#### PACS 42.55.Lt; 42.60.Lh

# Влияние уменьшения длительности фронта импульса напряжения на частоту следования импульсов генерации лазера на парах меди

П.А.Бохан, П.П.Гугин, Дм.Э.Закревский, М.А.Лаврухин, М.А.Казарян, Н.А.Лябин

Исследованы характеристики генерации лазера на парах меди в режиме возбуждения цуга импульсов в трубке с внутренним подогревом, имеющей длину 48 см и диаметр 2 см. Проведено сравнение двух схем питания: традиционной, с разрядом накопительной емкости через тиратрон и обострительной емкостью, и схемы, в которой обострительная емкость соединялась с активным элементом лазера через кивотрон – быстродействующий ключ на основе «открытого разряда» со временем включения менее 1 нс. Показано, что в рассматриваемом диапазоне частот следования импульсов  $f = 2 - 16 \kappa \Gamma \mu$  в первом случае имеет место типичная зависимость энергии генерации от частоты с максимумом в области  $4-5 \kappa \Gamma \mu$ . Во втором случае энергия генерации не зависит от частоты, соответственно средняя мощность в этом диапазоне пропорциональна f. Полученные результаты объясняются нейтрализацией влияния начальной концентрации электронов на энергетические характеристики лазера на парах меди.

Ключевые слова: лазер на парах меди, газовый разряд, коммутатор, энергия генерации.

# 1. Введение

Лазеры на парах меди (ЛПМ) с длинами волн излучения  $\lambda_1 = 511$  нм и  $\lambda_2 = 578$  нм длительное время лидировали среди всех других импульсных лазеров видимого диапазона по сочетанию таких параметров, как средняя выходная мощность, частота следования импульсов генерации наносекундной длительности, эффективность генерации и др. Однако в последнее десятилетие они вытеснены из многих областей применения твердотельными лазерами с диодной накачкой и внутрирезонаторным преобразованием длины волны излучения в видимую область. Между тем можно утверждать, что возможности ЛПМ далеко не исчерпаны, поскольку имеются, по крайней мере, три глобальные нерешенные проблемы для лазеров на самоограниченных переходах, в том числе для ЛПМ, препятствующие достижению тех предельных и достаточно высоких параметров, которые заложены в природе лазеров этого типа [1,2]:

1. Низкая практическая эффективность, 1%–2% [3], оставшаяся на уровне первоначальных достижений [1,4] и на порядок уступающая теоретически возможной, определенной на основе скоростей элементарных процессов и для идеального (прямоугольного) импульса возбуждения [5,6].

 Низкая частота следования импульсов генерации при максимальной или близкой к ней эффективности ге-

**П.А.Бохан, П.П.Гугин, Дм.Э.Закревский, М.А.Лаврухин.** Институт физики полупроводников СО РАН им. А.В.Ржанова, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 13; e-mail: zakrdm@isp.nsc.ru

Поступила в редакцию 7 ноября 2012 г., после доработки – 6 февраля 2013 г.

нерации, уступающая почти на два порядка той частоте следования, которая определяется скоростью девозбуждения метастабильных состояний [7,8].

3. Отсутствие коммутаторов, полностью удовлетворяющих требованиям, предъявляемым к системам накачки импульсно-периодических лазеров на самоограниченных переходах.

В настоящей работе приведены первые результаты исследования влияния уменьшения длительности переднего фронта импульса напряжения до ~1 нс на частотно-энергетические характеристики ЛПМ. В рамках сформулированных выше проблем это исследование направлено на решение третьей задачи, а именно на создание идеального коммутатора для систем питания ЛПМ.

#### 2. Схема установки и методика эксперимента

Для решения поставленной задачи разработан коммутатор на основе «открытого разряда» – кивотрон [9], принцип работы и коммутационные характеристики которого приведены в [10]. В отличие от коаксиальной конструкции кивотрона [9, 10], в настоящей работе использовалась планарная геометрия «сэндвич» кивотрона, схема которого представлена на рис.1. Кивотрон состоит из двух идентичных ускорительных (разрядных) промежутков длиной по 3 мм, отделенных друг от друга дрейфовым пространством с общей длиной 14 мм. Разрядные промежутки образованы катодами из титана с полированными рабочими частями диаметром 4 см и металлическими сетками из молибдена с геометрической прозрачностью ~92.5%. Обе сетки соединены гальванически и образуют первый малоиндуктивный вывод, который обычно заземлен через токовый шунт. Катоды также соединены гальванически и образуют второй малоиндуктивный высоковольтный вывод. Собственная (паразитная) емкость  $C_k$  каждого разрядного промежутка равна ~50 п $\Phi$ , и в основном именно она ограничивает сверху скорость коммутации кивотрона.

**М.А.Казарян.** Физический институт им. П.Н.Лебедева РАН, Россия, 119991Москва, Ленинский просп., 53

**Н.А.Лябин.** ФГУП "НПП «Исток»", Россия, Московская обл., 141190 Фрязино, ул. Вокзальная, 2а



Рис.1. Схема кивотрона:

*I* – катод; *2* – сетчатый анод; *3*, *4* – диэлектрические разделительные кольца; *5* – токоввод.

На рис.2 представлены зависимости  $I(U_0)$  – вольт-амперные характеристики кивотрона в режиме генерации электронного пучка ( $U_0$  – начальное напряжение на емкости) и зависимости длительности импульса тока  $\tau_I(U_0)$  через него при рабочей емкости 0.85 нФ и давлениях гелия  $p_{\text{He}} = 20$  и 5 Тор соответственно (токовый шунт 0.64 Ом). На этом же рисунке показана коммутационная характеристика кивотрона  $\tau_{\text{sw}}(U_0)$  ( $\tau_{\text{sw}}$  – время коммутации) в гелии при  $p_{\text{He}} \approx 14$  Тор и омической нагрузке 25 Ом. Видно, что время перехода кивотрона в высокопроводящее со-



Рис.2. Вольт-амперные характеристики кивотрона (1,2) и зависимости длительности импульса тока через кивотрон (1', 2') в режиме генерации электронного пучка, а также коммутационная характеристика (3) при  $p_{\text{He}} = 20$  (1, 1'), 5 (2, 2') и 14 Тор (3).

стояние, равное времени разряда собственной емкости  $C_{\rm k} \sim 100 \, {\rm n}\Phi$ , составляет менее 1 нс при рабочем напряжении  $U_0 > 10 \, {\rm k}B$ . Остаточное напряжение на кивотроне обычно не превышает  $\sim 1-1.5 \, {\rm k}B$ , что соответствует эффективности коммутации более 90% при  $U_0 \sim 20 \, {\rm k}B$ .

В экспериментах использовалась газоразрядная трубка (ГРТ) длиной l = 48 см с диаметром разрядного канала d = 2 см, изготовленная в ФГУП "НПП «Исток»" по технологии, описанной в [3]. Техническим усовершенствованием ГРТ является наличие нагревательной спирали из сплава W-Re [11]. Спираль наматывалась непосредственно на внутреннюю разрядную алундовую трубку и была соединена с электродами ГРТ. Конструктивные особенности ГРТ позволяли работать при температурах вплоть до T = 1420 °C (температура измерялась пирометром). При большей температуре возможно самопроизвольное зажигание дугового разряда от питающего нагревательную спираль напряжения, превышающего 100 В. Спираль одновременно являлась рабочей индуктивностью, шунтирующей разрядный промежуток ( $L_{\rm sh} \approx 40$  мкГн). Собственная расчетная индуктивность ГРТ с коаксиальным обратным токопроводом  $L_{\rm t}$  составляла ~1.6 × 10<sup>-7</sup> Гн.

Схемы питания ГРТ представлены на рис.3. В первом случае (рис.3, а) осуществляется питание по обычной схеме разряда накопительной емкости С<sub>0</sub> через тиратрон на обострительную (рабочую) емкость Ср, соединенную непосредственно с электродами ГРТ. Использовались оптимальная емкость  $C_0 \approx 15 d^2/l \approx 1.5 \ \text{н}\Phi$  [12] и две емкости  $C_{\rm p}$ :  $C_{\rm p} = C_0$  и  $C_{\rm p} = 0.5C_0$ . Во втором случае (рис.3, $\delta$ ) обострительная емкость  $C_p = C_0$  разряжалась через ГРТ, последовательно соединенную с кивотроном. Для того чтобы во время импульсной зарядки емкости  $C_{\rm p}$  не возникала разность потенциалов между электродами ГРТ, на катод кивотрона, соединенный с анодом ГРТ, подавалось напряжение по цепи  $L_k - C_k$ , причем обеспечивалось условие  $C_k L_k = C_p L_p (L_p - индуктивность цепи перезарядки).$ Время зарядки соответствующих емкостей  $\tau = \pi (L_i C_i)^{1/2} \sim$ 100 нс подбиралось равным времени задержки развития разряда через кивотрон. Схема регистрации электрических параметров (напряжения и тока) аналогична использованной в [10].

Во всех случаях осуществлялась зарядка накопительной емкости  $C_0$  от импульсного повышающего трансформатора, питаемого от транзисторного ключа. Оптимальное рабочее напряжение на  $C_0$ , соответствующее максимуму эффективности, составило 12–14 кВ, а частота следования импульсов была менее 16 кГц. Измерение частотно-энергетических характеристик при постоянной энер-



Рис.3. Схемы питания активного элемента ЛПМ: разяд Со на Ср через тиратрон (а) и разряд Ср на ГРТ через кивотрон (б).

гии импульса накачки (или одинаковом напряжении  $U_0$  на емкости  $C_0$ ) затруднительно ввиду значительного изменения теплового режима ГРТ и, следовательно, нестационарности условий для лазерной генерации. Поэтому все измерения выполнены в режиме генерации цуга импульсов, подаваемого во время изменения полярности переменного напряжения, питающего нагревательную спираль [11]. Длительность цуга обычно не превышала 2 мс. При большей длительности возможно возникновение низковольтной дуги между электродами ГРТ при любой температуре последней. Поскольку питание нагревательной спирали осуществлялось от сетевого напряжения, то частота следования цугов составляла 50 Гц и синхронизовалась с частотой сети.

# 3. Результаты исследования частотноэнергетических характеристик ЛПМ

На рис.4 представлена картина развития лазерной генерации при питании разряда цугом импульсов. Видно, что генерация возникает, начиная со второго импульса возбуждения, а начиная с третьего импульса и до конца цуга ее энергия сохраняет постоянное значение при оптимальных U<sub>0</sub> (до 14 кВ). При повышенных напряжениях  $(U_0 > 16 \text{ кB})$  выравнивание энергии импульсов генерации происходит уже со второго импульса. Такое поведение объясняется тем, что ввиду малой начальной концентрации электронов n<sub>e0</sub> в момент прихода первого импульса цуга пробой развивается достаточно медленно, так что временная зависимость напряжения на трубке имеет затухающий осциллирующий характер (из-за малости L<sub>dis</sub>) вплоть до момента пробоя. После пробоя осцилляции прекращаются, однако остаточное напряжение слишком мало для возбуждения генерации.

Осциллограммы импульсов напряжения на ГРТ  $U_t$ , тока через нее  $I_t$  и генерации ( $P_p$ ) приведены на рис.5, а основные характеристики генерации для T = 1420 °С – на рис.6 (давление неона  $p_{Ne} \approx 40$  Top). Видно хорошее согласование генератора накачки с ГРТ при  $C_0 = C_p = 1.5$  нФ (рис.5, $a, \delta$ ). Это выражается в том, что пик импульса генерации практически совпадает с пиком импульса тока, а амплитуда отраженного импульса напряжения не превышает 10% от амплитуды основного импульса. Поэтому, несмотря на далеко не оптимальную температуру ГРТ (1420 °С по сравнению с 1550–1600 °С в [3]), эффективность генерации  $\eta$  относительно энергии, запасаемой в  $C_0$ , достигает 0.66%.

При  $C_p = 0.5C_0$  согласование значительно хуже (рис.5,*в*). Ухудшение качества согласования приводит к уменьшению средней ( $P_{av}$ ) и импульсной ( $P_p$ ) мощностей генерации по сравнению со случаем  $C_0 = C_p$  (ср. кривые 1 и 2 на



Рис.4. Типичная картина развития лазерной генерации при питании разряда цугом импульсов ( $U_0 < 14$  кВ).



Рис.5. Осциллограммы импульсов напряжения  $U_t$  и тока  $I_t$ , а также второго (*a*) и пятого (*б*, *в*) импульсов в цуге импульсов генерации ( $P_p$ ) для схемы на рис.3,*a* при T = 1420 °C,  $p_{Ne} \approx 40$  Top,  $C_0 = C_p = 1.5$  нФ (*a*, *б*) и  $C_0 = 2C_p = 1.5$  нФ (*в*).

рис.6). Тем не менее для случая  $C_0 = C_p$  реализуются экстремальные зависимости от частоты f энергии W (кривая 3) и эффективности генерации  $\eta$  (кривая 4). Максимумы этих величин находятся в диапазоне частот следования импульсов f = 3-6 кГц, где они почти неизменны. При f < 3 кГц уменьшение W и  $\eta$  объясняется значительной задержкой начала пробоя ГРТ из-за уменьшения  $n_{e0}$  с уменьшением f. В результате часть энергии, передаваемой в емкость  $C_p$ , теряется в нагревательной спирали, что и приводит к уменьшению W и  $\eta$ . При f > 6 кГц наблюдается типичная для ЛПМ картина уменьшения W и  $\eta$  с ростом частоты f, объясняемая ростом влияния  $n_{e0}$  на характеристики генерации. При f > 14 кГц происходит уменьшение и средней мощности генерации  $P_{ay}$ .



Рис.6. Частотно-энергетические характеристики лазерной генерации для схемы на рис.3,*a*: средняя мощность  $P_{av}(1, 2)$ , энергия импульса W(3) и эффективность  $\eta(4)$ ;  $C_0 = 2C_p(1)$  и  $C_0 = C_p(2-4)$ .

На рис.7 представлены начальные участки осциллограмм импульсов напряжения на ГРТ Ut, токов через кивотрон  $I_k$  и через ГРТ  $I_t$ , а также генерации. Видно, что максимальное напряжение Ut, близкое к зарядному напряжению на C<sub>0</sub>, устанавливается за ~1.5 нс. Незначительное затягивание импульса напряжения Ut по сравнению с данными рис.2 обусловлено паразитными емкостями и индуктивностью лазерной трубки. Начало осциллограммы тока  $I_k$  не соответствует истинному току через ГРТ, т.к. осциллограмма обусловлена разрядом собственной емкости кивотрона через токовый шунт. По этой же причине  $U_t$  начинает расти позже, чем ток через кивотрон. Реальная осциллограмма тока через ГРТ It получена вычитанием из осциллограммы тока Ik осциллограммы тока «холостого хода через кивотрон», зарегистрированной в отсутствие емкости Ср при равенстве  $C_{\rm k} = C_0$  и без нагрузки (кроме токового шунта) в цепи кивотрона.

Частотно-энергетическая характеристика лазера при использовании схемы возбуждения с кивотроном в цепи питания показана на рис.8. Видно, что выходная мощность практически линейно растет вплоть до частоты f =



Рис.7. Осциллограммы импульсов напряжения  $U_t$ , токов  $I_t$  и  $I_k$ , а также генерации ( $P_p$ ) для схемы на рис.3, $\delta$ .



Рис.8. Частотно-энергетические характеристики лазерной генерации при использовании схемы возбуждения с кивотроном в цепи питания (рис.3, $\delta$ ) (1,2) и традиционной схемы возбуждения (рис.3,a) (3, 4). Для обеих схем возбуждения  $C_0 = C_p$ .

16 кГц (кривая 1), ограниченной использованным источником питания (для W не наблюдается зависимости от f, кривая 2). Для сравнения приведены также характеристики генерации для оптимального варианта традиционной схемы возбуждения при  $C_0 = C_p$  (кривые 3, 4)

## 4. Обсуждение результатов

Полученные в настоящей работе данные подтверждают результаты более ранних многочисленных публикаций о решающем влиянии предымпульсной концентрации электронов  $n_{e0}$  на ограничение частотно-энергетических характеристик ЛПМ, обобщенные в работах [13, 14]. К настоящему времени наиболее успешно влияние  $n_{e0}$  нейтрализовано в гибридных лазерах, в которых достигнуты эффективность генерации  $\eta \approx 3.8\%$  [15] и средняя погонная мощность генерации 155 Вт/м [14] (ГРТ с d = 3.8 см, режим усилителя).

В работе [13] было показано, что при нейтрализации влияния neo в активных элементах «Кристалл LT-40 Cu» производства ФГУП "НПП «Исток»" (ГРТ с d = 2 см, l =125 см) [3] может быть осуществлен линейный рост погонной мощности генерации практически до 200 Вт/м. Сравним результаты, полученные в настоящей работе (рис.8) и в [13] (рис.9). Из рис.8 и 9 видно почти идентичное поведение  $P_{av}$  с ростом f (до 16 кГц) при использовании в качестве коммутатора как тиратрона (настоящая работа), так и лампы [13] – соответственно кривая 3 на рис.8 и кривая I на рис.9. В [3] также проведено сравнение ламповой и тиратронной накачки и получены практически одинаковые результаты. Если же в качестве коммутатора использовать кивотрон, то по крайней мере до f =16 кГц наблюдается линейная зависимость от f выходной мощности, аналогичная теоретической зависимости 2 на рис.9, которая была получена при учете влияния на мощность генерации только предымпульсной концентрации метастабильных состояний n<sub>ms0</sub>.

Из приведенных результатов следует, что при использовании коммутационного устройства с временами включения ~1 нс (рис.2) возможна нейтрализация влияния  $n_{e0}$ , связанного с паразитным заселением метастабильных состояний атома меди на фронте импульса накачки, при частоте следования импульсов накачки по крайней мере до



Рис.9. Частотно-энергетические характеристики ЛПМ, полученные в [13]: расчетные зависимости мощности генерации  $P_{av}$  от частоты *f* при учете влияния  $n_{e0}$  и  $n_{ms0}$  (1), только  $n_{ms0}$  (2) и только  $n_{e0}$ (3), а также линейная зависимость  $P_{av}$  (4).

16 кГц. Отметим, что погонная средняя мощность накачки в течение цуга импульсов составляет в этом случае ~5 кВт/м при  $U_0 = 14$  кВ. Поэтому можно предполагать, что при оптимизации температурного режима ГРТ средняя мощность генерации в цуге будет значительно выше достигнутой в настоящей работе (~14.5 Вт или ~30 Вт/м, рис.8) даже при f = 16 кГц. Можно также предполагать, что с дальнейшим ростом f средняя мощность генерации будет расти быстрее f, т. к. все меньшая часть энергии импульса накачки будет тратиться на создание плазмы. Такая тенденция уже видна на рис.8 (кривая 2).

### 5. Выводы

Проведенные исследования показали, что при использовании кивотрона – коммутирующего устройства на основе «открытого разряда» со временем коммутации ~1 нс – возможна нейтрализация влияния предымпульсной концентрации электронов  $n_{e0}$  на частотно-энергетические характеристики ЛПМ при частоте следования импульсов по крайней мере до 16 кГц в ГРТ с диаметром разрядного канала 2 см. Следовательно, использованное в работе коммутирующее устройство может рассматриваться как идеальный «ключ» для систем питания медного лазера.

Работа выполнена при поддержке государственных контрактов № 11.519.11.6037 и 14.518.11.7008.

- 1. Walter W.T., Solimene N., Piltch M., Gould G. *IEEE J. Quantum Electron.*, **2**, 474 (1966).
- 2. Петраш Г.Г. УФН, 105, 645 (1971).
- Григорьянц А.Г., Казарян М.А., Лябин Н.А. Лазеры на парах меди (М.: Физматлит, 2005).
- Исаев А.А., Казарян М.А., Петраш Г.Г. Письма в ЖЭТФ, 16, 40 (1972).
- 5. Батенин В.М., Вохмин П.А., Климовский И.И., Селезнева Л.А. *ТВТ*, **20**, 177 (1982).
- Батенин В.М., Бойченко А.М., Бучанов В.В., Казарян М.А., Климовский И.И., Молодых Э.И. Лазеры на самоограниченных переходах атомов металлов – 2. Т.1 (М.: Физматлит, 2009).
- 7. Бохан П.А. *Квантовая электроника*, **13**, 1837 (1986).
- 8. Бохан П.А., Закревский Д.Э. ЖТФ, **67** (5), 54 (1997).
- 9. Бохан П.А. Авт. свидет. № 1644686. Приоритет от 16.01.1989.
- Бохан П.А., Гугин П.П., Закревский Дм.Э., Лаврухин М.А. Письма в ЖТФ, 38 (8), 63 (2012).
- Бохан П.А., Герасимов В.А. Авт. свидет. № 755136. Приоритет от 09.01.1979; Bokhan P.A., Gerasimov V.A. Brevet d'invention № 2529401. Date de dépôt 28.06.1982.
- 12. Бохан П.А., Герасимов В.А. Квантовая электроника, 6, 451 (1979).
- Бохан П.А., Закревский Д.Э. Квантовая электроника, 32, 602 (2002).
- Withford M.Y., Brown D.J.W., Mildren R.P., Carman R.J., Marshall G.D., Piper J.A. Prog. Quantum Electron., 28, 165 (2004).
- Le Guadec E., Coutance P., Bertrand G., Peltier C.A. *IEEE J. Quantum Electron.*, 35, 1616 (1999).