Линейное и нелинейное пропускание кристалла ZnSe, легированного Fe²⁺, на длине волны 2940 нм в диапазоне температур 20-220 °C

Н.Н.Ильичев, П.П.Пашинин, Э.С.Гулямова, Г.А.Буфетова, П.В.Шапкин, А.С.Насибов

Измерено линейное и нелинейное пропускание кристалла $ZnSe : Fe^{2+}$ на длине волны 2940 нм в диапазоне температур 20–220°С. Обнаружено, что для излучения с интенсивностью на входе в образец ~5.5 MBm/cm^2 пропускание кристалла $ZnSe : Fe^{2+}$ уменьшается с увеличением температуры кристалла от 20°С до 150–220°С, а для излучения с интенсивностью ~28 кBm/cm² пропускание с ростом температуры увеличивается. При температуре 220°С линейное пропускание прокание прокание протускание протускание протускание с ростом температуры увеличивается. При температуре 220°С линейное пропускание практически совпадает с нелинейным. Приведены спектры пропускания образцов кристалла $ZnSe : Fe^{2+}$ при температурах 22°С и 220°С в диапазоне длин волн 500–7000 нм.

Ключевые слова: примесные кристаллы $ZnSe:Fe^{2+}$, нелинейное поглощение в $ZnSe:Fe^{2+}$, нагрев кристалла $ZnSe:Fe^{2+}$.

1. Введение

Исследованию монокристалла селенида цинка, легированного железом, в последнее время уделяется большое внимание. Это связано с тем, что в лазере на основе этого материала получена генерация в области длин волн λ = 3.8–5 мкм [1–5] как при низкой (100–200 K), так и при комнатной температуре. Излучение в этой области длин волн интересно с точки зрения его практического применения.

Одним из возможных способов введения железа в кристалл ZnSe является диффузия, в процессе которой примесь вводится в образец через поверхность кристалла при повышенной температуре. В [5] приведены результаты исследования работавшего при комнатной температуре суперлюминесцентного лазера на основе легированного диффузионным методом кристалла ZnSe: Fe²⁺. При легировании диффузионным методом примесь концентрируется в узкой приповерхностной области кристалла. Такая особенность позволила эффективно использовать поперечную схему накачки, когда направления распространения излучений накачки и генерации взаимно перпендикулярны [5].

Вопросам легирования монокристаллов ZnSe ионами Fe²⁺ диффузионным методом посвящены работы [6, 7]. В частности, в [7] измерены коэффициенты диффузии ионов Fe²⁺ в монокристалле селенида цинка в зависимости от температуры. В [8] исследовано нелинейное пропускание кристалла ZnSe: Fe²⁺, легированного диффузионным методом, на $\lambda = 2920$ нм. Оказалось, что образцы имеют остаточные потери. Обработка экспериментальных данных показала, что они аппроксимируются наилучшим образом, если принять время жизни верхнего уровня ре-

П.В.Шапкин, А.С.Насибов. Физический институтим. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53

Поступила в редакцию 7 октября 2013 г., после доработки – 27 ноября 2013 г.

зонансного перехода в ионе Fe^{2+} равным 100 нс. Кристалл ZnSe: Fe^{2+} успешно применялся в качестве пассивного затвора в лазере YAG: Er^{3+} [9, 10]. Обзор последних результатов исследований халькогенидных кристаллов, легированных железом, можно найти в работе [11].

Обычно для накачки лазеров с активным элементом (АЭ) на основе кристалла ZnSe: Fe²⁺ используется излучение с $\lambda \sim 3000$ нм, при этом излучение генерации имеет длину волны $\lambda \sim 4500$ нм. Разность энергий квантов излучения накачки и лазерного излучения в данном случае значительна, т. е. 30% - 40% энергии накачки должно уходить на нагрев АЭ из кристалла ZnSe: Fe²⁺. Если подобный лазер работает при комнатной температуре, то АЭ может быть нагрет до температуры, существенно превышающей комнатную.

Другой важной причиной выделения тепла в АЭ является то, что квантовый выход люминесценции при комнатной температуре мал. В частности, время жизни верхнего уровня иона Fe^{2+} в кристалле ZnSe уменьшается от 105 мкс при 120 К [2] до 355 нс при 300 К [4]. Перспективы создания эффективного мощного лазера на основе кристалла ZnSe: Fe^{2+} , работающего при комнатной температуре, в значительной степени определяются характеристиками этого материала при повышенных температурах. С этой точки зрения важным является знание спектральнолюминесцентных характеристик кристалла ZnSe: Fe^{2+} при температурах, превышающих комнатную. До последнего времени, насколько нам известно, такие исследования не проводились.

В настоящей работе измерено линейное и нелинейное пропускание образцов монокристаллов ZnSe: Fe²⁺, легированных методом диффузии, на $\lambda = 2940$ нм в зависимости от температуры. Проведено также измерение спектров пропускания образцов в области $\lambda = 500-7000$ нм при температурах 20 °C и 220 °C.

2. Измерение пропускания кристалла ZnSe: Fe²⁺ в зависимости от температуры

На рис.1 приведена оптическая схема измерения нелинейного пропускания образцов ZnSe: Fe²⁺ в зависимости

Н.Н.Ильичев, П.П.Пашинин, Э.С.Гулямова, Г.А.Буфетова. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: ilichev@kapella.gpi.ru

Рис.1. Оптическая схема измерения нелинейного пропускания образцов ZnSe: Fe²⁺ в зависимости от температуры:

 $1 - YAG: Er^{3+}$ -лазер с активной модуляцией добротности ($\lambda =$ 2940 нм, ТЕМ₀₀-мода, энергия ~10 мДж, длительность импульсов ~200 нс, частота их следования 0.8 Гц, линейная поляризация излучения); 2, 9 – ослабляющие фильтры; 3 – делительные пластины; 4, 5, 11 - плоские поворотные зеркала; 6, 8, 10 - линзы из CaF2 с фокусными расстояниями 80, 15 и 15 см соответственно; 7 - образец в виде плоскопараллельной пластины (угол падения излучения ~63°, вектор электрического поля падающего излучения лежит в плоскости падения); 12, 13 - фотоприемники ФСГ-22-3а2 для регистрации прошедшего через образец и падающего на него излучения соответственно; 14 - фотоприемник ПМ4 для измерения энергии импульса излучения (калибровался с помощью калориметра); 15 рассеиватель (две матированные с двух сторон стеклянные пластины); 16-печка для нагрева образца до 220 °С (погрешность измерения температуры ±5°С); сигналы с фотоприемников регистрировались осциллографом DPO 7254 (входное сопротивление 50 Ом).

от температуры. Использовались три образца кристаллов ZnSe: Fe²⁺ с начальным пропусканием $T_0 = 40\%$ (№ 464), 8.5% (№ 422) и 0.6% (№ 474) на $\lambda = 2940$ нм. Начальное пропускание образцов определялось их обработкой при изготовлении, когда при полировке образца снималась часть диффузионного слоя, легированного Fe²⁺. Чем больше толщина снятого слоя, тем больше пропускание образца. Легирование проводилось с двух сторон образца. При полировке с обеих сторон образца снимались слои одинаковой толщины.

На рис.2, а-в приведены спектры пропускания образцов при температурах 22 °С и 220 °С. Измерения проводились с помощью спектрофотометров Shimadzu IR-460 и UV-3101PC. Видно, что полоса поглощения Fe²⁺ для всех образцов при повышении температуры уширяется, а пропускание в максимуме коэффициента поглощения увеличивается. Кроме того, необходимо обратить внимание на то, что имеется «сплошное» поглощение, которое изменяется от образца к образцу по величине и отчетливо видно в длинноволновой части спектра. Возможно, что это поглощение и проявляется при измерении пропускания в случае высоких интенсивностей излучения. Происхождение этого поглощения неясно. Скорее всего, оно связано с недостаточной чистотой использовавшегося для диффузии железа. Необходимо также отметить, что при повышении температуры в регистрируемой части спектра пропускания дополнительные линии поглощения не появляются. На рис.2,г для сравнения приведены спектры пропускания образца ZnSe без легирования при температурах 22°С и 220°С. Видно, что при увеличении темпер-

Рис.2. Спектры пропускания образцов ZnSe: Fe²⁺ № 464 (*a*), 422 (*b*) и 474 (*в*), а также образца ZnSe без легирования (*г*) при температурах 22 °C (*I*) и 220 °C (*2*) в случае нормального падения зондирующего излучения.

Рис.3. Пропускание образцов ZnSe: Fe²⁺ № 464 (*a*), 422 (*b*) и 474 (*b*) на λ = 2940 нм в зависимости от температуры при интенсивности излучения на входе в образец ~5.5 MBT/см² (*I*) и ~28 кВт/см² (*2*).

туры от 22 °C до 220 °C спектры практически не меняются, а величина пропускания определяется коэффициентами отражения от оптических поверхностей образца.

Пропускание на $\lambda = 2940$ нм регистрировалось следующим образом. Измерялось отношение амплитуд импульсов с фотоприемников 12 и 13 (рис.1) в отсутствие образца в измерительном тракте и при его наличии. Это отношение и давало значение пропускания. Проводилось усреднение по 32 импульсам. Для измерения пропускания при малой интенсивности излучения фильтр 9 (фильтр НС9 с пропусканием ~0.5%) устанавливался перед линзой 6 и описанная процедура повторялась. Для каждого значения температуры измерялось пропускание при малой и большой интенсивностях излучения. Главная экспериментальная трудность заключалась в том, что под действием мощного излучения за счет большого тепловыделения в образце он нагревался, причем неоднородно, и в нем образовывалась линза. Фокусное расстояние линзы изменялось во время действия излучения, что могло сказаться на форме регистрируемого сигнала из-за виньетирования излучения на апертурах оптических элементов при прохождении им расстояния до приемной площадки фотоприемника 12. Линзы 8, 10 и рассеиватель 15 служили для того, чтобы возникновение тепловой линзы в образце не отражалось на форме регистрируемого фотоприемником 12 сигнала.

На рис.3 представлены зависимости пропускания образцов на $\lambda = 2940$ нм от температуры для мощного и ослабленного излучений. Интенсивность мощного излучения на входе в образец составляла 5.5 MBT/см² (плотность энергии на входе в образец ~1.1 Дж/см²), а интенсивность ослабленного излучения – 28 кВт/см² (0.005 Дж/см²).

3. Обсуждение результатов

Для образца № 464 пропускание мощного излучения уменьшается с увеличением температуры от 20 °С до 220 °С. Для образцов № 422 и 474 пропускание мощного излучения уменьшается при увеличении температуры до 130–150 °С, а при дальнейшем ее увеличении или почти не меняется (№ 422), или несколько увеличивается (№ 474), следуя поведению пропускания образца в случае малоинтенсивного излучения. Такое поведение, скорее всего, связано с дополнительным нагревом обогащенного железом тонкого диффузионного слоя мощным излучением, т. к. для этих образцов максимальный коэффициент поглощения на входе излучения в образец, по оценкам, составляет 200–250 см⁻¹. Отметим здесь, что мощное излучение нагревает все образцы, хотя и в разной степени. Пропускание всех образцов дя малоинтенсивного излучения при увеличении температуры растет. Это обусловлено тем, что с увеличением температуры уменьшается сечение поглощения на длине волны излучения, как это видно из спектров пропускания при разных температурах, представленных на рис.2,a-6.

При температуре 220 °C все образцы при использовавшейся интенсивности излучения практически перестают просветляться. Это можно объяснить тем, что время жизни верхнего уровня Fe^{2+} в кристалле ZnSe при повышении температуры уменьшается, в результате чего интенсивность излучения на входе оказывается недостаточной для просветления образца.

Интенсивность насыщения при комнатной температуре можно оценить, испоьзуя значения сечения поглощения на $\lambda = 2940$ нм (~10⁻¹⁸ см², см., напр., [2]) и времени жизни верхнего уровня (~355 нс [4]), как 0.2 MBt/см². Поскольку при температуре 220 °С и интенсивности излучения ~5.5 MBт/см² кристалл практически не просветляется, то, приняв эту интенсивность за интенсивность насыщения при температуре 220 °C и пренебрегая уменьшением сечения поглощения при данной температуре, получаем, что время жизни верхнего уровня примесного центра Fe²⁺ в кристалле ZnSe при температуре 220 °C должно быть меньше 12 нс. Обратим внимание на то, что измерение времени жизни верхнего лазерного уровня Fe²⁺ в кристалле ZnSe по затуханию сигнала люминесценции при температуре, превышающей комнатную, представляет определенные трудности, т. к. при этой температуре квантовый выход люминесценции становится малым.

4. Выводы

1. Обнаружено, что для мощного (интенсивность излучения на входе в образец ~5.5 MBT/см²) импульсного излучения с λ = 2940 нм пропускание кристалла ZnSe: Fe²⁺ уменьшается при увеличении температуры кристалла от 20 °C до 150–220 °C. Такое поведение, скорее всего, обусловлено уменьшением времени жизни верхнего уровня иона Fe²⁺ при повышении температуры. При температуре 220 °C и интенсивности излучения на входе в кристалл ~5.5 MBT/см² все образцы практически переставали просветляться. Это обстоятельство позволяет сделать вывод о том, что время жизни верхнего уровня Fe²⁺ при температуре 220 °C не превышает 12 нс.

2. Линейное пропускание кристалла ZnSe: Fe²⁺ увеличивается с ростом температуры от 20 °C до 220 °C, что связано с уменьшением сечения поглощения примесного центра Fe²⁺ при увеличении температуры. Приведены

спектры поглощения образцов при температурах 20 °С и 220 °С в спектральном диапазоне 500-7000 нм.

3. Зависимость от температуры нелинейно-оптических характеристик кристалла ZnSe, легированного Fe²⁺, необходимо учитывать при проектировании мощных лазеров на основе этого материала, особенно в случае работы при комнатной температуре.

Работа выполнена при частичной поддержке грантов РФФИ № 13-02-01129а, 13-02-01073а, 12-02-00641а, 12-02-00465а и 13-02-12181 офи-м, а также гранта Президента РФ для государственной поддержки ведущих научных школ РФ № НШ-368.2012.2.

- DeLoach L.D., Page R.H., Wilke G.D., Payne S.A., Krupke W.F. IEEE J. Quantum Electron., 32 (6), 885 (1996).
- Adams J.J., Bibeau C., Page R.H., Krol D.M., Furu L.H., Payne S.A. Opt. Lett., 24 (23), 1820 (1999).

- Kernal J., Fedorov V.V., Gallian A., Mirov S.B., Badikov V.V. Opt. Express, 13 (26), 10608 (2005).
- Акимов В.И., Воронов А.А., Козловский В.И. и др. Квантовая электроника, 36 (4), 299 (2006).
- Ильичев Н.Н., Данилов В.П., Калинушкин В.П., Студеникин М.И., Шапкин П.В., Насибов А.С. Квантовая электроника, 38 (2), 95 (2008).
- 6. Demirbas U., Sennaroglu A., Somer M. Opt. Mater., 28, 231 (2006).
- Ильичев Н.Н., Шапкин П.В., Гулямова Э.С., Кулевский Л.А., Насибов А.С. Неорганические материалы, 46 (2), 149 (2010).
- Il'ichev N.N., Shapkin P.V., Kulevsky L.A., Gulyamova E.S., Nasibov A.S. *Laser Phys.*, **18** (2), 130 (2008).
- Воронов А.А., Козловский В.И., Коростелин Ю.В., Ландман А.И., Подмарьков Ю.П., Полушкин В.Г., Фролов М.П. Квантовая электроника, 36 (1), 1 (2006).
- Самохин А.А., Вовченко В.И., Ильичев Н.Н., Шапкин П.В. Квантовая электроника, 38 (12), 1141 (2008).
- Mirov S.B., Fedorov V.V., Martyshkin D.V., Moskalev I.S., Mirov M.S., Gapontsev V.P. *Opt. Mater. Express*, 1 (5), 898 (2011).