, И.И.Тумкин, Л.С.Логунов, С.В.Сафонов

Методом лазерно-индуцированного осаждения меди из раствора, в котором отсутствует традиционный компонент-восстановитель, впервые получены проводящие дорожки на диэлектрической поверхности, обладающей восстановительной способностью. Показано, что фенолформальдегидное связующее диэлектрика (стеклотекстолит) может успешно играть роль восстановителя в этом процессе. Полученные медные осадки имеют низкое электрическое сопротивление и хорошую топологию.

Ключевые слова: лазерно-индуцированное осаждение, медь, раствор, стеклотекстолит, топология, проводимость.

1. Введение

Интерес к методу лазерно-индуцированного осаждения металла из раствора вызван перспективами его применения в микроэлектронике и технике благодаря возможности создавать различные металлические структуры на поверхности диэлектриков без фотошаблона. Сканирование сфокусированным лазерным пучком поверхности диэлектрика, помещенного в специальный раствор, позволяет локализовано инициировать химическую реакцию восстановления металлической меди в соответствии с уравнением [1]

$$CuL^{(n-2)-} + 2HCHO + 4OH^{-} \rightarrow Cu^{0} + L^{n-} + H_{2}$$

+ 2HCOO^{-} + 2H_{2}O, (1)

где L – органический лиганд (обычно динатриевая соль этилендиаминтетрауксусной кислоты (ЭДТА)); НСНО – формальдегид (восстановитель, который вводится в 6 – 7.5-кратном избытке по сравнению с концентрацией соли меди).

Процесс лазерного-индуцированного осаждения меди из раствора осложняется тем, что реакция (1) идет не только на осаждаемой поверхности, но и во всем объеме раствора, что ухудшает ее локализацию в фокусе лазерного пучка и приводит к снижению качества получаемых дорожек [1–3]. На основании результатов работ [4, 5] по осаждению меди из уравнения (1) можно оценить удельное электрическое сопротивление таких дорожек, которое оказывается на 2.5–4 порядка выше, чем у чистой меди [6]. При этом протяженность непрерывно осаждаемых медных структур не превышает 1-2 мм [4, 5].

Л.Г.Менчиков. Институт органической химии им. Н.Д.Зелинского РАН, Россия, 119991 Москва, Ленинский просп., 47 ; e-mail: mlg@ioc.ac.ru

Поступила в редакцию 19 января 2012 г., после доработки – 12 апреля 2012 г.

Один из возможных путей улучшения локализации медных осадков при лазерно-индуцированном осаждении – использование восстановителей, локализованных на поверхности подложки и уменьшающих вклад объемных процессов. Такими восстановителями могли бы стать фенолформальдегидные смолы [7,8], которые при термогидролизе выделяют формальдегид, являющийся восстановителем в реакции (1), и другие молекулы, обладающие восстановительными свойствами. При этом задача облегчается тем, что среди диэлектрических подложек, предназначенных для электротехнических целей, наиболее распространен стеклотекстолит, который в качестве связующего содержит фенолформальдегидные смолы. Кроме того, в фокусе лазерного пучка создаются высокие локальные температуры, и на поверхности диэлектрика будет идти гидролиз фенолформальдегидной смолы стеклотекстолита. Таким образом, в процессе лазерного осаждения имеются условия, при которых связующее стеклотекстолита может служить восстановителем.

В настоящей работе исследована возможность лазерного осаждения меди на стеклотекстолит в процессе реакции (1) при отсутствии в растворе восстановителя, в роли которого выступает содержащаяся в стеклотекстолите фенолформальдегидная смола.

2. Техника эксперимента

Эксперименты по лазерно-индуцированному осаждению меди из раствора проводились на установке, схема которой представлена в работе [5]. Для осаждения медных структур использовался непрерывный Ar^+ -лазер, генерирующий в многомодовом режиме излучение мощностью 30–2000 мВт на длине волны 488 нм. Плотность мощности в зоне реакции составляла ~10⁵ Вт/см². Лазерный пучок фокусировался оптической системой на плоскую диэлектрическую подложку из стеклотекстолита марки СТЭФ-1, которую перемещали относительно точки фокуса со скоростью 2.5 мкм/с.

Анализ топологии осажденных медных структур проводился с помощью отражательного металлографического микроскопа МИКМЕД-6 (использовались окуляры с 10-, 20- и 40-кратным увеличением). Электронно-микро-

В.А.Кочемировский, И.И.Тумкин, Л.С.Логунов, С.В.Сафонов. Санкт-Петербургский государственный университет, химический факультет, Россия, 198504 С.-Петербург, Петродворец, Университетский просп., 26; e-mail: vako4@yandex.ru

скопическое исследование и энергодисперсионный рентгеноспектральный (EDX) микроанализ выполнялись на сканирующем электронном микроскопе (СЭМ) Zeiss Supra 40VP (оборудование Межфакультетского ресурсного центра СПбГУ по направлению «нанотехнологии»). Регистрация проводилась при разном увеличении (вплоть до 8000-кратного).

Спектры импеданса медных структур на переменном токе регистрировались на импедансометре Z-2000 фирмы «Элинс» (диапазон частот 20 Гц–2 МГц, амплитуда сигнала 125 мВ). Измерение электрического сопротивления осадка проводилось в течение 25 суток после его осаждения (с периодичностью 3 дня).

В качестве диэлектрической подложки, обладающей восстановительными свойствами, использовался стеклотекстолит марки СТЭФ-1, представляющий собой каркас из стеклоткани, пропитанный связующим на основе фенолформальдегидной смолы.

Раствор для лазерно-индуцированного осаждения в отсутствие восстановителя имел следующий химический состав: CuCl₂ (0.01 M), ЭДТА (трилон Б) (0.011 M), п-бензохинон (0.005 M), NaOH (0.05 M).

3. Результаты и их обсуждение

Было исследовано лазерно-индуцированное осаждение меди на стеклотекстолит из раствора, отличающегося от стандартного отсутствием формальдегида [1]. Отсутствие восстановителя в самом исходном растворе исключает возможность протекания реакции восстановления (1) в объеме, т.е. вне диэлектрической поверхности. Для снижения порога инициации реакции лазерно-индуцированного осаждения в состав раствора дополнительно был введен п-бензохинон [3]. В результате лазерно-индуцированного осаждения меди в этих условиях были получены дорожки, которые по данным оптической микроскопии

Рис.1. Микрофотография медной структуры, образовавшейся в результате лазерно-индуцированного осаждения меди из раствора на стеклотекстолит СТЭФ-1, полученная с помощью микроскопа МИКМЕД-6 при использовании окуляра с 20-кратным увеличением.

Рис.2. Микрофотография медного осадка, образовавшегося в результате лазерно-индуцированного осаждения из раствора на поверхность стеклотекстолита СТЭФ-1, полученная с помощью СЭМ. Ширина дорожки 80 мкм.

(рис.1) имеют характерный медный блеск и качественную топологию.

Для проверки и уточнения результатов исследовали осажденные медные структуры с помощью электронного сканирующего микроскопа с EDX-приставкой.

Из полученной с помощью СЭМ микрофотографии медной дорожки (рис.2), осажденной на поверхности стеклотекстолита СТЭФ-1, видно, что осадок представляет собой образования сферической формы диаметром от 30 до 70 мкм. EDX-анализ (рис.3,z-e) различных участков осадка (рис.3,a-e) показал, что состав осадка варьируется от чистой меди (рис.3,z) до силикатного стекла (рис.3,d), которым армирован стеклотекстолит. В осадке есть также промежуточные области, где присутствует смесь этих компонентов (рис.3,e).

Наиболее вероятно, что осадок представляет собой сферы из силикатного стекла, покрытые слоем меди. По всей видимости, в фокусе лазерного пучка силикатное стекло, которым армирован стеклотекстолит, плавится, в результате чего образуется система из двух несмешивающихся жидкостей – водного раствора и расплава стекла, и осаждение меди происходит в виде тонкого слоя на границе раздела двух несмешивающихся фаз.

Изучение электрических свойств осажденных дорожек показало (рис.4), что активное удельное электрическое сопротивление осадка равно ~1.8 Ом/см, что близко к удельному сопротивлению чистой меди. Кроме того, величина активной составляющей импеданса практически не изменяется во времени (рис.4, δ). При этом длина осажденных непрерывных проводящих медных структур составила не менее 12 мм (она ограничена возможностями установки).

4. Заключение

Таким образом, в настоящей работе показано, что лазерно-индуцированное осаждение меди на стеклотекстолит в отсутствие в растворе восстановителя позволяет получить качественные медные структуры с высокой электрической проводимостью. Это делает перспективным дальнейшее исследование возможности применения диэлектриков, обладающих восстановительными свойствами, в реакции лазерно-индуцированного осаждения меди без традиционного восстановителя в растворе с целью использования полученных результатов в микроэлектронике.

Рис.3. Микрофотографии медных осадков (a-e) и соответствующие им EDX-спектры (z-e) (белыми прямоугольниками на фотографиях выделены места регистрации этих спектров), где основными компонентами являются медь (a, z), силикатное стекло (δ, d) , а также смесь меди и стекла (s, e); E – энергия характеристического рентгеновского излучения атомов.

Рис.4. Годограф импеданса Z медной структуры, осажденной на поверхность стеклотекстолита СТЭФ-1 (*a*), и зависимость активной составляющей электрического сопротивления от времени (б).

- Кочемировский В.А., Менчиков Л.Г., Сафонов С.В., Бальмаков М.Д., Тумкин И.И., Тверьянович Ю.С. *Успехи химии*, **80**, 905 (2011).
- Кочемировский В.А., Сафонов С.В., Тумкин И.И., Тверьянович Ю.С., Балова И.А., Менчиков Л.Г. Изв. АН. Сер. химич., № 8, 1540 (2011).
- Tver'yanovich Y.S., Kuzmin A.G., Menchikov L.G., Kochemirovsky V.A., Safonov S.V., Tumkin I.I., Povolotsky A.V., Manshina A.A. *Mendeleev Commun.*, 21, 34 (2011).
- Kordas K., Bali K., Leppavuori S., Uusimaki A., Nanai L. *Appl.* Surf. Sci., 154-155, 399 (2000).
- Manshina A.A., Povolotsky A.V., Ivanova T.U., Tver'yanovich Y.S., Tunik S.P., Kim D., Kim M., Kwon S.C. *Appl. Phys. A*, 89, 755 (2007).
- Lide D.R. (Ed.) CRC Handbook of Chemistry and Physics (Boca Raton, Florida: CRC Press, 2003).
- 7. Ергожин Е.Е., Шостак Ф.Т. Успехи химии, **34**, 2220 (1965).
- Кноп А., Шейб В. Фенольные смолы и материалы на их основе (М.: Химия, 1983).