<u>КВАНТОВАЯ ИНТЕРФЕРОМЕТРИЯ</u>

Квантовая интерференция бифотонов с доплеровским сдвигом частоты

Е.Г.Ларионцев

Теоретически исследовано преобразование амплитуды бифотонного состояния света при дифракции Брэгга на бегущей звуковой волне в акустооптическом модуляторе (AOM). Показано, что при дифракции в AOMe бифотонов, излучаемых в процессе коллинеарного параметрического рассеяния света, возникает сдвиг несущей частоты бифотонного волнового пакета, превышающий в два раза доплеровский сдвиг частоты для классического поля. Предложен метод регистрации доплеровского сдвига частоты бифотона, основанный на интерференции между независимыми бифотонами.

Ключевые слова: параметрическое рассеяние света, акустооптическое взаимодействие, доплеровское смещение частоты, интерференция бифотонов, волновой пакет.

1. Введение

В квантовой оптике большое внимание уделяется вопросам, связанным с преобразованием перепутанных состояний фотонов при их прохождении через различные оптические системы. С одной стороны, это определяется конкретными задачами, обусловленными приготовлением заданных состояний света и оптимизацией их характеристик, а с другой – выявлением не наблюдаемых в классической оптике специфических особенностей квантовых состояний.

Одним из впервые обнаруженных нелокальных квантовых эффектов является возможность компенсации дисперсии света при распространении бифотона [1]. Специфические квантовые эффекты, связанные с перепутанным состоянием двух фотонов, возникают при дифракции бифотона на щелях [2,3] и на дифракционной решетке [4]. В работах [2–4] было показано, что перепутанное состояние двух фотонов с длиной волны λ оказывается подобным однофотонному состоянию с длиной волны $\lambda/2$.

В работе [5] было исследовано периодическое самовоспроизведение поперечной структуры поля (эффект Тальбо) при освещении периодических объектов перепутанными парами фотонов. Показано, что квантовая длина Тальбо, проявляющаяся в эффекте Тальбо второго порядка, в два раза меньше классической длины Тальбо.

В настоящей работе найден новый квантовый эффект, который возникает при дифракции бифотона на движущейся решетке показателя преломления среды, созданной бегущей ультразвуковой волной. Известно, что при дифракции Брэгга в случае классического поля возникает доплеровский сдвиг частоты, равный частоте звука Ω. Как показано в настоящей работе, при дифракции бифо-

Поступила в редакцию 29 марта 2016 г., после доработки – 9 июня 2016 г.

тонов, генерируемых в процессе коллинеарного параметрического рассеяния света (ПРС), доплеровский сдвиг частоты равен 2Ω . В работе предложены и исследованы новые возможности получения интерференции между независимыми пространственно разделенными бифотонами с доплеровским сдвигом частоты.

2. Дифракция электромагнитной волны на движущейся решетке

Для классических электромагнитных полей доплеровский сдвиг частоты при отражении от движущейся среды является известным и широко используемым фундаментальным эффектом. Движущимся объектом может служить дифракционная решетка, создаваемая в изотропной среде бегущей акустической волной. На рис.1 показан акустооптический модулятор (AOM), в котором распространяется плоская звуковая волна с волновым вектором k и круговой частотой Ω . Диэлектрическая проницаемость среды $\varepsilon(r, t)$ под действием звука изменяется следующим образом:

Рис.1. Дифракция Брэгга в АОМе на бегущей звуковой волне.

Е.Г.Ларионцев. Научно-исследовательский институт ядерной физики им. Д.В.Скобельцына МГУ им. М.В.Ломоносова, Россия, 119991 Москва, Воробьевы горы, 1, стр.2; e-mail: e.lariontsev@yahoo.com

8

$$\varepsilon(\mathbf{r},t) = \varepsilon_0 + \varepsilon_1 \cos(kx - \Omega t), \tag{1}$$

где ε_1 – множитель, пропорциональный амплитуде акустической волны.

Пусть на AOM падает классическое электромагнитное поле в виде плоской квазимонохроматической волны с несущей частотой ω_0 , медленно меняющейся комплексной амплитудой $E_0(t)$ и вектором поляризации e_0 :

$$\boldsymbol{e}_0 \boldsymbol{E}_{\text{in}}(t) = \boldsymbol{e}_0 \boldsymbol{E}_0(t) \exp(-\mathrm{i}\omega_0 t). \tag{2}$$

При дифракции Брэгга на движущейся решетке (1), созданной акустической волной, доминируют два дифракционных максимума (нулевой и минус первый). Внутри AOMa плоские волны распространяются в двух направлениях (проходящая и дифрагирующая волны, рис.1). При угле падения ϑ_{in} , равном углу Брэгга ($\vartheta_{in} = \vartheta_B = k/2k_0$, $k_0 = \sqrt{\varepsilon_0} \omega_0/c$), электромагнитное поле на выходе AOMa можно записать в следующем виде (см., напр., [6]):

$$\boldsymbol{E}_{\text{out}}(t) = \boldsymbol{E}_{\text{in}}(t - \sqrt{\varepsilon_0} l/c)(\boldsymbol{e}_0 T + \boldsymbol{e}_{-1} R), \qquad (3)$$

где $T = \cos \gamma$; $R = i \sin \gamma \exp[i\Omega(t - \sqrt{\varepsilon_0} l/c)]$;

$$\gamma = \frac{\varepsilon_1 k_0 l}{4\varepsilon_0 (\varepsilon_0 - \sin^2 \vartheta_{\rm B})^{1/2}};$$

l – длина области АО взаимодействия в ячейке; e_0 , e_{-1} – единичные векторы поляризации прошедшей и дифрагировавшей волн.

В режиме дифракции Брэгга АОМ аналогичен светоделителю с коэффициентом пропускания T и коэффициентом отражения R. При отражении (дифракции) возникает доплеровский сдвиг частоты на величину, равную частоте звуковой волны Ω : частота отраженной волны равна $\omega_0 - \Omega$.

3. Доплеровский сдвиг несущей частоты бифотонного волнового пакета

Рассмотрим теперь доплеровский сдвиг частоты на движущейся дифракционной решетке в случае квантового бифотонного волнового пакета. Такой пакет образуется на выходе нелинейного кристалла NLC (рис.2) в результате коллинеарного параметрического рассеяния света (ПРС).

Поле накачки считаем классическим и запишем его в виде плоской монохроматической волны

$$E_{\rm p}(z,t) = E_0 \exp[-\mathrm{i}(\omega_{\rm p}t - k_{\rm p}z)]. \tag{4}$$

В случае вырожденного ПРС квант накачки распадается внутри кристалла NLC на два кванта, распространяющихся параллельно k_p (в направлении z). Операторы рождения $a_j^+(t,z_0)$ холостого (j = i) и сигнального (j = s) фотонов на выходном торце нелинейного кристалла имеют вид волновых пакетов с несущей частотой $\omega_p/2$:

$$a_{j}^{+}(t,z_{0}) = a_{j0}^{+}F(t)\exp\{i[\omega_{p}t - \varphi_{p}(z_{0})]/2\}.$$
(5)

Здесь $\varphi_p(z_0) = k_p(z_0 + n_pL) - \phi$ аза волны накачки, зависящая от положения нелинейного кристалла, который находится в области $z_0 < z < z_0 + L$; L – толщина кристалла;

Рис.2. Дифракция бифотона в АОМе.

 $n_{\rm p}$ – показатель преломления кристалла для волны накачки; a_{j0}^+ – не зависящий от времени оператор рождения фотона с частотой $\omega_{\rm p}/2$. Форму волнового пакета определяет медленно меняющаяся функция времени F(t), которая не является оператором.

При малом коэффициенте параметрического усиления Γ волновую функцию $|\psi\rangle$ на выходе нелинейного кристалла можно записать в виде суперпозиции вакуумного ($|0\rangle$) и бифотонного состояний [7]:

$$|\psi\rangle = C|0\rangle + \frac{\Gamma}{2}a_{s}^{+}(t_{1}, z_{0})a_{1}^{+}(t_{2}, z_{0})|0\rangle, \qquad (6)$$

где постоянная C близка к единице (далее будем считать, что C = 1).

Для описания бифотонного состояния обычно используют амплитуду этого состояния (амплитуду бифотона) $A(t_1, t_2)$, которая определяется выражением

$$A(t_1, t_2) = \langle 0 | a_{s0} a_{i0} | \psi \rangle.$$
⁽⁷⁾

Учитывая (5)–(7), амплитуду бифотона можно записать в следующем виде (см., напр., [7]):

$$A(t_1, t_2, z_0) = F(\tau) \exp\{-i[\omega_p t - \varphi_p(z_0)]\},$$
(8)

где $\tau = t_1 - t_2$; $t = (t_1 + t_2)/2$. В соответствии с (8) амплитуда бифотона имеет вид волнового пакета с несущей частотой, равной частоте поля накачки ω_p .

Рассмотрим, как изменится амплитуда бифотона при дифракции на движущейся решетке показателя преломления. Выйдя из кристалла, сигнальная и холостая волны падают на AOM под углом Брэгга $\vartheta_{in} = \vartheta_B^0 = k/2k_{0p}$, где $k_{0p} = \sqrt{\varepsilon_0} \omega_p / 2c$. Каждая из волн, падающих на AOM (сигнальная и холостая, j = 0, e), в режиме дифракции Брэгга расщепляются на прошедшую и дифрагировавшую волны. Для простоты далее ограничимся случаем, когда амплитуда звуковой волны и длина области АО взаимодействия *l* выбраны такими, что $\gamma = \pi/2$. При этом условии сигнальная и холостая волны полностью отражаются на решетке, прошедшая волна на выходе АОМа отсутствует. В соответствии с (3) при $\gamma = \pi/2$ операторы уничтожения фотонов $b_i(t)$ холостой (j = i) и сигнальной (j = s)волн на выходе АОМа связаны с соответствующими операторами $a_i(t)$ на входе в него следующим образом:

$$b_i(t) = -i\exp[i\Omega(t-\tau_0)]a_i(t-\tau_0), \qquad (9)$$

где $\tau_0 = \sqrt{\varepsilon_0} l/c$ – время задержки при прохождении AOMa. Учитывая (8), (9), получаем для амплитуды бифотона

после прохождения АОМа следующее выражение:

$$B(t_1, t_2, z_0) = F(\tau) \exp\{-i[(\omega_p - 2\Omega)t - \varphi_p(z_0) - \varphi_0]\}, \quad (10)$$

где $\varphi_0 = 2\Omega \tau_0$.

Из (10) видно, что в результате АО взаимодействия несущая частота бифотонного пакета смещается на 2Ω , тогда как для классического поля сдвиг частоты при дифракции на бегущей звуковой волне равен частоте звука Ω .

Пространственные и временные характеристики бифотонного состояния обычно измеряют путем счета числа совпадений R_c фотоотсчетов на двух детекторах. Поля сигнальной и холостой волн проходят через оптические системы и попадают на два фотодетектора. Скорость совпадений R_c пропорциональна квадрату модуля амплитуды бифотона. Поскольку $|A(t_1, t_2)|^2$ и $|B(t_1, t_2)|^2$ не зависят от несущей частоты бифотонного пакета, в экспериментах с бифотонами, рождаемыми в одном нелинейном кристалле, невозможно обнаружить доплеровское смещение частоты бифотонного волнового пакета. Далее мы опишем способ регистрации такого смещения при интерференции бифотонов, вышедших из двух кристаллов.

4. Интерференция бифотонов

4.1. Интерференция в отсутствие доплеровских сдвигов частоты

Интерференция бифотонов, излученных независимо в двух нелинейных кристаллах, исследовалась в ряде работ (см., напр., [8,9]). Сначала рассмотрим обычную схему (рис.3) для наблюдения интерференции 4-го порядка между двумя бифотонами, излучаемыми в процессе вырожденного коллинеарного ПРС [9].

Как показано на рис.3, монохроматическая волна накачки, пройдя через светоделитель 31, попадает в нелинейные кристаллы α и β . Координаты входных торцов этих кристаллов z_{α} , z_{β} полагаем равными соответствующим расстояниям от торцов до светоделителя 31. В системе с двумя нелинейными кристаллами генерация бифотонов происходит независимо в каждом кристалле, и волновую функцию $|\psi\rangle$ можно записать в виде

$$|\psi\rangle = |\psi\rangle_{\alpha}|\psi\rangle_{\beta},\tag{11}$$

где
 $|\psi\rangle_{\!\alpha,\beta}$ – волновые функции для каждого кристалла.

Амплитуды бифотонов $A_{\alpha,\beta}(t_1, t_2)$, рождаемых в кристаллах α и β , определяются следующими выражениями:

$$A_{\alpha,\beta}(t_1, t_2) = F_{\alpha,\beta}(\tau) \exp[-i(\omega_p t - \varphi_{\alpha,\beta})], \qquad (12)$$

где

$$\varphi_{\alpha,\beta} = k_{\rm p} (z_{\alpha,\beta} + n_{\rm p} L_{\alpha,\beta} + z'_{\alpha,\beta}); \tag{13}$$

 $n_{\rm p}$ – показатель преломления для волны накачки в кристалле; $L_{\alpha,\beta}$ – толщины кристаллов; $z'_{\alpha,\beta}$ – расстояния от выходных торцов кристаллов до светоделителя 32.

Как показано в [9], скорость совпадений фотоотсчетов R_c на детекторах $\Phi 1$ и $\Phi 2$ (рис.3) определяется выражением

$$R_{\rm c} = K[|F_{\alpha}(\tau)|^2 + |F_{\beta}(\tau)|^2 - 2\operatorname{Re}(F_{\alpha}(\tau)F_{\beta}^*(\tau))e^{\mathrm{i}\Phi}], (14)$$

где $\Phi = \varphi_{\alpha} - \varphi_{\beta}$; *К* – коэффициент пропорциональности.

Из (14) следует, что скорость совпадений осциллирует при изменении Φ с периодом, равным длине волны накачки λ_p . Эти осцилляции происходят из-за интерференции между бифотонами, рождаемыми в кристаллах α и β . Видность интерференционной картины не зависит от положения кристаллов внутри интерферометра.

4.2. Влияние доплеровских сдвигов частоты на интерференцию

Пусть теперь после нелинейного кристалла α (рис.4) помещен AOM, на который сигнальный и холостой фотоны падают под углом Брэгга. Амплитуда звуковой волны и длина области AO взаимодействия / выбраны такими, что $\gamma = \pi/2$ (в этом случае прошедшая волна на выходе AOMa отсутствует). Схема на рис.4 является упрощенной, здесь изменение направления отраженной в AOMe волны не показано. На рис.4 показаны два AOMa, которые находятся в обоих плечах интерферометра Maxa– Цендера.

Предположим вначале, что есть только один AOM (в плече, содержащем кристалл α). В этом случае скорость совпадений фотоотсчетов R_c на фотодетекторах Φ 1 и Φ 2 определяется следующей формулой:

Рис.3. Интерференция бифотонов в схеме Маха–Цендера (α , β – нелинейные кристаллы, 31, 32 – светоделители, CC – схема совпадений, Φ 1, Φ 2 – фотодетекторы).

Рис.4. Интерференция бифотонов в схеме Маха-Цендера с двумя АОМами; обозначения те же, что и на рис.3.

$$R_{c} = K \{ |F_{\alpha}(\tau)|^{2} + |F_{\beta}(\tau)|^{2} - 2 \operatorname{Re}(F_{\alpha}(\tau)F_{\beta}^{*}(\tau)) \\ \times \exp[i(\Phi + \varphi_{0\alpha} - 2\Omega t)] \},$$
(15)

где $\varphi_{0\alpha} = 2\Omega \tau_{0\alpha}$ – фазовый сдвиг бифотонного пакета в AOMe, находящемся в плече α .

В соответствии с (15) скорость совпадений осциллирует во времени с частотой 2Ω . Обычно в экспериментах измеряют среднюю скорость совпадений фотоотсчетов. Интерференционный член в (15) при усреднении по времени обращается в нуль. Таким образом, при использовании только одного AOMa в схеме, показанной на рис.4, интерференция бифотонов исчезает из-за доплеровского сдвига частоты бифотона на AOMe, расположенном в плече α .

Теперь рассмотрим схему с двумя АОМами, показанную на рис.4. В плече β АОМ находится перед нелинейным кристаллом β , и частота звуковой волны в нем равна 2Ω . При отражении от движущейся дифракционной решетки в этом АОМе частота волны накачки смещается на – 2Ω .

При наличии двух АОМов скорость совпадений фотоотсчетов R_c на детекторах Φ 1 и Φ 2 (см. рис.4) определяется следующим выражением:

$$R_{\rm c} = K\{|F_{\alpha}(\tau)|^{2} + |F_{\beta}'(\tau)|^{2} -2\operatorname{Re}(F_{\alpha}(\tau)F_{\beta}^{*}(\tau))\exp[\mathrm{i}(\Phi + \Phi_{0})]\},$$
(16)

где $\Phi = \varphi_{\alpha} - \varphi_{\beta}$; $\Phi_0 = \varphi_{0\alpha} - \varphi_{0\beta}$; $\varphi_{0\beta} = 2\Omega\tau_{0\beta} - \phi$ азовый сдвиг волны накачки в АОМе, расположенном в плече β . Штрих в символе $F'_{\beta}(\tau)$ означает, что при изменении частоты накачки от $\omega_{\rm p} \kappa \omega'_{\rm p} = \omega_{\rm p} - 2\Omega$ форма бифотонного пакета может измениться. В случае $\Omega \ll \Delta \omega$, где $\Delta \omega$ – ширина спектра бифотона, изменением формы пакета можно пренебречь, т.е. полагать, что $F'_{\beta}(\tau) = F_{\beta}(\tau)$.

Из (16) следует, что при использовании двух АОМов в схеме, показанной на рис.4, можно восстановить интерференцию бифотонов с доплеровскими сдвигами частоты. В соответствии с (16) скорость совпадений осциллирует при изменении Φ с периодом, равным длине волны накачки λ_p . Видность интерференционной картины не зависит от положения кристаллов и АОМа внутри интерферометра.

Восстановление интерференции бифотонов в схеме с двумя АОМами происходит только в том случае, когда частота накачки при прохождении через АОМ в плече β

смещается на 2Ω . Именно такое различие частот звуковых волн в двух AOMax подтверждает, что доплеровский сдвиг частоты для бифотонного пакета вдвое превышает сдвиг частоты для классического поля.

В работе [10] перечислены и кратко описаны предложенные и изученные к настоящему времени способы управления бифотонным полем. Результаты, полученные в настоящей работе, показали: 1) использование АО взаимодействия позволяет управлять несущей частотой бифотонных волновых пакетов; 2) с помощью интерференции бифотонных квантовых состояний можно измерить доплеровский сдвиг несущей частоты бифотонного волнового пакета. Таким образом, с помощью АО взаимодействия можно целенаправленно управлять квантовыми оптическими состояниями.

5. Заключение

Исследовано доплеровское смещение частоты бифотонного волнового пакета при дифракции Брэгга на бегущей звуковой волне. Показано, что при дифракции в АОМе сдвиг несущей частоты бифотонного волнового пакета, излученного в процессе коллинеарного ПРС, в два раза превышает доплеровский сдвиг частоты для классического поля. Предложен способ измерения доплеровского смещения частоты бифотонного волнового пакета, основанный на интерференции 4-го порядка между независимыми бифотонами, излучаемыми при коллинеарном ПРС в двух кристаллах. Результаты проведенных в настоящей работе исследований показывают, что акустооптическое взаимодействие можно использовать как один из методов управления квантовыми состояниями света и их интерференцией.

- 1. Franson J.D. Phys. Rev. A, 45, 3126 (1992).
- Boto A.N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P. *Phys. Rev. Lett.*, 85, 2733 (2000).
- D'Angelo M., Chekhova M.V., Shih Y.H. Phys. Rev. Lett., 87, 013602 (2001)
- Ostermeyer M., Puhlmann D., Korn D. J. Opt. Soc. Am. B, 26, 2347 (2009).
- Luo K.H., Wen J., Chen X.H., Liu Q., Xiao M., Wu L.A. *Phys. Rev.* A, 80, 043820 (2009).
- 6. Tarn C.W. Opt. Soc. Am. A, 14, 2231 (1997).
- Rubin M.H., Klyshko D.N., Shih Y.H., Sergienko A.V. *Phys. Rev.* A, 50, 5122 (1994).
- Ou Z.Y., Wang L.J., Zou X.Y., Mandel L. Phys. Rev. A, 41, 566 (1990).
- Бурлаков А.В., Клышко Д.Н., Кулик С.П., Чехова М.В. Письма в ЖЭТФ, 69, 788 (1999).
- 10. Катамадзе К.Г., Кулик С.П. ЖЭТФ, **139**, 26 (2011).