Отклонение пучка монохроматического терагерцевого излучения методами акустооптики

В.Б.Волошинов, П.А.Никитин, В.В.Герасимов, Б.А.Князев, Ю.Ю.Чопорова

Впервые продемонстрирована возможность управляемого отклонения пучка электромагнитного терагерцевого излучения лазера на свободных электронах методами акустооптики (AO). В качестве материала AO дефлектора использовался монокристаллический германий, имеющий значительный показатель преломления n = 4.0 при относительно низком показателе поглощения электромагнитного излучения. Измеренный на длине волны $\lambda = 140$ мкм показатель поглощения α в германии составил 0.75 ± 0.02 см⁻¹. Показано, что интенсивность дифрагировавшего пучка максимальна при эффективной длине AO взаимодействия $l = 1/\alpha$. В эксперименте достигнута эффективность дифракции 0.05% при мощности бегущей акустической волны 1.0 Вт. Установлено, что при вариации частоты ультразвука от 25 до 39 МГц внешний угол Брэгга изменялся в пределах $19.5^\circ - 27.5^\circ$. При фиксированном угле Брэгга $\theta_B = 22.4^\circ$ полоса частот сканирования света составила 4.2 ± 0.1 МГц, а угловой диапазон качания лазерного луча достигал $2.5^\circ \pm 0.5^\circ$. Полученные результаты свидетельствуют о возможности применения AO взаимодействия $2.5^\circ \pm 0.5^\circ$. При фиксированном угле Брэгга дума достигал $2.5^\circ \pm 0.5^\circ$. Полученные результаты свидетельствуют о возможности применения AO взаимодействия для управляемого отклонения электромагнитного излучения терагерцевого диапазона.

Ключевые слова: акустооптика, терагерцевый диапазон, дефлектор, германий, угол Брэгга, лазер на свободных электронах.

1. Введение

Работа посвящена исследованию управления параметрами электромагнитного излучения терагерцевого диапазона акустооптическими (АО) методами. Подобные исследования проводились ранее в работах [1,2], в которых удалось осуществить модуляцию интенсивности терагерцевого излучения с глубиной ~1%, а также отклонение пучка излучения на угол ~7°. В настоящей работе впервые экспериментально продемонстрировано управляемое отклонение пучка терагерцевого излучения на большие углы с помощью АО взаимодействия в режиме бегущей, а не стоячей, как это имело место в работе [2], акустической волны. Доказана также возможность работы АО ячейки в качестве дефлектора, для которого рассчитаны и измерены такие важные характеристики, как частотный и угловой диапазоны сканирования терагерцевого излучения, а также максимальное число разрешаемых элементов. Измерена зависимость угла Брэгга от частоты ультразвука по уровню интенсивности дифрагировавшего излучения -3 дБ. Следует отметить, что АО взаимодействие исследовалось также в работах [3,4], в которых при изучении дифракции были использованы волны электронной плотности в пьезоэлектрическом материале. В настоящей работе, в отличие от публикаций [3,4], основным механизмом, обеспечивающим создание дифракционной решетки, являлся фотоупругий эффект в кристаллическом германии, не обладающем пьезоэлектрическими свойствами. Источником терагерцевого излучения служил лазер на свободных электронах (ЛСЭ), генерирующий монохроматическое излучение с длиной волны $\lambda = 140$ мкм и мощностью в несколько сотен ватт [5].

Известно, что АО взаимодействие широко применяется для управления такими характеристиками электромагнитного излучения, как направление распространения, интенсивность, поляризация, частота и фаза. Благодаря простоте управления, компактности, малой потребляемой мощности и высокому быстродействию АО устройства используются в спектроскопии, оптической связи, системах обработки изображений, лазерной технике и др. для модуляции, фильтрации и управляемого отклонения световых пучков [6–9].

К настоящему времени из литературы известно, что АО устройства работают на длинах волн электромагнитного излучения, не превышающих 10-20 мкм [10,11]. К сожалению, работ, посвященных исследованию АО взаимодействия в дальнем ИК и, тем более, в терагерцевом диапазонах, чрезвычайно мало, несмотря на исключительно большой интерес исследователей к данным спектральным интервалам электромагнитного излучения [1-4]. В работах [3,4] было предложено использовать механизм взаимодействия электромагнитных волн с волнами электронной плотности в пьезоэлектриках. Однако многие пьезоэлектрики непрозрачны в терагерцевом диапазоне, что препятствует применению указанного механизма при больших длинах волн. В последнее время ведется активная разработка устройств на основе монокристаллов теллура, работающих на $\lambda \leq 23$ мкм с эффективностью АО дифракции I_1/I_0 на $\lambda = 10.6$ мкм в десятки процентов [12]. Использование подобных устройств в дальнем ИК диа-

В.Б.Волошинов, П.А.Никитин. Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119991 Москва, Воробьевы горы; e-mail: nikitin.pavel.a@gmail.com В.В.Герасимов, Ю.Ю.Чопорова. Институт ядерной физики им. Г.И.Будкера СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 11

Б.А.Князев. Новосибирский национальный исследовательский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2

Поступила в редакцию 12 апреля 2013 г., после доработки – 26 июня 2013 г.

пазоне сопряжено с трудностями, поскольку эффективность AO дифракции обратно пропорциональна квадрату длины волны λ электромагнитного излучения. В линейном режиме при малой эффективности AO дифракции и небольших углах Брэгга внутри кристалла выражения для интенсивностей прошедшего и дифрагировавшего излучений записываются в виде [6]

$$\frac{I_1}{I_0^*} \approx \frac{\pi^2}{2\lambda^2} \frac{M_2 P_a}{d} lT,$$
(1a)

$$I_0 \approx I_0^* T \,, \tag{16}$$

где I_0^* и I_0 – интенсивности падающего и прошедшего через АО ячейку излучений в отсутствие акустической волны; І₁ – интенсивность дифрагировавшего излучения на выходе из кристалла; Т – коэффициент пропускания АО ячейки, определяемый френелевскими отражениями; М₂ = $p^2 n^6 / (\rho V^3)$ – коэффициент АО качества, характеризующий эффективность АО взаимодействия; р – эффективная фотоупругая постоянная; *n* – показатель преломления; *ρ* – плотность; V и P_a - скорость и мощность акустической волны; *l* – эффективная длина АО взаимодействия; *d* – размер звукового пучка в плоскости, ортогональной плоскости АО взаимодействия. Из выражений (1) видно, что эффективность АО дифракции в терагерцевом диапазоне (при $\lambda = 140$ мкм) будет примерно в 170 раз меньше, чем в ИК диапазоне (при $\lambda = 10.6$ мкм), и в десятки тысяч раз меньше, чем в видимом диапазоне (при $\lambda = 0.6$ мкм). Учитывая, что эффективность АО взаимодействия пропорциональна n⁶, для обеспечения ее приемлемого уровня на терагерцевых частотах необходим поиск прозрачных веществ с большим показателем преломления.

Как было отмечено выше, возможность АО дифракции электромагнитного излучения терагерцевого диапазона была продемонстрирована в работах [1–4]. Однако в литературе отсутствуют данные о возможности создания АО устройств для эффективной модуляции и сканирования такого излучения. В последние годы интерес к подобным устройствам возрос в связи с активным освоением современной физикой и техникой дальнего ИК, терагерцевого и субмиллиметрового диапазонов [13]. Целью настоящей работы было создание активного элемента для управления параметрами терагерцевого излучения. В частности, в работе представлены результаты исследования первого АО дефлектора на основе монокристалла германия и измерения его характеристик на длине волны $\lambda = 140$ мкм излучения ЛСЭ.

2. Теоретическое рассмотрение АО взаимодействия в терагерцевом диапазоне

Принимая во внимание величины показателей преломления и поглощения веществ, в качестве материала АО ячейки мы выбрали германий, имеющий достаточно большую действительную часть показателя преломления при относительно низком показателе поглощения α терагерцевого излучения. Из литературы известно, что в кристаллическом германии на $\lambda = 140$ мкм действительная часть показателя преломления n = 4.0, а показатель поглощения $\alpha = 1.3 \text{ см}^{-1}$ [14]. Выбор германия был также обусловлен тем, что его характеристики на $\lambda = 10.6$ мкм хорошо известны [15]. В эксперименте, проведенном в рамках настоящей работы, при $\lambda = 10.6$ мкм и управляющей электрической

мощности 2 Вт была достигнута эффективность АО дифракции ~15%. При дальнейшем анализе учитывалось, что коэффициент АО качества германия M_2 в ИК диапазоне равен не 810×10^{-15} с³/кг, как ошибочно утверждалось в работе [16], а примерно в четыре раза меньше: $M_2 = 180 \times 10^{-15}$ с³/кг [15]. Параметр Кляйна–Кука Q при $\lambda = 140$ мкм, частоте ультразвука F = 30 МГц, l = 1 см, n = 4.0 и $V = 5.6 \times 10^3$ м/с составляет ~60 \gg 1, что соответствует дифракции Брэгга [6–9].

Из работы [15] известно, что эффективная фотоупругая постоянная в германии имеет максимальное значение $p = (p_{11} + 2p_{12} + 4p_{44})/3$ при взаимодействии продольной акустической волны, распространяющейся в направлении оси [111] кристалла, и электромагнитной волны, поляризованной вдоль той же оси и падающей ортогонально звуковому столбу. Для расчета скорости ультразвуковых волн в германии были использованы известные значения упругих постоянных: $c_{11} = 1.30 \times 10^{12}$ дин/см², $c_{12} =$ 0.490×10^{12} дин/см² и $c_{44} = 0.670 \times 10^{12}$ дин/см² [17]. При известной скорости ультразвука и фотоупругих константах $p_{11} = -0.154, p_{12} = -0.126$ и $p_{44} = -0.073$ [17], которые полагались одинаковыми для терагерцевого и ИК диапазонов, был получен коэффициент АО качества кристалла германия $M_2 = 240 \times 10^{-15} \text{ c}^3$ /кг. Он оказался близким к коэффициенту $M_2 = 180 \times 10^{-15} \text{ с}^3/\text{кг}$, приведенному в работе [15].

Для учета затухания электромагнитного излучения в материале AO ячейки при расчете эффективности AO взаимодействия необходимо ввести множитель $\exp(-\alpha x)$, где x – расстояние, пройденное светом в среде с показателем поглощения α . Поэтому интенсивность прошедшего через AO ячейку излучения $I_0 = I_0^* T \exp(-\alpha l)$ и выражение (1а) можно переписать в виде

$$I_{1} = \xi T I_{0}^{*} l = \xi T \int_{0}^{l} I_{0}^{*} dx, \quad \xi = \frac{\pi^{2}}{2\lambda^{2}} \frac{M_{2} P_{a}}{d}.$$
 (2)

В результате из (2) с учетом соотношения для I_0 получаем выражение

$$I_{1} = \xi T \int_{0}^{l} [I_{0}^{*} \exp(-\alpha x)] \exp[-\alpha (l-x)] dx = I_{0}^{*} \xi T l \exp(-\alpha l), (3)$$

где множитель $\exp[-\alpha(l-x)]$ учитывает затухание излучения, отклоненного с участка длиной dx на пути исходного пучка. Полученная зависимость I_1 от l приведена в работе [1], однако без вывода.

Из выражения (3) можно определить оптимальную длину АО взаимодействия l_{opt} , при которой интенсивность I_1 достигает максимального значения I_1^{max} :

$$l_{\rm opt} = \frac{1}{\alpha}, \ I_1^{\rm max} = I_0^* T \left(\frac{\pi^2}{2\lambda^2} \frac{M_2 P_a}{d} \right) \frac{1}{\alpha e}.$$
 (4)

Значение l_{opt} , рассчитанное по формуле (4) при $\lambda = 140$ мкм, составило ~1 см. При $\alpha = 1.3$ см⁻¹ и малых углах Брэгга в кристалле многолучевой интерференцией можно пренебречь и рассчитывать коэффициент пропускания по формуле $T = [1 - (n - 1)^2/(n + 1)^2]^2$. В этом случае при характерном поперечном размере пьезопреобразователя d = 0.2 см и акустической мощности $P_a = 1.0$ Вт эффективность АО дифракции $I_1^{\max}/I_0 = 0.02\%$, в то время как отношение интенсивностей дифрагировавшего (I_1^{\max}) и падающего (I_0^*) излучений достигает максимального значения 0.004%.

В работе [1] для $\lambda = 119$ мкм отношение I_1/I_0^* составило 0.07% при управляющей мощности 150 Вт, показателе

поглощения $\alpha \approx 1.5 \text{ см}^{-1}$ и размерах пьезопреобразователя l = 1.7 см, d = 0.8 см. Для возбуждения акустической волны использовался пьезопреобразователь с резонансной частотой 1 МГц. При столь низкой частоте угол между дифрагировавшим и прошедшим лучами на выходе из кристалла германия составлял ~1°. Достигнутое экспериментально в работе [1] отношение $I_1/I_0^* = 0.07\%$ оказалось несколько меньше определенного по формуле (3) значения 0.08%. Рассчитанная по экспериментальным данным эффективность дифракции $I_1/I_0 = 2.3\%$ также слабо отличалась от полученной по формуле (4) и составившей 2.7%. Столь высокие значения I_1/I_0^* и I_1/I_0 обусловлены большой акустической мощностью.

В работе [2] эффективность дифракции на $\lambda = 119$ мкм достигала 1.5%, а угол разведения лучей составлял 7° при использовании кристалла германия длиной l = 2.9 см, плотности акустической мощности около 1 Bт/см² и частоте F = 5 МГц. Полученная эффективность дифракции существенно больше рассчитанного по формуле (4) значения 0.12% благодаря использованию в работе [2] стоячей продольной акустической волны, распространяющейся в направлении оси [100]. В режиме стоячей ультразвуковой волны управление светом осуществляется лишь на отдельных фиксированных частотах F. Однако отношение I_1/I_0^* , рассчитанное по формуле (3) при d = 0.2 см, $\alpha = 1.3$ см⁻¹ и $P_a = 1$ Вт, оказывается равным 0.001 %, что меньше максимально достижимого значения из-за применения кристалла с неоптимальной длиной. Следует также отметить, что использование в [2] акустических волн, распространяющихся в германии в направлении оси [100], не является оптимальным.

Таким образом, результаты расчетов и анализ известных литературных данных указывают на то, что в кристаллическом германии при малой электрической мощности, не превышающей 1.0 Вт, отношение I_1/I_0^* в терагерцевом диапазоне составляет доли процента.

3. Экспериментальное исследование АО дефлектора

В настоящей работе экспериментальное исследование АО взаимодействия проводилось с использованием терагерцевого излучения ЛСЭ с λ = 140 мкм [18]. На предварительном этапе исследований было измерено значение показателя поглощения электромагнитного излучения в двух образцах германия длиной 4.5 и 1.5 см. При этом использовался лазерный пучок с апертурой 5 мм, а приемник располагался непосредственно за кристаллом германия. Приемником служила ячейка Голея, требующая амплитудной модуляции интенсивности лазерного пучка с частотой 10 Гц. С учетом френелевских потерь, составляющих при нормальном падении излучения $\sim 60\%$ (n = 4.0), показатель поглощения а в германии оказался равным 0.75 ± 0.02 см⁻¹. Это меньше приведенной в [14] величины $\alpha = 1.3 \text{ см}^{-1}$, что, вероятно, объясняется использованием в настоящей работе высокоомного кристалла германия хорошего оптического качества [19]. При столь больших значениях α и *n* многолучевой интерференцией и расходимостью светового пучка можно пренебречь.

Схема экспериментальной установки по исследованию характеристик АО дефлектора приведена на рис.1. Интенсивность излучения ЛСЭ *1* регулировалась проволочным поляризатором *2* и аттенюатором *3*. В установке

1 – ЛСЭ; 2 – проволочный поляризатор; 3 – аттенюатор; 4 – механический прерыватель; 5 – поляризатор; 6 – диафрагма; 7 – дефлектор; 8 – ячейка Голея; 9 – синхронный детектор; 10 – высокочастотный генератор; 11 – генератор импульсов; 12 – блок управления прерывателем; 13 – персональный компьютер.

предусматривалась возможность амплитудной модуляции интенсивности излучения лазера с помощью механического прерывателя 4. Поляризация выходного излучения устанавливалась вдоль оси кристалла германия [111] поляризатором 5, а апертура пучка определялась диафрагмой 6. АО ячейка дефлектора 7 была изготовлена из монокристалла германия оптимального среза для возбуждения бегущей продольной акустической волны в направлении [111]. Интенсивность излучения, прошедшего через дефлектор, измерялась ячейкой Голея 8 (GC-1T) [20], располагавшейся на расстоянии 15 см от АО ячейки. Установка включала в себя также синхронный детектор 9 (SR830), высокочастотный генератор 10, генератор импульсов 11 и блок управления прерывателем 12. Обработка данных измерений осуществлялась с помощью персонального компьютера 13.

Размер АО ячейки дефлектора вдоль направления распространения света составлял 4.5 см, а длина и ширина пьезопреобразователя были равны соответственно 2.0 и 0.2 см. Преобразователь из кристалла ниобата лития эффективно генерировал продольные акустические волны в интервале частот 20–38 МГц. При указанных параметрах рассчитанное по формуле (3) отношение интенсивностей дифрагировавшего и падающего излучений $I_1/I_0^* \approx 0.001\%$, а эффективность дифракции $I_1/I_0 \approx 0.06\%$.

Эффективность АО дифракции определялась следующим образом. В отсутствие аттенюатора АО ячейка поворачивалась под углом Брэгга к лазерному пучку, ограниченному диафрагмой размером 2×10 мм. Для того чтобы ячейка Голея не регистрировала шумы, обусловленные рассеянием терагерцевого излучения, прерыватель был извлечен из установки. Для амплитудной модуляции только отклоненного в результате АО дифракции терагерцевого пучка использовался генератор импульсов, осуществляющий импульсную модуляцию сигнала высокочастотного генератора со скважностью 2 и длительностью 0.1 с. Ячейка Голея располагалась на постоянном расстоянии 15 см и ориентировалась под углом Брэгга к АО ячейке, которая поворачивалась по отношению к исходному лазерному пучку с шагом 1°. При заданном угле поворота АО ячейки плавно изменялась частота высокочастотного генератора, что позволяло определить полосу частот АО взаимодействия, а также зависимость угла Брэгга от частоты. Для определения интенсивности падающего на АО ячейку излучения в терагерцевый пучок дополнительно вводились калиброванный аттенюатор и прерыватель, а ячейкой Голея измерялась интенсивность прошедшего через АО ячейку излучения.

4. Экспериментальные результаты и их обсуждение

Измеренная эффективность АО дифракции в дефлекторе составила ~0.05% при подводимой электрической мощности 1.0 Вт, что совпадает с расчетами, выполненными по формуле (3). Кроме того, в диапазоне частот ультразвука 25–39 МГц была измерена зависимость внешнего угла Брэгга $\theta_{\rm B}$ от акустической частоты. При измерениях также была определена полоса акустических частот дифракции $\Delta F = 4.2 \pm 0.1$ МГц в случае постоянного угла падения излучения $\theta_{\rm B} = 22.4^{\circ}$. Полоса частот сканирования определялась по уровню уменьшения эффективности дифракции на –3 дБ. Эксперимент показал, что угловой диапазон сканирования зависел от частоты ультразвука *F*. В частности, при фиксированной частоте *F* = 27 МГц диапазон сканирования терагерцевого пучка $\Delta\theta$ был равен 2.5°±0.5°, а при *F* = 35 МГц он составлял 3.0°±0.5°.

Измеренные зависимости угла Брэгга от частоты ультразвука представлены на рис.2. Для наглядности на вставке к рис.2 приведена зависимость нормированной на максимальное значение интенсивности дифрагировавшего излучения I_1/I_1^{max} от частоты ультразвука *F* при фиксированном угле Брэгга $\theta_{\text{B}} = 22.4^{\circ}$. Экспериментальные результаты совпадают в пределах погрешности с теоретической зависимостью (штриховая линия), описываемой известной формулой [6]

$$\sin\theta_{\rm B} = \frac{\lambda F}{2V}.\tag{5}$$

Аппроксимация результатов измерений методом наименьших квадратов (сплошные линии) дает скорость продольных акустических волн в германии $V = (5.48 \pm 0.09) \times 10^3$ м/с. Полученное значение в пределах по-

Рис.2. Зависимости угла Брэгга от частоты ультразвука. Штриховая линия – теоретическая зависимость [6]. Треугольники соответствуют уровню уменьшения эффективности дифракции на –3 дБ, а точки – максимальной эффективности АО дифракции. На вставке – зависимость нормированной на максимальное значение интенсивности дифрагировавшего излучения от частоты ультразвука при фиксированном угле Брэгга $\theta_{\rm B} = 22.4^{\circ}$.

грешности совпадает с приведенным в работе [17] значением 5.57×10³ м/с, на основе которого была построена теоретическая зависимость угла Брэгга от частоты ультразвука.

Расчет показывает, что при апертуре светового пучка a = 1.0 см и скорости акустической волны $V = 5.48 \times 10^3$ м/с быстродействие АО ячейки $\tau = a/V$ равно 1.8 мкс. Тогда максимальное число разрешаемых элементов на выходе дефлектора $N = \Delta F \tau = 7.5$. При тех же размерах пьезопреобразователя, но еще большей апертуре светового пучка оно может быть увеличено. Таким образом, данное АО устройство на основе кристалла германия может быть использовано в качестве дефлектора электромагнитных волн терагерцевого диапазона.

5. Заключение

В данной работе выведено соотношение для интенсивности дифрагировавшего излучения при малой эффективности АО взаимодействия в среде с существенным поглощением электромагнитных волн. Впервые экспериментально подтверждена возможность создания АО дефлектора, способного отклонять излучение терагерцевого ЛСЭ на углы в несколько десятков градусов. Особенностью проведенных исследований является использование оптимальной геометрии АО взаимодействия в кристалле германия при низких мощностях бегущей акустической волны и относительно высоких частотах ультразвука.

- 1. Vogel T., Dodel G. Infrared Phys., 25, 315 (1985).
- 2. Durr W., Schmidt W. Int. J. Infrared Millimeter Waves, 6, 1043 (1985).
- Проклов В.В., Миргородский В.И., Ушаткин Е.Ф. Письма в ЖТФ, 4, 1431 (1978).
- Гуляев Ю.В., Проклов В.В., Шкердин Г.Н. В кн.: Проблемы современной радиотехники и электроники (М.: Наука, 1980, с. 326).
- 5. *Terahertz Techniques.* Ed. by E.Brundermann et al. (Berlin: Springer, 2012).
- 6. Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики (М.: Радио и связь, 1985).
- 7. Xu J., Stroud R. Acousto-optic Devices (New York: Wiley, 1992).
- Yariv A., Yeh P. Optical Waves in Crystals (New York: Wiley, 1984).
- Goutzolis A.P., Pape D.R. Design and Fabrication of Acousto-optic Devices (New York: Dekker, 1994).
- Voloshinov V.B., Gupta N. Proc. SPIE Int. Soc. Opt. Eng., 3900, 68 (1999).
- 11. Voloshinov V.B., Gupta N. Appl. Opt., 43, 3901 (2004).
- Gupta N., Voloshinov V.B., Knyazev G.A. J. Optics, 14, 035502 (2012).
- Terahertz Spectroscopy and Imaging. Ed. by K.-E.Peiponen et al. (Berlin: Springer, 2013).
- Palik E.D. Handbook of Optical Constants of Solids (New York: Academic Press, 1985).
- 15. Fox A.J. Appl. Opt., 24, 2040 (1985).
- Pinnow D.A., in *Laser Handbook* (Amsterdam: North Holland Publ. Co., 1972).
- 17. Шаскольская М.П. Акустические кристаллы (М.: Наука, 1982).
- Knyazev B.A., Kulipanov G.N., Vinokurov N.A. *Meas. Sci. Technol.*, 21, 054017 (2010).
- 19. Несмелова И.М., Астафьев Н.И. *Прикладная физика*, **5**, 33 (2007).
- 20. http://www.tydexoptics.com/.