Мощные высоконадёжные суперлюминесцентные диоды с тремя одномодовыми активными каналами

Е.В.Андреева, С.Н.Ильченко, Ю.В.Курнявко, В.Н.Лукьянов, В.Р.Шидловский, С.Д.Якубович

Исследованы суперлюминесцентные диоды (СЛД) с тремя гребневидными активными каналами шириной 3.5 мкм каждый на основе «объёмной» и двух квантоворазмерных гетероструктур. При непрерывной выходной мощности более 100 мВт спектры излучения этих СЛД имеют квазигауссову форму с центральными длинами волн около 840, 860 и 1060 нм при ширине примерно 15, 25 и 40 нм соответственно. В указанном режиме работы медианные сроки службы СЛД составили приблизительно 50000, 25000 и более 60000 ч соответственно.

Ключевые слова: суперлюминесцентный диод (СЛД), полупроводниковая наногетероструктура.

1. Введение

Стремительно развивающееся «твёрдотельное освещение» (Solid State Lighting) уже прочно вошло в быт современного человека. Доминирующую роль в этой технологии играют полупроводниковые светоизлучающие диоды (СИД) [1]. В то же время для некоторых практических применений (микроскопия, машинное зрение, портативные проекторы и др. (см., напр., [2-5])) яркость источников света на основе СИД оказывается недостаточной, а использованию лазерных диодов (ЛД) препятствуют интерференционные явления, обусловленные высокой когерентностью излучения. Проблему удаётся решить с помощью суперлюминесцентных диодов (СЛД), излучение которых по яркости приближается к ЛД, а по степени когерентности - к СИД. У традиционных СЛД с пространственно-одномодовым активным каналом шириной порядка единиц микрометров величина непрерывной выходной оптической мощности обычно не превышает нескольких десятков милливатт. Радикально увеличить выходную оптическую мощность можно, используя МОРА-системы с СЛД в качестве задающих генераторов и мощные выходные полупроводниковые оптические усилители (ПОУ) с клиновидным активным каналом. Однако это значительно увеличивает габариты и стоимость источника света. Промежуточное решение этой проблемы увеличение объёма активного канала СЛД.

В работе [6] приведены результаты исследования мощных СЛД с длиной волны излучения около 840 нм на основе (GaAl)As-гетероструктуры с раздельным ограничением, активный слой которой имел толщину 14.5 нм.

Е.В.Андреева, В.Н..Лукъянов. ООО «Оптомодуль», Россия, 117342 Москва, ул. Введенского, 3

С.Н.Ильченко, В.Р.Шидловский. ООО «Оптон», Россия, 119330 Москва, ул. Мосфильмовская, 17Б

Ю.В.Курнявко. ОАО «НИИ «Полюс» им. М.Ф.Стельмаха», Россия, 117342 Москва, ул. Введенского, 3

С.Д.Якубович. Московский технологический университет (МИРЭА), Россия, 119454 Москва, просп. Вернадского, 78; e-mail: yakubovich@superlumdiodes.com

Поступила в редакцию 25 марта 2016 г.

Активный канал представлял собой многомодовый гребневидный световод шириной 25 мкм. Эти СЛД позволяют получить выходную оптическую мощность более 200 мВт. Их существенный недостаток – сильная зависимость формы спектра излучения от тока инжекции (впоследствии этот недостаток был ликвидирован за счёт использования аналогичных гетероструктур с активными слоями тоньше 10 нм). Другая негативная особенность этих СЛД – зависимость формы диаграммы направленности излучения от уровня накачки, что связано с пространственной многомодовостью активного канала. К счастью, такая зависимость в широких пределах не отражается на коэффициенте ввода излучения (около 75%) в стандартные многомодовые волоконные световоды (МВС) при использовании торцевой цилиндрической микролинзы. По этой причине рассматриваемые СЛД находят применение главным образом в светоизлучающих модулях с выводом излучения через МВС. Серьёзным недостатком, который пока не удаётся преодолеть, является весьма скромный срок службы этих приборов - около 5000 ч. Следует отметить, что СЛД той же конструкции и на основе той же гетероструктуры, но имеющие одномодовый активный канал шириной 4 мкм, при той же плотности тока инжекции, как правило, обладают сроком службы в десятки тысяч часов. Эта разница связана, повидимому, с худшими условиями теплоотвода в «широких» СЛД при монтаже полупроводникового кристалла на теплопровод Р-стороной вверх.

В настоящей работе исследованы СЛД с тремя разнесёнными активными каналами шириной 3.5 мкм. Такая конструкция позволила радикально увеличить срок службы приборов при непрерывной выходной оптической мощности, превышающей 100 мВт.

2. Экспериментальные образцы

Исследовались образцы трёх типов СЛД одинаковой конфигурации на основе различных двухсторонних гетероструктур с раздельным ограничением (РО ДГС), выращенных методом МОС-гидридной эпитаксии. Микрофотографии одного из исследованных СЛД представлены на рис.1. Каждый из образцов содержал три прямых па-

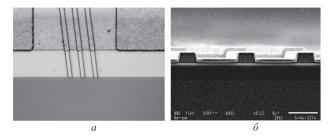


Рис. 1. Микрофотографии образца СЛД: a – вид сверху (Р-сторона); δ – вид с торца.

раллельно расположенных гребневидных активных канала шириной 3.5 мкм и длиной 1600 мкм. Неинжектируемые зазоры между каналами имели ширину 6.5 мкм. Толщина «недотравленного» до волноводного слоя Рэмиттера, который определял боковое оптическое ограничение, составляла около 0.3 мкм. Оси каналов имели наклон 7° относительно нормали к торцевым граням кристалла, на которые были нанесены двухслойные просветляющие покрытия. Использованные РО ДГС различались между собой толщинами и составами волноводного и эмиттерных слоёв. СЛД типа I имели «объёмный» активный слой. У квантоворазмерных СЛД типов II и III активные слои представляли собой одну и две квантовых ямы (КЯ) соответственно. Особенности геометрии и состава гетерослоёв рассмотренных СЛД отражены в табл.1.

Табл.1. Состав и параметры гетероструктур СЛД

таол.т. состав и параметры гетероструктур слд			
Тип СЛД	Состав и толщина активного слоя	Состав и толщина волноводного слоя	Состав эмиттерных слоёв
I	Al _{0.03} Ga _{0.97} As («объёмный») 28 нм	Al _{0.3} Ga _{0.7} As 0.26 мкм	$Al_{0.5}Ga_{0.5}As$
II	In _{0.05} Ga _{0.95} As (одна КЯ) 6.0 нм	Al _{0.3} Ga _{0.7} As 0.26 мкм	$Al_{0.5}Ga_{0.5}As$
III	In _{0.3} Ga _{0.7} As (две КЯ) 2×8.0 нм	Al _{0.25} Ga _{0.75} As 0.33мкм	$Al_{0.31}Ga_{0.69}As$

3. Основные физические характеристики СЛД

Исследования мощностных, спектральных, пространственных и ресурсных характеристик СЛД проводились в режиме непрерывной инжекции при термостабилизации на уровне 25°C. На рис.2 представлены типичные ваттамперные характеристики СЛД. Вплоть до тока инжекции примерно 800 мА, соответствующего выходной мощности около 120 мВт, ватт-амперные характеристики линейны и близки друг к другу. При больших токах выходная мощность квантоворазмерных СЛД начинает насыщаться. Во всём исследованном диапазоне накачки спектры излучения имели форму, близкую к гауссовой, что характерно как для «объёмных» СЛД, так и для квантоворазмерных СЛД со сверхтонкими активными слоями с большой длиной активного канала [7]. При увеличении тока инжекции ширина спектра излучения образцов СЛД типа I изменялась слабо, а у образцов типов II и III заметно возрастала.

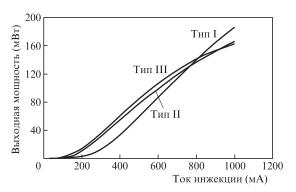


Рис.2. Ватт-амперные характеристики СЛД в непрерывном режиме инжекции.

Типичные спектры излучения при токе инжекции 800 мА представлены на рис.3. Оценка длины когерентности по формуле $L_{\rm coh}=0.44\lambda^2/\Delta\lambda$, строго справедливой для спектральных линий гауссовой формы (λ – центральная длина волны, $\Delta\lambda$ – полуширина спектра), даёт $L_{\rm coh}=20.7,\,13.0$ и 12.3 мкм для СЛД типов I, II и III соответственно. Отличие в длинах когерентности объясняет качественную разницу между картинами дальнего поля излучения образцов типа I и образцов типов II и III (рис.4). В первом случае наблюдается интерференционная картина с малой видностью полос, намного меньшей, чем наблюдается у интегральных наборов ЛД [8]. Во втором случае диаграммы направленности имеют гладкую форму, характерную для одиночного пространственно-одномодо-

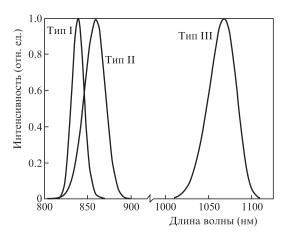


Рис.3. Спектры излучения СЛД при токе инжекции 800 мА.

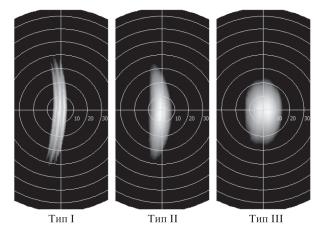


Рис.4. Дальнее поле излучения СЛД при токе инжекции 800 мА.

Рис.5. Ближнее поле излучения СЛД типов II и III.

вого СЛД. Их количественное отличие в расходимости излучения – приблизительно $10^{\circ} \times 40^{\circ}$ (типы I и II) и $20^{\circ} \times 30^{\circ}$ (тип III) – связано с различиями в оптическом волноводном ограничении (см. табл.1) и в длинах волн излучения. У образцов типов I и II скачок показателя преломления на границах волноводного и эмиттерных слоёв составляет около 0.15, а у образцов типа III – менее 0.1 [9]. В результате при одинаковой конфигурации гребневидных световодов первые имеют более сильное поперечное оптическое ограничение и более слабое боковое оптическое ограничение, чем вторые.

На рис.5 представлено ближнее поле излучения образцов типов II и III. Коэффициент ввода излучения в стандартный ступенчатый МВС с диаметром сердцевины 50 мкм и числовой апертурой 0.22 через торцевую цилиндрическую микролинзу составил более 80% для СЛД типов I и II и около 60% для СЛД типа III. При использовании градиентного МВС с диаметром сердцевины 62.5 мкм (числовая апертура 0.27) последнее значение возрастает до 75%.

Предварительные ресурсные испытания образцов СЛД позволили оценить их сроки службы. Для диодов типов I и II при токе инжекции 800 мА они составили соответственно 50000 и 25000 ч, а для диодов типа III при токах 800 и 1000 мА – 80000 и 60000 ч. Приведённые значения заметно превосходят сроки службы мощных (~100 мВт) СЛД того же спектрального диапазона, имеющих одиночный пространственно-одномодовый активный канал [10].

4. Заключение

На основе проведённых исследований разработаны прототипы трёх светоизлучающих модулей в корпусах

Виtterfly с выводом излучения через МВС, обладающих максимальной выходной оптической мощностью более 100 мВт, а также прототипы двух светоизлучающих модулей (на основе СЛД типов II и III) в миниатюрных корпусах ТО-9 с выводом излучения через оптическое окно, имеющих максимальную выходную оптическую мощность более 120 мВт. Первые модули содержат термоэлектрический микроохладитель с термистором для термостабилизации СЛД и фотодиод-монитор, а вторые – только СЛД и фотодиод-монитор. При необходимости термостабилизация модулей в корпусах ТО-9 обеспечивается внешними устройствами.

Авторы выражают признательность А.Т.Семёнову за инициирование данных исследований, а также А.А.Мармалюку и А.В.Лобинцову с сотрудниками за выращивание полупроводниковых гетероструктур и их постростовую обработку.

Работа частично поддержана государственным заданием Минобрнауки РФ на проведение научных исследований.

- 1. Шуберт Ф. Светодиоды (М.: Физматлит, 2008).
- http://biometrics.org/bc2010/presentations/Iris/rudder-Superluminescent-Illumination-A-Solution-for-Photon-Starvation. pdf.
- Mc Eldowney S. Patent US 8670029 B2 (2014); http://www.google. com/patents/US8670029.
- Rossetty M., Napierala J., Matuschek M., Achatz U., Duelk M., Velez C., Castiglia A., Grangjean N., Dorsaz J., Feltin E. *Proc.* SPIE Int. Soc. Opt. Eng., 8252, 825208-1 (2012).
- http://spie.org/newsroom/technical-articles/4686-superluminescent-led-for-focus-free-handheld-projection.
- Андреева Е.В., Батрак Д.В., Богатов А.П., Лапин П.И., Прохоров В.В., Якубович С.Д. Квантовая электроника, 37 (11), 906 (2007).
- Андреева Е.В., Ильченко С.Н., Ладугин М.А., Лобинцов А.А., Мармалюк А.А., Шраменко М.В., Якубович С.Д. Квантовая электроника, 43 (11), 994 (2013).
- Голдобин И.С., Евтихиев Н.Н., Плявенек А.Г., Якубович С.Д. Квантовая электроника, 16 (10), 1957 (1989)
- Кейси Х., Паниш М. Лазеры на гетероструктурах (М.: Мир, 1981, т. 1, с. 69).
- Андреева Е.В., Ильченко С.Н., Костин Ю.О., Якубович С.Д. Квантовая электропика, 44 (10), 903 (2014).