АКТИВНЫЕ СРЕДЫ

Результаты экспериментов по диссоциации молекулярного иода в присутствии молекул синглетного кислорода

М.В.Загидуллин, Н.А.Хватов, М.С.Малышев, М.И.Свистун

Приведены результаты экспериментов по диссоциации молекул иода в присутствии молекул синглетного кислорода при варьировании состава кислородно-иодной среды в широких пределах. Получены значения констант скоростей: 4.3×10^{-17} см³/с для реакции $O_2(^1\Delta) + O_2(^1\Delta) \rightarrow O_2(^1\Sigma) + O_2(^3\Sigma)$ (реакция 1), 2.8×10^{-13} см³/с для реакции $O_2(^1\Delta) + I(^2P_{1/2}) \rightarrow O_2(^1\Sigma) + I(^2P_{3/2})$ (4) и 8.3×10^{-11} см³/с для реакции $O_2(^1\Sigma) + I_2 \rightarrow O_2(^3\Sigma) + I_1 (2)$. Анализ результатов экспериментов показывает, что для различного состава активной среды кислородно-иодного лазера диссоциация иода происходит через цепочку реакций 1, $2, O_2(^1\Delta) + I(^2P_{3/2}) \rightarrow O_2(^3\Sigma) + I(^2P_{1/2})$, 4 и в каскадном процессе $I_2 + I(^2P_{1/2}) \rightarrow I_2(v) + I(^2P_{3/2}), I_2(v) + O_2(^1\Delta) \rightarrow 2I + O_2(^3\Sigma)$. Для типичных составов активной среды сверхзвукового химического кислородно-иодного лазера вклады каждого из механизмов в диссоциацию иода. Таким образом, проведенные эксперименты и следующие из них выводы полностью подтверждают механизм диссоциации иода, предложенный ранее.

Ключевые слова: синглетный кислород, диссоциация иода, кислородно-иодный лазер.

1. Введение

Диссоциация молекулярного иода играет ключевую роль в формировании активной среды химического кислородно-иодного лазера (ХКИЛ). Впервые диссоциацию молекул иода в присутствии молекул синглетного кислорода наблюдали в работе [1]. Для процесса диссоциации иода было предложено несколько механизмов (схем процессов; основные реакции, протекающие в активной среде ХКИЛ, представлены в табл.1). Согласно первому из них [1,2] диссоциация протекает в результате последовательности реакций 1-4. Однако обеспечить наблюдаемую экспериментально скорость диссоциации иода за счет реакций 1-4 оказалось невозможно, поэтому был предложен дополнительный механизм диссоциации, включающий в себя реакции 6-8 [3]. В реакциях 6, 7 молекула иода может образовываться на максимально возможном колебательном уровне v = 40. В реакциях 8 суммарной энергии взаимодействующих частиц будет достаточно для диссоциации молекул иода в случае их нахождения на колебательном уровне не ниже v = 20. Возможна диссоциация в ступенчатом механизме реакций 10, 11 [1,4,5]. Колебательно-возбужденные молекулы кислорода могут образовываться в реакциях 1, 4 [6, 7] и при дезактивации моле-

Поступила в редакцию 5 февраля 2016 г., после доработки – 27 апреля 2016 г.

T C 1	D			
	Реакции	в киспо	полно-ио	пнои среде
1 a0.1.1.	1 cangini	D KHCJIO	podito no	дпон среде

Номер реакции	Реакция
1	$O_2(a) + O_2(a) \rightarrow O_2(b) + O_2(X)$
2	$O_2(b) + I_2 \rightarrow O_2(X) + 2I$
3	$O_2(a) + I \rightarrow O_2(X) + I^*$
4	$O_2(a) + I^* \rightarrow O_2(b) + I$
5	$O_2(b) + M \rightarrow O_2(X) (O_2(a)) + M$
6	$I_2 + O_2(a) \rightarrow I_2(20 \le v \le 40) + O_2(X)$
7	$\mathbf{I}_2 + \mathbf{I}^* \rightarrow \mathbf{I}_2 + \mathbf{I}$
8a	$I_2(v) + O_2(a) \rightarrow 2I + O_2(X)$
8b	$I_2(v) + I^* \rightarrow 2I + I$
9	$\mathrm{I_2}(20 \leq v \leq 40) + \mathrm{M} \rightarrow \mathrm{I_2}(v < 20) + \mathrm{M}$
10a	$O_2(a, v = 1) + I_2(X) \rightarrow O_2(X, v = 0) + I_2(A)$
10b	$O_2(a, v = 2) + I_2(X) \rightarrow O_2(X, v = 0) + I_2(A)$
11a	$I_2(A) + O_2(a) \rightarrow 2I + O_2(X)$
11b	$\mathrm{I_2(A)} + \mathrm{I^*} \rightarrow 2\mathrm{I} + \mathrm{I}$
12	$I_2(A) + M \rightarrow I_2(X) + M$
13	$O_2(v) + M \rightarrow O_2(v-1) + M$
14	$O_2(a) + O_2(a) + I_2 \rightarrow 2I + 2O_2(X)$
15	$O_2(a) + I^* + I_2 \rightarrow 3I + O_2(X)$
Примеча	ние: $O_2(X)$, $O_2(a)$, $O_2(b)$ – молекулы кислорода в со-

примечание. О₂(A), О₂(a), О₂(b) – молекулы кислорода в состояниях ³Σ, ¹Δ, ¹Σ; I, I* – атомы иода в состояниях ²Р_{3/2}, ²Р_{1/2}; I₂(20 $\leq v \leq 40$) – молекула иода в колебательном состоянии 20 $\leq v \leq 40$; I₂(A) – молекула иода в состоянии А³П_{2и} или А³П_{1и}; О₂(v) – молекула кислорода в колебательно-возбужденном состоянии.

кул O₂(a), O₂(b). В результате быстрых резонансных V–Vи E–E-обменов образуются колебательно-возбужденные молекулы O₂(a) [8–10]. Диссоциация иода может происходить в реакции 14 [2, 11] или 15, т. к. суммарная энергия O₂(a¹ Δ) и I(²P_{1/2}) больше энергии диссоциации молекулы иода. Для расчетов коэффициента усиления и выходной мощности проточного ХКИЛ предложенные механизмы диссоциации использовались как по отдельности, так и в совокупности [12–15].

М.В.Загидуллин. Самарский филиал Физического института им. П.Н.Лебедева РАН, Россия, 443086 Самара, ул. Новосадовая, 221; Самарский национальный исследовательский университет им. акад. С.П.Королева, Россия, 443086 Самара, Московское ш., 34; e-mail: marsel@fian.smr.ru

Н.А.Хватов, М.И.Свистун. Самарский филиал Физического института им. П.Н.Лебедева РАН, Россия, 443086 Самара, ул. Новосадовая, 221

М.С.Малышев. Самарский национальный исследовательский университет им. акад. С.П.Королева, Россия, 443086 Самара, Московское ш., 34

Скорость диссоциации молекулярного иода в присутствии синглетного кислорода играет также определяющую роль в практической осуществимости кислородноиодного лазера с оптической накачкой [16]. В настоящей работе приведены результаты экспериментов по диссоциации иода в среде синглетного кислорода для широкого диапазона состава кислородно-иодной среды. Целью экспериментов было установление механизма или нескольких механизмов, наиболее точно описывающих наблюдаемые закономерности диссоциации иода.

2. Эксперимент

Схема экспериментальной установки, представлена на рис.1. Газовый генератор синглетного кислорода (ГСК) создавал поток кислорода с расходом до 1 ммоль/с и содержанием синглетного кислорода $O_2(a^1\Delta)$ более 50%, который проходил через ловушку паров воды (ЛПВ), представляющую собой набор параллельных газопроточных каналов, погруженных в ванну с охлажденным этанолом. Ниже по потоку последовательно располагались два узла смешения для подачи в основной поток дополнительных газов (паров воды, углекислого газа, аргона, кислорода). После второго узла смешения в потоке регистрировалось излучение на переходе а \rightarrow X молекул O₂ (λ = 1268 нм) с помощью германиевого фотодетектора, снабженного широкополосным фильтром, и излучение на переходе $b \rightarrow X$ молекул O_2 ($\lambda = 762$ нм) с помощью монохроматора. Постоянство интенсивности этих излучений во времени являлось индикатором неизменности в течение эксперимента концентраций O₂(a), O₂(b) на входе в оптико-диагностическую секцию (ОДС). Затем основной поток через систему цилиндрических каналов поступал в ОДС, которая представляла собой кварцевую трубку с внутренним диаметром 15 мм и длиной LODS = 350 мм. Смесь молекулярного иода и аргона добавлялась в основной поток через инжектор, выполненный в виде набора из девяти параллельных трубок (длина 25 мм, внутренний диаметр 2 мм, толщина стенок 0.1 мм). По нашим оценкам, в этой конструкции эффективная длина ламинарного смешения потоков должна составлять менее 1 см при рабочих скоростях газа в ОДС до 30 м/с и давлении менее 5 мм рт.ст. Газ вытекал из ОДС через расходное отверстие, в котором реализовывалась скорость, равная скорости звука.

Дозирование газов и измерение их расхода из коммерческих баллонов (Ar, CO₂, O₂) производились с помощью электронных расходомеров Mass–View (Bronkhorst). Молярный расход кислорода, поступающего из ГСК в ОДС, не совпадает с расходом хлора, поступающего в ГСК, т. к. часть газа выходит из него вместе с отработанной жидкостью. Расход кислорода, который поступал в ОДС из ГСК, определялся следующим образом: измерялось давление в ОДС, по завершении эксперимента в нее подавался кислород из коммерческого баллона. Путем подбора его расхода добивались давления в ОДС, равного давлению в ходе эксперимента. Расход баллонного кислорода считался равным расходу кислорода в ГСК в эксперименте. На входе и выходе ОДС измерялось давление, среднее значение которого использовалось для расчета средней скорости газа в ОДС.

Приемный торец двухканального оптоволоконного кабеля, примыкающий к стенке ОДС, мог перемещаться вдоль нее на каретке, приводимой в движение линейным транслятором. Один из выходных каналов кабеля соединялся со входной щелью спектрометра М266, который регистрировал излучение на переходе а \rightarrow X (λ = 1268 нм) молекулы кислорода и на переходе ${}^2P_{1/2} \rightarrow {}^2P_{3/2}$ (1315 нм) атома иода. Второй канал соединялся со входом спектрометра Avantes-2048, который регистрировал излучение на переходе b \rightarrow X (λ = 762 нм) молекулы кислорода. Абсолютная энергетическая калибровка системы волокноспектрометр-приемник проводилась с помощью эталонного источника света AvaLight-Hal-Cal (Avantes). Погрешность абсолютной калибровки определялась в основном паспортной точностью спектральной светимости эталонного источника, равной 9.5%. Температура потока в ОДС определялась по виду частично разрешенной вращательной структуры спектра перехода b → X молекулы кислорода [17]. Во всех экспериментах температура газа в ОДС составляла 300±10 К. По результатам измерений определялись концентрации электронно-возбужденных молекул $O_2(a), O_2(b)$ и атомов I(²P_{1/2}), полная концентрация атомов иода, а также относительная доля синглетного кислорода [18, 19].

3. Результаты эксперимента

Константы скоростей k_1, k_2, k_4 измерялись нами ранее [18–20]. (Здесь и далее k_i обозначает константу скорости *i*-й реакции из табл.1.) Ввиду важной роли этих реакций в механизме диссоциации мы вновь измерили константы их скоростей с помощью описанной выше установки.

Рис.1. Схема эксперимента с использованием газопроточной оптико-диагностической секции:

I – ГСК; *2* – ЛПВ; *3* – узлы смешения; *4* – германиевый детектор, *5* – приемный конец волокна для ввода излучения в монохроматор; *6* – инжектор молекулярного иода; *7* – ОДС; *8* – подвижная каретка с приемным концом волокна для ввода излучения в монохроматор; *9* – расходная шайба.

В целом вновь проведенные измерения подтвердили ранее полученные нами значения констант скоростей реакций 1 и 4. Имеют место равенства

$$\frac{k_1}{k_5(\text{CO}_2)} = (1.04 \pm 0.04) \times 10^{-4}, \quad \frac{k_4}{k_5(\text{CO}_2)} = 0.69 \pm 0.04,$$

где $k_5(CO_2)$ – константа скорости реакции 5 для M = CO₂. Из этих равенств следует, что $K = k_4/k_1 \approx 6600$. Это значение сравнимо с K = 5500 из работы [21]. Измеренные значения $k_5(CO_2)$ имеют разброс в диапазоне 3.0×10^{-13} см³/с [22]-6.1×10⁻¹³ см³/с [23]. Используя рекомендованное значение $k_5(CO_2) = 4.1 \times 10^{-13}$ см³/с из базы данных по атмосферной химии IUPAC ([24], http://iupac.pole-ether.fr), получим $k_1 = (4.3 \times 0.2) \times 10^{-17}$ см³/с и $k_4 = (2.8 \pm 0.2) \times 10^{-13}$ см³/с. Эти значения близки к полученным в работах [18-20], но почти в два раза больше приведенных в [25-27].

Остановимся подробнее на измерениях константы скорости реакции 2. Квазистационарная концентрация молекул О₂(b) определяется реакциями 1, 2, 4 и 5:

$$n_{\rm b} = \frac{k_1 n_{\rm a}^2}{\Gamma_{\rm b} + k_2 n_{\rm I_2}} \left(1 + K \frac{n_{\rm I^*}}{n_{\rm a}} \right),\tag{1}$$

где n_a , n_b , n_{I_2} – концентрации молекул O₂(a), O₂(b), I₂; n_{I^*} – концентрация возбужденных атомов иода I(${}^{2}P_{1/2}$); Γ_{b} = $\Gamma_0 + \sum_{M} k_5(M) n_M$ – частота дезактивации молекул O₂(b); Γ_0 – частота их дезактивации на стенках. Приближение (1) будет справедливо, если время $\Gamma_{\rm b}^{-1}$ много меньше времени дезактивации О₂(а) и времени диссоциации иода. Квазистационарные концентрации молекул $I_2(^{1}\Sigma, 20 \le v \le 40)$ и I₂(А) таковы:

$$n_{I_2}(v) = n_{I_2}(k_6 n_a + \varphi k_7 n_{I^*})Q_{I_2}^{-1},$$

$$n_A = n_{I_2}(k_{10a}f_1 + k_{10b}f_2)n_aQ_A^{-1},$$
(2)

где $Q_{I_2}^{-1} = k_{8a}n_a + k_{8b}n_{I^*} + \Gamma_{I_{2p}}; Q_A^{-1} = k_{11a}n_a + k_{11b}n_{I^*} + \Gamma_{I_2A};$ n_L(v) – концентрация колебательно-возбужденных молекул I₂ (20 $\leq v \leq$ 40); $n_{\rm A}$ – концентрация молекул I₂(A); φ – вероятность образования колебательно-возбужденных молекул иода в реакции 7 с v в диапазоне 20-40; f_1, f_2 относительное содержание колебательно-возбужденных молекул синглетного кислорода $O_2(a, v = 1)$ и $O_2(a, v = 2)$ соответственно; $\Gamma_{I_2v} = \sum_M k_9(M)n_M$ – скорость релаксации колебательно-возбужденных ($20 \le v \le 40$) молекул I₂; $\Gamma_{I_2A} = \sum_M k_{12}(M) n_M$ – скорость дезактивации молекул $I_2(A)$; *n*_M – концентрация частиц М.

С учетом (1), (2) диссоциация иода в ОДС описывается уравнением

$$V \frac{dn_{I_2}}{n_{I_2} dz} = -k_2 n_b - (\hat{k}_{6a} + \hat{k}_{6b} + \hat{k}_{11a} + \hat{k}_{11b}) n_a$$
$$- (\hat{k}_{7a} + \hat{k}_{7b}) n_{I^*} - (k_{I4} n_a^2 + k_{I5} n_a n_{I^*}), \tag{3}$$

где z – расстояние вдоль оси ОДС, отсчитываемое от ее начала; \hat{V} – скорость газа; $\hat{k}_{6a} = k_6 k_{8a} n_a Q_{12}^{-1}$; $\hat{k}_{6b} = k_6 k_{8b} n_{I*} Q_{12}^{-1}$; $\hat{k}_{7a} = \varphi k_7 k_{8a} n_a Q_{12}^{-1}$; $\hat{k}_{7b} = \varphi k_7 k_{8b} n_{I*} Q_{12}^{-1}$; $\hat{k}_{11a} = k_{11a} n_a (k_{10a} f_1 + k_{11a} - k_{11a} n_a)$ $k_{10b}f_2)Q_A^{-1}; k_{11b} = k_{11b}n_{I*}(k_{10a}f_1 + k_{10b}f_2)Q_A^{-1}.$

Рассмотрим стадию инициирования диссоциации I₂, т.е. случай очень малых концентраций иода, когда $\Gamma_{\rm b} \gg$ $k_2 n_{\rm I,}, n_{\rm I^*}/n_{\rm a} \ll K^{-1}$, а реакции 7, 8b, 11b с участием возбужденных атомов иода играют незначительную роль в течеМ.В.Загидуллин, Н.А.Хватов, М.С.Малышев, М.И.Свистун

Рис.2. Зависимости K_d от концентрации молекул O₂(b) при низких начальных концентрациях молекул иода ($n_{\rm I_2} < 10^{11} \, {\rm cm^{-3}}$) для сред O_2 -Ar-H₂O (темные символы) и O_2 -Ar-CO₂ (светлые символы). Концентрация молекул O₂(а): 10¹⁶ см⁻³ (кружки), 2×10¹⁶ см⁻³ (квадраты), 3×10¹⁶ см⁻³ (треугольники).

ние всего времени диссоциации. Тогда, полагая в уравнениях (1)-(3) $n_{I^*} = 0$, получим

$$V\frac{\mathrm{d}n_{\mathrm{I}_2}}{n_{\mathrm{I}_2}\mathrm{d}z} = -K_\mathrm{d},\tag{4}$$

где $K_{\rm d} = k_2 n_{\rm b}^0 + (k_{6a} + k_{11a} + k_{14} n_{\rm a}) n_{\rm a}$ – скорость диссоциации; $n_b^0 = k_1 n_a^2 \Gamma_b^{-1}$ – концентрация молекул O₂(b) на входе в ОДС. Решение уравнения (4) при постоянном значении $K_{\rm d}$ дает изменение полной концентрации $n_{\rm I}$ атомов иода вдоль оси ОДС:

$$n_{\rm I} = 2n_{\rm I_2}^0 [1 - \exp(-K_{\rm d} z/V)].$$
⁽⁵⁾

На практике постоянство величины K_d достигалось путем уменьшения расхода иода (или наблюдаемой величины n_{I^*}) до тех пор, пока профиль концентрации n_{I^*} не оказывался независимым от расхода иода, а концентрации O₂(а) и O₂(b) вдоль ОДС – постоянными [19]. В настоящей работе это выполнялось при $n_{I^*} < 10^{11}$ см⁻³. По измеренным величинам n_I с использованием (5) определялись значения *K*_d, представленные на рис.2 в виде зависимостей от концентрации молекул $O_2(b)$. Видно, что величина K_d не зависит ни от концентрации $O_2(a)$, ни от сорта газа (CO₂ или H₂O), который использовался для дозирования концентрации $O_2(b)$. Аппроксимация K_d в виде линейной зависимости $K_{\rm a}$ + $k_2 n_{\rm b}$ дает $k_2 = (8.3 \pm 0.3) \times 10^{-11}$ см³/с и $K_{\rm a} =$ 38.5 с⁻¹ ± δK_d , где $\delta K_d = 5$ с⁻¹. Это значение k_2 мало отличается от величины $(9.3 \pm 2) \times 10^{-11}$ см³/с, полученной в работе [19], но при других экспериментальных условиях, и сравнимо со значениями 5.9×10⁻¹¹ см³/с [28] и 7×10⁻¹¹ см³/с [29], полученными для полной константы скорости реакции дезактивации O₂(b) молекулами иода. Ненулевое значение K_a , не зависящее от n_a , объясняется нами систематической погрешностью, обусловленной поперечными неоднородностями скорости газа и концентраций компонент среды из-за вязкого ламинарного течения в ОДС [30].

Оценим вклад других процессов в диссоциацию иода на стадии, когда концентрация атомов $I({}^{2}P_{1/2})$ еще мала. Изменение концентрации О2(а) в данных экспериментах на $\delta n_a = 2 \times 10^{16}$ см⁻³ если бы и могло привести к изменению K_a , то не более чем на $\delta K_d = 5 \text{ c}^{-1}$. Отсюда получаем $k_6 \le \delta K_{\rm d} / \delta n_{\rm a} = 2.5 \times 10^{-16} \ {\rm см}^3 / {\rm c}$, что согласуется с оценкой $k_6 < 5 \times 10^{-16}$ см³/с из работы [28]. Диссоциация иода в результате реакций 6, 8а потенциально может конкурировать с диссоциацией в результате реакций 1, 2 при условии $n_{\rm b}/n_{\rm a} < k_6/k_2 < 3 \times 10^{-6}$. Для среды $O_2 - I_2 - H_2O$ с малой начальной концентрацией иода приближенно выполняется соотношение $n_b^0 = k_1 n_a^2 \Gamma_b^{-1}$, где $\Gamma_b = k_5 (H_2 O) n_{H_2 O}$, $k_5(H_2O) = 4.3 \times 10^{-12}$ см³/с [24]. Тогда вклад в диссоциацию реакций 6, 8а может быть сравним со вкладом реакций 1, 2 при относительном содержании воды $n_{\rm H_2O}/n_a >$ $(k_1/k_5(H_2O))(k_2/k_6) = 3$. Для среды $O_2 - I_2 - H_2O$ с очень высокой начальной концентрацией иода приближенно выполняется соотношение $n_{\rm b} = k_1 n_{\rm a}^2 / (k_2 n_{\rm L})$. В этом случае вклад реакций 6-8а может быть сравним со вкладом реакций 1, 2, если $n_{\rm I_2}/n_{\rm a} \approx (k_1/k_6) > 0.17$. Обычно для активной среды кислородно-иодного лазера выполняются условия $n_{\rm H_2O}/n_{\rm a} < 1$ и $n_{\rm L}/n_{\rm a} < 0.05$, поэтому для активной среды ХКИЛ вклад реакций 6, 8а в диссоциацию иода, даже если он и существует, пренебрежимо мал.

Оценим роль реакции k₁₄ на инициирующей стадии диссоциации. При изменении концентрации $O_2(a)$ от 10^{16} до 3×10^{16} см⁻³ константа $K_{\rm d}$ изменяется не более чем на величину $\delta K_{\rm d}$. Отсюда получаем оценку $k_{14} < \delta K_{\rm d}/(8 \times 10^{32} \, {\rm сm}^{-6}) \approx$ 6×10^{-33} см⁶/с, что существенно меньше 6×10^{-29} см⁶/с из работы [11]. Вклад в диссоциацию І2 реакции 14 может быть сравним со вкладом реакций 1, 2 при условии, что $k_{14}n_{\rm a}^2 \approx k_2 n_{\rm b}$. При малых концентрациях иода, когда $n_{\rm b}^0 =$ $k_1 n_{\rm a}^2 \Gamma_{\rm b}^{-1}$, это равенство выполняется при $n_{\rm H_2O} \approx k_1 k_2/$ $(k_{14}k_5(H_2O)) > 10^{17}$ см⁻³. При больших концентрациях иода, когда $n_{\rm b} = k_1 n_{\rm a}^2 / (k_2 n_{\rm L})$, вклад реакции 14 может быть сравним со вкладом реакций 1, 2 на инициирующей стадии (т.е. когда еще $n_{I^*} \approx 0$), если $n_{I_2} > k_1/k_{14} > 7 \times 10^{15}$ см⁻³. Оба указанных случая не реализуются в активной среде ХКИЛ, т.к. обычно концентрации иода и воды в ней существенно меньше этих предельных значений.

В работе [31] показано, что относительное содержание колебательно-возбужденных молекул O_2 на выходе химического ГСК близко к равновесному значению. При температурах газа около 300 К относительные равновесные содержания $O_2(a, v = 1)$ и $O_2(a, v = 2)$ равны $f_1 \approx 10^{-3}$ и $f_2 \approx 10^{-6}$. Изменение концентрации $O_2(a)$ от 10^{16} до 3×10^{16} см⁻³ должно приводить к трехкратному увеличению концентрации колебательно-возбужденных молекул $O_2(a)$. В наших экспериментах колебательно-возбужденные молекулы $O_2(a)$ если и влияют на скорость инициирования диссоциации иода, то в пределах значений, не превышающих $\delta K_d = 5$ с⁻¹. Поэтому для типичных составов активной среды ХКИЛ, где $K_d \gg \delta K_d$, вклад реакций 10, 11 на стадии инициирования диссоциации иода существенной роли не играет.

С ростом концентрации I* усиливается эффективность цепочек реакций 2-4, 3 → 7, 8, 10, 11 и реакции 15. Известно, что в ходе рекомбинации $I + I + I_2 \rightarrow 2I_2$ образуется устойчивый промежуточный комплекс I-I₂ с энергией связи около 5 ккал/моль, что обеспечивает большую величину константы скорости этой реакции, равную примерно 4×10⁻³⁰ см⁶/с [32]. Предположим, что в процессе 15 тоже возможно образование промежуточного электронно-возбужденного комплекса I*-I2. Скорость диссоциации иода в активной среде ХКИЛ в реакции 15 будет сравнима со скоростью диссоциации по механизму реакций 1–4 при $k_{15}n_{\mathrm{I}*}n_{\mathrm{a}} \approx n_{\mathrm{b}}k_2$ или $k_2n_{\mathrm{I}_2} + k_5(\mathrm{H_2O})n_{\mathrm{H_2O}} \approx$ $(k_2k_4/k_{15})[1 + n_a/(Kn_{I^*})]$. В предположении, что $k_{15} =$ 4×10^{-30} см³/с, это равенство выполняется при $n_{\rm H_2O} \approx 10^{18}$ см³ или $n_{\rm I_2} \approx 7 \times 10^{16}$ см³, что значительно больше концентрации воды и иода в активной среде ХКИЛ. Поэтому вкладом реакции 15 в диссоциацию иода можно пренебречь, даже предполагая, что $k_{15} = 4 \times 10^{-30}$ см³/с.

В последующих экспериментах выбирались такие составы кислородно-иодной среды, для которых $\Gamma_b \gg k_2 n_{I_2}$ и $\Gamma_b^{-1} \ll L_{\text{ODS}}/V$. Практически это означало, что вдоль ОДС концентрация O₂(b) была близка к квазистационарному значению, определяемому формулой (1). Тогда без учета реакций 6, 14 и 15 диссоциация иода описывается уравнением

$$V\frac{\mathrm{d}n_{\mathrm{I}_2}}{\mathrm{d}z} = -k_2 n_{\mathrm{b}} n_{\mathrm{I}_2} - \hat{k}_7 n_{\mathrm{I}} * n_{\mathrm{I}_2} - \hat{k}_{\mathrm{I}1} n_{\mathrm{a}} n_{\mathrm{I}_2},\tag{6}$$

где $\hat{k}_7 = \hat{k}_{7a} + \hat{k}_{7b}$; $\hat{k}_{11} = \hat{k}_{11a} + \hat{k}_{11b}$. По результатам измерений n_b , n_{I^*} и *V* определялись величины

$$Z_{\rm b} = \frac{1}{V} \int_0^z k_2 n_{\rm b}(x) \,\mathrm{d}x, \quad Z_{\rm I} = \frac{1}{V} \int_0^z k_7 n_{\rm I} *(x) \,\mathrm{d}x, \tag{7}$$

где $k_2 = 8.3 \times 10^{-11}$ см³/с; $k_7 = 3.6 \times 10^{-11}$ см³/с [33]. Введем параметр

$$R = \frac{k_7(n_{\rm I}*)_{\rm max}}{n_{\rm b}^0 k_2 (1 + K(n_{\rm I}*)_{\rm max}/n_{\rm a})},$$

где (n_{I^*})_{тах} – максимальная концентрация атомов иода, достигнутая в ОДС. Назовем сумму $Z_b + Z_I$ приведенным расстоянием вдоль ОДС. На рис.3 представлены профили концентрации атомов иода в зависимости от приведенного расстояния при различных значениях R. Там же представлена аналитическая зависимость

$$n_{\rm I}(z)/(2n_{\rm I_2}^0) = 1 - \exp[-(Z_{\rm b} + Z_{\rm I})],$$
 (8)

которая описывает скорость наработки атомов иода при $\hat{k}_7 = k_7$ и $\hat{k}_{11} = 0$. Видно, что диссоциация иода хорошо описывается зависимостью (8) для широкого диапазона значений *R*. При малых *R*, т. е. когда $Z_b \gg Z_I$, диссоциация иода происходит практически только в последовательности реакций 1–4. Если одновременно имеют место неравенства $R \ll 1$ и $n_{I^*} > n_a/K$, то цепной механизм 2–4 превалирует над инициирующим механизмом 1–2. Малые значения параметра *R* реализуются в средах, для которых справедливо неравенство $k_7 n_a/(n_0^0 k_2 K) \ll 1$. В сре-

Рис.3. Зависимости безразмерной концентрации атомов иода от параметра $Z_b + Z_1$ при различных значениях *R*. Сплошная кривая – теоретическая зависимость (8).

Рис.4. Изменение концентрации атомов иода вдоль потока газа в ОДС при различных частотах релаксации молекул иода с колебательных уровней из диапазона 20 < v < 40 при $n_a = 1.3 \times 10^{16}$ см⁻³: $\Gamma_{1_2v} = 1.4 \times 10^5$ с⁻¹, R = 1.6, $(n_{1^*})_{max} = 1.2 \times 10^{13}$ см⁻³ (c); $\Gamma_{1_2v} = 2.4 \times 10^5$ с⁻¹, R = 1.5, $(n_{1^*})_{max} = 1.4 \times 10^{13}$ см⁻³ (Δ); $\Gamma_{1_2v} = 3.5 \times 10^5$ с⁻¹, R = 2.3, $(n_{1^*})_{max} = 3.2 \times 10^{13}$ см⁻³ (\mathbf{m}).

дах $O_2-I_2-H_2O$ это условие выполняется, если $n_{H_2O}/n_{O_2} \ll k_1k_2KY/(k_5(H_2O)k_7)$, где $Y = n_a/n_{O_2}$ – содержание синглетного кислорода. Например, при Y = 0.6 малые значения R реализуются при $n_{H_2O}/n_{O_2} \ll 0.1$. Если же $R \gg 1$, то диссоциация происходит в основном по механизму 7, 8.

При $k_7 \approx k_7$ молекулы иода в реакции 7 заселяются в колебательный резервуар с v в диапазоне 20-40 с вероятностью $\varphi \approx 1$, а суммарная скорость реакций 8 существенно превышает скорость релаксации молекул иода с v из диапазона 20–40 в диапазон с v < 20. Большое значение константы k_7 можно объяснить образованием электронновозбужденного комплекса I₃^{*} и последующим его распадом на колебательно-возбужденную молекулу $I_2 (20 \le v \le 40)$ и атом иода в основном состоянии [34, 35]. На рис.4 показано изменение концентрации атомов иода в зависимости от $Z_b + Z_I$ при R > 1 и различных значениях $\Gamma_{I,v}$. Видно, что скорость диссоциации не зависит от Γ_{I_2v} . Согласно [36] $k_9(M) \approx 5 \times 10^{-12} \text{ см}^3$ /с для M = Ar, O₂, H₂O, N₂. Подставляя в неравенство $k_{8a}n_a + k_{8b}n_{I^*} \gg \Gamma_{I_2v}$ (где $\Gamma_{I_2v} = 3.5 \times 10^5 \text{ c}^{-1}$, $n_{\rm a} = 10^{16} \text{ см}^{-3}$) максимальное возможное значение $k_{\rm 8b} =$ $10^{-10}\,{\rm cm^3/c},$ получим $k_{8{\rm a}}\gg 3.5{\times}10^{-11}\,{\rm cm^3/c}.$ Это совпадает с оценкой k_{8a} , полученной в работе [3].

Примерное равенство $\hat{k}_{11} \approx 0$ означает, что вклад в диссоциацию иода реакций с участием колебательно-возбужденных молекул кислорода если и есть, то очень малый. Реакцией с участием атомов І*, являющейся источником колебательно-возбужденных молекул кислорода, может быть только реакция 4 [4]. Колебательно-возбужденные молекулы кислорода могут образоваться и в реакции 5, но источником молекул $O_2(b)$ тоже является реакция 4. Кванты колебательной энергии молекул $O_2(X)$, $O_2(a)$ и O₂(b) очень близки по величине, и за счет быстрых E-Eи V-V-обменов колебательная энергия распределяется по всем молекулам кислорода независимо от их электронного состояния, образуя общий резервуар колебательной энергии [8-10]. Скорость производства колебательных квантов в реакциях 4 и 5 равна $\eta k_4 n_{I^*} n_a$, где η – суммарное количество колебательных квантов, образующихся в этих реакциях. Обозначим величиной Г_{О,v} частоту колебательной релаксации молекулы кислорода. Тогда среднее число колебательных квантов одной молекулы кислорода сверх его равновесного значения будет $f = \eta k_4 n_{I^*} Y / \Gamma_{O,v}$,

Рис.5. Экспериментальные зависимости n_1 для смеси O_2 -Ar-H₂O от параметра $Z_b + Z_1$ при $n_a(z=0) = 1.3 \times 10^{16}$ см⁻³, $n_b(z=0) = 3 \times 10^{12}$ см⁻³, $\Gamma_b = 25000$: $n_X = 1.4 \times 10^{16}$ см⁻³ (Y = 0.48), $n_{Ar} = 7.5 \times 10^{16}$ см⁻³ (O); $n_X = 6 \times 10^{16}$ см⁻³ (Y = 0.18), $n_{Ar} = 1 \times 10^{16}$ см⁻³ (\bullet).

причем n_{1*} уменьшается с уменьшением *Y*. Таким образом, чем меньше *Y*, тем меньше *f*.

На рис.5 показаны профили концентрации n_I, полученные в двух экспериментах с одинаковыми начальными значениями n_a и n_b , но с различными Y. В этих экспериментах величина $\Gamma_{\mathrm{O}_{2}v}$ определяется, в основном, V–Tрелаксацией молекул $O_2(v)$ при столкновениях с молекулами воды, концентрация которой в обоих случаях одинакова. V–T-релаксация $O_2(v = 1)$ происходит в реакциях $O_2(v = 1) + H_2O(v = 0) \leftrightarrow O_2(v = 0) + H_2O(v = 1),$ $H_2O(v = 1) + M \rightarrow H_2O(v = 0) + M.$ В условиях проведенных экспериментов, когда относительное содержание воды по отношению к кислороду превышает 10⁻², релаксация кислорода определяется первой реакцией с константой скорости $k_{O_2-H_2O} \approx 10^{-12}$ см³/с [37]. V-Т-релаксация $O_2(v)$ на молекулах кислорода и атомах аргона происходит с константами скоростей $k_{\text{O}_2-\text{O}_2} = 2.7 \times 10^{-18} \text{ см}^3/\text{c}$ [37] и $k_{\rm O_2-Ar} < 2 \times 10^{-16}$ см³/с [38], поэтому в обоих экспериментах величина $\Gamma_{\rm O_2v}$ одна и та же. Как видно из рис.5, профили концентрации n_I одинаковы в двух экспериментах. Это свидетельствует об отсутствии колебательной неравновесности в молекулах кислорода или о ничтожности вклада реакций 10, 11 в диссоциацию I₂.

На рис.6 показана зависимость концентраций I^* , $O_2(a)$ и $O_2(b)$ вдоль ОДС при использовании молекул H_2O (эксперимент A) или CO_2 (эксперимент Б). В обоих экспериментах начальные концентрации $O_2(b)$ перед смешением

Рис.6. Изменение концентраций I* (кружки), $O_2(a)$ (треугольники) и $O_2(b)$ (звездочки) вдоль потока газа в ОДС в смесях O_2-CO_2 (светлые символы) и O_2-H_2O (темные символы).

первичного потока с потоком молекулярного иода были одинаковы. Видно, что по мере появления атомов I* растет концентрация O₂(b). Подставляя в (1) концентрации частиц на расстоянии 15 см от иодного смесителя, константу скорости $k_1 = 4.3 \times 10^{-17}$ см³/с и отношение K = $k_4/k_1 = 6600$, получим вероятность тушения $\Gamma_{\rm b} \approx 5 \times 10^4 \, {\rm c}^{-1}$. Таким образом, в эксперименте А концентрация воды $n_{\rm H_2O} = \Gamma_{\rm b}/\bar{k}_5({\rm H_2O}) \approx 10^{16} \,{\rm cm^{-3}}$, а в эксперименте Б концентрация углекислого газа $n_{\rm CO_2} = \Gamma_{\rm b}/k_5({\rm CO_2}) \approx 10^{17} \,{\rm cm^{-3}}$. Допустим, что величины f_1 и f_2 превышают их равновесные значения. V-Т-релаксация молекул кислорода молекулами CO₂ происходит с константой скорости $k_{O_2-CO_2} =$ 1.5×10^{-14} см³/с [9]. Поэтому в эксперименте A скорость V–Tрелаксации молекул О₂(a, v) в 7 раз выше, чем в эксперименте Б. Однако, как видно из рис.6, это не сказалось на скорости диссоциации I2. В экспериментах, результаты которых представлены на рис.5, 6, в пределах погрешности измерений спектров избытка колебательно-возбужденных молекул О₂(b) над равновесной концентрацией обнаружено не было. Таким образом, можно утверждать, что на цепной стадии диссоциации І2 вклад в нее механизма 10, 11 очень мал по сравнению с вкладами реакций 1-4 и $3 \rightarrow 7, 8$.

Найдем верхний предел концентрации атомов I*, ниже которого скорость диссоциации K_d от нее не зависит. Это будет справедливо, если в реакции 1 образуется значительно больше молекул $O_2(b)$, чем в реакции 4, а вклад реакций 7, 8 в скорость диссоциации будет существенно меньше вклада реакции 2. Для этого на протяжении всего времени диссоциации должны соблюдаться условия $n_{I*}/n_a \ll K^{-1}$ и $k_2 n_b^0 \gg k_7 n_{I*}$. При наименьших концентрациях, которые использовались в настоящих экспериментах ($n_a = 10^{16}$ см⁻³ и $n_b^0 = 5 \times 10^{11}$ см⁻³), оба условия выполняются, если $n_{I*} \ll 10^{12}$ см⁻³. Как отмечалось выше, наши эксперименты по определению константы скорости реакции 2 проводились при $n_{I*} < 10^{11}$ см⁻³.

4. Обсуждение результатов и выводы

Результаты проведенных экспериментов по диссоциации иода удовлетворительно описываются кинетической схемой, предложенной в работе [3]. Раньше наблюдаемые на эксперименте скорости диссоциации иода как в активной среде ХКИЛ [13, 14], так и в кинетических экспериментах [4, 5], не объяснялись механизмом, предложенным в работе [3], при использовании констант скоростей реакций 1, 2 и 4, приведенных в стандартном кинетическом пакете (СКП) [39]. В настоящей работе получены новые значения этих констант, $k_1 = 4.3 \times 10^{-17}$ см³/с, $k_2 = 8.3 \times 10^{-11}$ см³/с и $k_4 = 2.8 \times 10^{-13}$ см³/с, примерно в два раза большие, чем в СКП. Однако механизм реакций 1-4 по-прежнему не позволял объяснить наблюдаемую в наших экспериментах скорость диссоциации иода. Дополнительный учет реакций 7, 8, как предложено в работе [3], полностью объясняет скорость диссоциации иода в наших экспериментах. При этом, как и в [3], необходимо предположить, что в реакции 7 с вероятностью, близкой к единице, образуются молекулы иода на колебательных уровнях с $v \ge 20$, а скорость диссоциации колебательно-возбужденных молекул иода в реакции 8 значительно превышает скорость их убыли в результате колебательной релаксации.

Реакции 6, 10 или 14 не вносят ощутимого вклада в инициирование диссоциации иода в активной среде кислородно-иодного лазера. Не обнаружено и вклада реакций 10, 11 в диссоциацию на стадии разветвления. Таким образом, гипотеза о существенной роли колебательновозбужденных молекул О₂(а) в диссоциации иода проведенными экспериментами не подтверждается. Поскольку наблюдаемые скорости диссоциации иода не объяснялись на основе кинетических данных, приведенных в СКП, активно проводились поиски альтернативных каналов его диссоциации. В [4,15] предложен феноменологический механизм диссоциации иода, включающий процессы 10а и 10b. При этом константы скоростей этих процессов рассматривались как параметры модели. Включение этих процессов в СКП позволяло удовлетворительно описывать скорость диссоциации в экспериментах как с проточной камерой [4, 15], так и с активной средой сверхзвукового ХКИЛ [12-14]. Однако, чтобы объяснить темпы диссоциации иода в наших экспериментах с новыми увеличенными константами скоростей процессов 1, 2 и 4, нет необходимости включать в рассмотрение процессы 10 и 11. Нами показано также, что реакция 15 не играет существенной роли в активной среде кислородно-иодного пазера.

Относительный вклад в диссоциацию I₂ каждого из рассмотренных механизмов зависит от исходного состава среды. Рассмотрим для примера кинетику диссоциации иода в активной среде кислородно-иодного лазера, начальный состав которой близок к используемому в работе [40]: $n_{O_2} = 4 \times 10^{16}$ см⁻³, $n_a = 2.4 \times 10^{16}$ см⁻³, $n_{I_2}^0 = 8 \times 10^{14}$ см⁻³, $n_{H_2O} = 2 \times 10^{15}$ см⁻³, $n_b^0 = k_1 n_a^2 / (k_5(H_2O)n_{H_2O}) \approx 2.9 \times 10^{12}$ см⁻³. Для упрощения анализа будем считать смешение кислородного и иодсодержащего потоков мгновенным. Примем во внимание то, что высокая скорость обмена энергией в реакции 3 задает содержание возбужденных атомов иода: $n_{I^*}/n_I = F_{I^*} \approx K_e n_a / [(K_e - 1)n_a + n_{O_2}] \approx 0.8$, где $K_e = 2.85$ – константа равновесия реакции 3 при температуре 300 К. В процессе диссоциации концентрация молекул O₂(b) в первом приближении равна квазистационарному значению

$$n_{\rm b} = \frac{(k_1 n_{\rm a} + k_4 n_{\rm I^*}) n_{\rm a}}{k_5 (\rm H_2O) n_{\rm H_2O} + k_2 n_{\rm I_2}}.$$

В этом случае скорость диссоциации по механизму 1-4

$$D_{1} = k_{2}n_{b}n_{I_{2}} = \frac{k_{1}k_{2}n_{I_{2}}n_{a}^{2}}{k_{5}(H_{2}O)n_{H_{2}O} + k_{2}n_{I_{2}}} \left(1 + K\frac{n_{I^{*}}}{n_{a}}\right)$$

а по механизму 7, $8 - D_2 = k_7 n_{I*} n_{I_2}$. Отношение скоростей диссоциации I₂ по первому и второму механизмам

$$\begin{split} \frac{D_1}{D_2} &= \frac{k_1 k_2 n_a^2}{k_7 F_1 * n_1 (k_5 (H_2 O) n_{H_2 O} + k_2 n_{I_2})} \left(1 + K \frac{F_1 * n_1}{n_a} \right) \\ &= \frac{N_1 N_2}{(N_2 - n_1) n_1} \left(1 + \frac{n_1}{N_3} \right), \end{split}$$

где

$$N_{1} = \frac{k_{1}k_{2}n_{a}^{2}}{k_{7}(k_{5}(H_{2}O)n_{H_{2}O} + k_{2}n_{I_{2}})F_{I^{*}}} \approx 10^{12} \text{ cm}^{-3};$$

$$N_{2} = \frac{2(k_{5}(H_{2}O)n_{H_{2}O} + k_{2}n_{I_{2}}^{0})}{k_{2}} \approx 1.8 \times 10^{15} \text{ cm}^{-3};$$

$$N_{3} = \frac{n_{a}}{KF_{I^{*}}} \approx 4.5 \times 10^{12} \text{ cm}^{-3}.$$

До тех пор, пока в среде $n_{\rm I} < 1.3 \times 10^{12}$ см⁻³, будут выполняться соотношения $D_1/D_2 > 1$ и $F_{1*}n_1/n_a < K$ и диссоциация будет происходить, в основном, по инициирующему механизму 1, 2. Когда концентрация атомов иода возрастет и будет выполняться условие $1.3 \times 10^{12} < n_{\rm I} < 1.4 \times 10^{15}$ см⁻³, отношение D₁/D₂ станет меньше единицы и основной вклад в диссоциацию будет давать механизм реакций 7, 8. При достижении большой степени диссоциации, когда $n_{\rm I} > 1.4 \times 10^{15} \, {\rm cm}^{-3}$, вновь начнет выполняться неравенство $D_1/D_2 > 1$, но основной вклад в диссоциацию будет давать цепной механизм 2-4.

Авторы выражают благодарность В.Н.Азязову за плодотворные дискуссии и замечания.

Работы в СФ ФИАН поддержаны в рамках государственной темы №114091840046, в СГАУ поддержаны Минобрнауки РФ в рамках Государственного задания вузам и научным организациям в сфере проведения научной деятельности (проект №3.161.2014/К).

- Arnold S.J., Ogryzlo E.A., Witzke H. J. Chem. Phys., 40, 1769 1. (1964).
- 2. Derwent R.G., Kearns D.R., Thrush B.A. Chem. Phys. Lett., 6, 115 (1970).
- Heidner R.F., Gardner C.E., Segal G.I., El-Sayed T.M. J. Phys. 3. Chem., 87, 2348 (1983).
- Azyazov V.N., Pichugin S.Yu., Heaven M.C. J. Chem. Phys., 130, 4 104306 (2009).
- Lilenfeld H.V. Oxygen-Iodine Laser Kinetics (St. Louis, MO: McDonnell 5. Douglas Research Lab., Final Report, AFWL-TR-83-1, May 1983). Schurath U. J. Photochem., 4, 215 (1975). 6.
- 7
- Азязов В.Н. Квантовая электроника, 39, 989 (2009).
- 8. Kalogerakis K.S., Copeland R.A., Slanger T.G. J. Chem. Phys., 123, 044309 (2005).
- Pejaković D.A., Campbell Z., Kalogerakis K.S., Copeland R.A., 9 Slanger T.G. J. Chem. Phys., 135, 094309 (2011).
- 10. Bloemink H.I., Copeland R.A., Slanger T.G. J. Chem. Phys., 109, 4237 (1998).
- 11. Hays G.N., Fisk G.A. Appl. Phys. Lett., 42, 3 (1983).
- 12. Madden T.J., Noren C.A., Ortiz T., Wilkinson M., Klennert W., Chan R.W., Behrens H.W., Decker R., Walter R. AIAA Paper, 2010-1156 (2010).

- 13. Waichman K., Barmashenko B.D., Rosenwaks S. J. Chem. Phys., 133, 084301 (2010).
- 14. Waichman K., Barmashenko B.D., Rosenwaks S. J. Chem. Phys., 136, 244307 (2012).
- 15. Azyazov V.N., Heaven M.C. AIAA J., 44, 1593 (2006).
- 16. Загидуллин М.В., Малышев М.С., Азязов В.Н. Квантовая электроника, 45, 720 (2015).
- 17. Зырянов С.М., Лопаев Д.В. Физика плазмы, 33, 1 (2007).
- 18. Загидуллин М.В., Хватов Н.А., Нягашкин А.Ю. Квантовая электроника, 41, 135 (2011).
- 19. Zagidullin M.V., Khvatov N.A., Malyshev M.S., Svistun M.I. J. Phys. Chem A., 116, 10050 (2012).
- 20. Загидуллин М.В., Хватов Н.А, Малышев М.С. Химическая физика, 30, 3 (2011).
- 21. Heidner R.F., Gardner C.E., El-Sayed T.M., Segal G.I., Kasper J.V.V. J. Chem. Phys., 74, 5618 (1981).
- 22. Noxon J.F. J. Chem. Phys., 52, 1852 (1970).
- 23. Azyazov V.N., Mikheyev P., Postell D., Heaven M.C. Chem. Phys. Lett., 482, 56 (2009).
- 24. Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J. Atmos. Chem. Phys., 4. 1461 (2004).
- 25. Lilenfeld, H.V., Carr P.A.G., Hovis F.E. J. Chem. Phys., 81, 5730 (1984).
- 26. Derwent R.G., Thrush B.A. Trans. Faraday Soc., 67, 2036 (1971).
- 27. Heidner R.F. J. Photochem., 25, 449 (1984).
- 28. Han J.D., Komissarov A.V., Tinney S.P., Heaven M.C. Proc. SPIE Int. Soc. Opt. Eng., 5777, 198 (2005).
- 29. Muller D.F., Young R.H., Houston P.L., Wiesenfeld J.R. Appl. Phys. Lett., 38, 404 (1981).
- 30. Howard C.J. J. Phys. Chem., 83, 3 (1976).
- 31. Загидуллин М.В. Квантовая электроника, 40, 794 (2010).
- 32. Blake J.A., Burnes G. J. Chem. Phys., 54, 1480 (1971).
- 33. Burde D.H., McFarlane R.A. J. Chem. Phys., 64, 1850 (1976).
- 34. Hofmann H., Leone S.R. J. Chem. Phys., 69, 641 (1978).
- 35. Hall G.E., Marinelli W.J., Houston P.L. J. Phys. Chem., 87, 2153 (1983).
- 36. Lawrence W.G., Van Marter T.A., Nowlin M.L., Heaven M.C. J. Chem. Phys., 106, 127 (1997).
- 37. Huestis D.L. J. Phys. Chem., 110, 6638 (2006).
- 38. Collins R.J., Husain D. J. Photochem., 1, 481 (1972).
- 39. Perram G.P. Int. J. Chem. Kinet., 27, 817 (1995).
- 40. Загидуллин М.В., Николаев В.Д., Свистун М.И., Хватов Н.А. Квантовая электроника, 35, 907 (2005).