ТЕРАГЕРЦЕВОЕ ИЗЛУЧЕНИЕ

Конверсия оптического излучения в терагерцевое на поверхности полуметалла

В.А.Миронов, И.В.Оладышкин, Д.А.Фадеев

Рассмотрена возможность генерации ишрокополосного терагерцевого (ТГц) излучения при отражении p-поляризованного фемтосекундного лазерного импульса от поверхности полуметалла. Проведено обобщение гидродинамической модели мгновенного квадратичного отклика металлов, представлены аналитические результаты и данные численного моделирования. Показано, что при переходе от хорошо проводящих металлов к полуметаллам следует ожидать значительного увеличения эффективности генерации ТГц сигнала вследствие уменьшения эффективной массы носителя заряда и ослабления экранировки оптического и ТГц полей.

Ключевые слова: полуметалл, терагерцевое излучение, фемтосекундные лазерные импульсы, нелинейная оптика.

1. Введение

Активное освоение терагерцевого (ТГц) диапазона электромагнитных волн привело к заметному развитию физики нелинейного преобразования оптического излучения в низкочастотное. В частности, в настоящее время большое внимание уделяется экспериментальному и теоретическому исследованию генерации ТГц излучения при взаимодействии фемтосекундных лазерных импульсов с поверхностями металлов и других проводящих сред [1–9]. Детальное изучение генерации ТГц излучения при его отражении от границы среды имеет целью не только оптимизацию эффективности преобразования оптического излучения в терагерцевое, но и исследование в совокупности с другими электродинамическими методами (генерацией поверхностных волн, гармоник оптического поля и др. [10, 11]) самого материала [12].

Особенности генерации ТГц излучения при отражении фемтосекундных импульсов от поверхностей хорошо проводящих металлов (золото, медь, алюминий и др.) достаточно подробно исследованы [1-9, 12]; эффективность генерации при типичных экспериментальных параметрах оказывается низкой, порядка 10^{-7} (по энергии). В теоретических работах [7,8] показано, что малая эффективность преобразования лазерных импульсов связана с большой концентрацией свободных носителей заряда: объемные токи в плотной плазме почти полностью экранируют излучение нелинейного поверхностного тока.

Цель настоящей работы – обратить внимание на новый для данной области класс материалов – полуметаллы. Далее будет представлено обобщение гидродинамической модели генерации ТГц излучения, развитой в работах [5, 7, 8], на случай полуметаллов, которые имеют сравнительно небольшую концентрацию электронов в зоне

Поступила в редакцию 30 марта 2016 г., после доработки – 21 июня 2016 г.

проводимости. Для получения мгновенного квадратичного отклика такой среды оказывается принципиально важным учет межзонных переходов и существенной анизотропии эффективных масс носителей заряда.

В работе изложены аналитические результаты, а также представлены данные численного моделирования в рамках полной гидродинамической модели. Приведены сравнительные оценки для обычных металлов и висмута, линейные электродинамические характеристики которого подробно экспериментально исследованы в широком диапазоне частот [13-15]. Показано, что при переходе от металлов к полуметаллам следует ожидать заметного увеличения эффективности генерации ТГц излучения за счет мгновенного квадратичного отклика электронов. Кроме того, в соответствии с развитой моделью ТГц отклик висмута должен быть чувствительным к ориентации монокристаллического образца из-за сильной анизотропии тензора эффективных масс электрона. Тем самым конверсия оптического излучения в ТГц излучение на поверхностях полуметаллов может представлять интерес с точки зрения исследования их электродинамических характеристик.

В разд.2 описаны характеристики падающего и отраженного лазерного излучения в рамках линейной модели. Представленные там общие выражения используются в разд.3 при выводе соотношения для продольного поверхностного тока, который наводится лазерным импульсом на поверхности образца. В разд.4 рассмотрена задача излучения электромагнитного импульса поверхностным источником тока, движущимся вдоль поверхности с фазовой скоростью, превышающей скорость света в вакууме. В разд.5 представлены заключительные замечания. В Приложении даны уточняющие сведения по использованным численным методам со ссылками на предыдущую работу авторов.

2. Отражение лазерного импульса от поверхности полуметалла

Рассмотрим образец из полуметалла, на поверхность которого падает монохроматическое р-поляризованное

В.А.Миронов, И.В.Оладышкин, Д.А.Фадеев. Федеральный исследовательский центр Институт прикладной физики РАН, Россия, 603950 Н.Новгород, ул. Ульянова, 46; e-mail: oladyshkin@gmail.com

оптическое излучение. Введем систему координат, направив ось z вдоль поверхности в плоскости падения, ось x – перпендикулярно поверхности, ось y – перпендикулярно плоскости падения. Поскольку действительная часть диэлектрической проницаемости ε на оптических частотах велика по модулю и отрицательна [15], электрическое поле E экспоненциально спадает в глубь образца:

$$E_x = E_{x0} \exp(k_0 \sqrt{-\varepsilon} x - ik_0 z \cos \alpha), \qquad (1)$$

$$E_z = E_{z0} \exp(k_0 \sqrt{-\varepsilon} x - ik_0 z \cos \alpha), \qquad (2)$$

где угол падения α отсчитывается от оси z; $k_0 = \omega_0/c$ – волновое число оптического излучения в вакууме; E_{x0} и E_{z0} – амплитуды волн на границе образца. Коэффициент отражения R можно представить в следующем виде [16]:

$$R = \frac{\varepsilon \sin \alpha - \sqrt{\varepsilon}}{\varepsilon \sin \alpha + \sqrt{\varepsilon}}.$$
(3)

Интерференция падающей и отраженной волн приводит к тому, что вблизи границы раздела двух сред (x = 0) суммарное поле распространяется вдоль поверхности с фазовой скоростью, превышающей скорость света (см. подробнее в [7]). Таким образом, если лазерный импульс имеет достаточно малую длину по сравнению со своим поперечным размером, то в области перекрытия падающего и отраженного оптического излучения формируется сверхсветовое освещенное пятно («зайчик»). Как будет показано ниже, в этом пятне на поверхности полуметалла возможно возбуждение низкочастотного нелинейного тока. Для его нахождения необходимо конкретизировать электродинамическую модель среды.

Диэлектрическая проницаемость висмута довольно хорошо экспериментально изучена и теоретически интерпретирована [13, 14]. Она определяется поляризационным откликом кристаллической решетки, а также межзонными переходами и внутризонным движением электронов. В дальнейшем мы будем использовать феноменологическую модель линейного отклика, содержащую лишь небольшое число параметров. При их определении мы будем ориентироваться на экспериментально наблюдаемую зависимость диэлектрической проницаемости висмута от частоты в исследуемой области [15]. Внутризонное движение дырок не будет учитываться при получении поляризационного отклика, поскольку их эффективная масса много больше массы электронов.

Поляризационный отклик висмута имеет характерное резонансное поведение вблизи частоты $\omega_{\rm b} \sim 10^{15}$ с⁻¹, обусловленное переходами электронов из заполненной валентной зоны или из зоны проводимости в лежащую выше пустую зону (характерная разность энергий составляет 1–0.7 эВ). Учтем этот вклад, воспользовавшись моделью гармонического осциллятора для описания динамики поляризации среды:

$$\ddot{P} + v_{\rm b}\dot{P} + \omega_{\rm b}^2 P = \beta E(t),\tag{4}$$

где $\omega_{\rm b}$ – собственная частота осциллятора; P – поляризация среды; $v_{\rm b}$ – эффективная частота потерь; β – коэффициент связи; E(t) – электрическое поле; точка над буквой означает дифференцирование по времени.

Движение частиц внутри зоны проводимости можно описать на основе модели свободных электронов:

$$\ddot{r}_{\rm f} = -v_{\rm f} \dot{r}_{\rm f} - e \hat{M}_{\rm f}^{-1} E, \qquad (5)$$

где $r_{\rm f}$ – классическая координата электрона; e – заряд электрона; $\hat{M}_{\rm f}$ – тензор эффективных масс свободного электрона; $v_{\rm f}$ – эффективная частота столкновений. Поляризационный отклик, связанный с внутризонным движением электронов, будет важен в дальнейшем при получении нелинейного тока. Ниже мы будем рассматривать оптическое поле, поляризованное в плоскости *xz*, предполагая, что соответствующая подматрица $\hat{M}_{\rm f}$ диагональна и имеет диагональные компоненты m_x и m_z . В случае висмута модель (4) приводит к следующей аппроксимации для диэлектрическом диапазоне частот:

$$\varepsilon(\omega) = \frac{\beta}{\omega_b^2 - \omega(\omega - i\nu_b)}.$$
(6)

Формула (6) с достаточной точностью воспроизводит экспериментально наблюдаемую комплексную диэлектрическую проницаемость висмута [15] при $\omega_{\rm b} = 1 \times 10^{15} \, {\rm c}^{-1}$, $\sqrt{\beta} = 9 \times 10^{15} \, {\rm c}^{-1}$, $v_{\rm b} = 1 \times 10^{15} \, {\rm c}^{-1}$.

В первом приближении монохроматическое поле (1), (2) вызывает осцилляции свободных и «связанных» электронов на частоте ω_0 . Поскольку движение приповерхностных носителей в перпендикулярном к границе направлении оказывается нелинейным, это приводит к формированию низкочастотного поверхностного тока.

3. Нелинейный ток

Поперечная компонента электрического поля E_x индуцирует некоторый заряд вблизи поверхности полуметалла. Электроны, локализованные вблизи границы, смещаются продольным электрическим полем лазерного излучения и создают нелинейный поверхностный ток. Для количественного описания этого процесса рассмотрим уравнения гидродинамики в представлении комплексных амплитуд. Изменение концентрации электронов *n* под действием лазерного поля найдем из уравнения непрерывности

$$i\omega_0 e\delta n = \operatorname{div} \boldsymbol{j},\tag{7}$$

где $j = -i\omega_0 en_0 r_f$; n_0 – невозмущенная концентрация электронов проводимости. Отметим, что поперечная компонента тока $j_x(x)$ имеет разрыв на границе висмут – вакуум, что отвечает наводимому на поверхности заряду. В то же время обе компоненты тока в скин-слое создают возмущение заряда. Таким образом, выражение для возмущения концентрации записывается в следующем виде:

$$\delta n = -\frac{en_0 \exp(-ik_z z)}{\omega_0^2 - i\nu_f \omega_0} \left\{ \frac{E_x|_{x=0}}{m_x} \left[-\delta(x) - ik_x \exp(-ik_x x) \right] - ik_z \exp(-ik_x x) \frac{E_z|_{x=0}}{m_z} \right\},$$
(8)

где $k_x = k_0 \sqrt{-\varepsilon}$; $k_z = k_0 \cos \alpha$. Продольный низкочастотный ток может быть получен путем усреднения произведения концентрации и продольной скорости электронов по оптическому периоду. Далее мы будем рассматривать только продольный нелинейный ток, т.к. именно он вносит основной вклад в излучение с поверхности висмута

при конфигурациях эффективных масс (т.е. ориентациях кристалла), соответствующих максимальной эффективности генерации ТГц излучения.

Подставляя значения электрических полей на поверхности висмута в выражение (8), после усреднения получаем окончательно следующее выражение для плотности продольного тока в скин-слое:

$$j_{z\,\text{THz}} = -\frac{e^3 |E_0|^2 n_0 \sin^2 \alpha |1 - R|^2 \exp(2x \,\text{Im} \,k_x)}{2cm_z(\omega_0^2 + v_f^2)} \\ \times \left\{ \frac{1}{m_x} \left[\delta(x) \,\frac{\text{Im} \,k_x}{k_0^2 \,|\varepsilon(\omega_0)|} - 1 \right] + \frac{1}{m_z} \right\}.$$
(9)

Интегрируя (9) по глубине скин-слоя, находим выражение для поверхностного тока:

$$J_{\text{surf}} = -\frac{e^3 |E_0|^2 n_0 \sin^2 \alpha \cos \alpha |1 - R|^2}{4cm_z (\omega_0^2 + v_f^2) \operatorname{Im} k_x} \times \left\{ \frac{1}{m_x} \left[\frac{(\operatorname{Im} k_x)^2}{k_0^2 |\varepsilon(\omega_0)|} - 1 \right] + \frac{1}{m_z} \right\}.$$
 (10)

В случае фемтосекундного лазерного импульса, длина которого много меньше его поперечного размера, нелинейный ток будет появляться в области перекрытия падающего и отраженного оптического излучения, распространяясь вдоль поверхности полуметалла. Временная форма тока (10) будет определяться огибающей лазерного импульса.

Поверхностный ток J_{surf} , «пробегающий» со сверхсветовой скоростью по границе раздела вакуума и полуметалла (среда с бо́льшим по модулю ε) возбуждает внутри материала систему объемных низкочастотных токов. Будем считать, что ток создается наклонно падающим лазерным импульсом с достаточно большим поперечным размером, поэтому величина J_{surf} зависит только от бегущей координаты $\xi = t - (z \cos \alpha)/c$. Такая геометрия соответствует типичным экспериментальным условиям при генерации ТГц излучения на поверхности металла [2–4, 8]. Поскольку скорость движения данного источника больше скорости света, создаваемое им излучение имеет черенковский характер.

4. Электромагнитное излучение поверхностного тока

Рассмотрим решение задачи об излучении найденного поверхностного тока. Для описания излучения запишем уравнения Максвелла с источником поверхностного тока S(t):

$$\frac{\partial H}{\partial t} = -c \operatorname{rot} E,\tag{11}$$

$$\frac{\partial E}{\partial t} = c \operatorname{rot} \boldsymbol{H} - 4\pi \frac{\partial \boldsymbol{P}}{\partial t} - 4\pi \boldsymbol{j}, \qquad (12)$$

$$\frac{\partial^2 \boldsymbol{P}}{\partial t^2} + v_{\rm b} \frac{\partial \boldsymbol{P}}{\partial t} + \omega_{\rm b}^2 \boldsymbol{P} = \beta \boldsymbol{E},\tag{13}$$

$$\frac{\partial \boldsymbol{j}}{\partial t} + v_{\rm f} \boldsymbol{j} = e^2 \hat{M}_{\rm f}^{-1} n_0 \boldsymbol{E} + \boldsymbol{S}(t) \delta(x).$$
(14)

Переходя к задаче нахождения полей черенковского излучения, сделаем замену $z \rightarrow z - Vt$ ($c/\cos \alpha = V$) и будем искать стационарное решение ($\partial/\partial t = 0$). С учетом значения диэлектрической проницаемости висмута, чтобы не загромождать выкладки, в уравнении (12) можно пренебречь левой частью. Тогда получим следующую систему уравнений для электромагнитных полей внутри висмута (-L < x < 0):

$$\frac{V}{c}\frac{\partial H_y}{\partial z} = \frac{\partial E_z}{\partial x},\tag{15}$$

$$\frac{\partial H_y}{\partial x} = 4\pi \frac{V}{c} \frac{\partial P_z}{\partial z} + \frac{4\pi}{c} j_z, \tag{16}$$

$$V^{2} \frac{\partial^{2} P_{z}}{\partial z^{2}} + v_{b} V \frac{\partial P_{z}}{\partial z} + \omega_{b}^{2} P_{z} = \beta E_{z}, \qquad (17)$$

$$V\frac{\partial j_z}{\partial z} + v_{\rm f} j_z = \frac{e^2}{m_z} n_0 E_z.$$
(18)

В системе отсутствуют уравнения для поперечных компонент, т.к. при исключении слагаемого ($\partial E_x/\partial z$) в уравнении (11) система замыкается. После расчета полей излучения мы вернемся к условиям применимости сделанного приближения.

На поверхности висмута (в окрестности x = 0) для плотности тока будем иметь выражение

$$V\frac{\partial j_z}{\partial z} + v_{\rm f} j_z = S(z/V)\delta(x). \tag{19}$$

Переходя в (15)–(18) к фурье-представлению вдоль координаты *z* и разрешая полученную систему относительно магнитного поля, получаем уравнение

$$\frac{\partial^2 H_y}{\partial x^2} = -\chi H_y,\tag{20}$$

$$\chi = \frac{1}{c^2} \left(\frac{4\pi\beta V^2 k_z^2}{-V^2 k_z^2 + v_b V i k_z + \omega_b^2} - \frac{4\pi e^2 n_0}{m_0} \frac{V i k_z}{v_b + V i k_z} \right), \quad (21)$$

где *m*₀ – масса свободного электрона.

Граничные условия в случае слоя висмута, занимающего область -L < x < 0, выглядят следующим образом:

$$H_{y|_{x=-0}} - H_{y|_{x=+0}} = \frac{4\pi}{c} J_{\text{surf}},$$
(22)

$$H_{y|x=-L+0} - H_{y|x=-L-0} = 0.$$
 (23)

В вакууме для черенковского поля излучения можно записать выражения

$$H_{y}|_{x=+0} = -\frac{E_{z}|_{x=0}}{\sin\alpha},$$
(24)

$$H_{y}|_{x=-L-0} = \frac{E_{z}|_{x=-L}}{\sin \alpha}.$$
 (25)

Внутри висмута, в соответствии со сделанными приближениями, электрическое поле связано с магнитным следующим соотношением:

$$\frac{\partial H_y}{\partial x} = -\frac{c\chi}{Vik_z}E_z.$$
(26)

Используя граничные условия (22), (23) и связи между магнитным и электрическим полями на границах висмут–вакуум (24)–(26), с учетом непрерывности продольного электрического поля E_z можно получить линейную систему уравнений для коэффициентов общего решения для магнитного поля

$$H_{y} = A \exp(i\sqrt{\chi} x) + B \exp(-i\sqrt{\chi} x).$$
(27)

Решая эту систему уравнений, получаем следующие выражения для магнитного поля излучения над и под слоем висмута:

$$H_{y}|_{x=+0} = -\frac{1}{\sin\alpha} \frac{Vk_{z}}{c\sqrt{\chi}} (A - B), \qquad (28)$$

$$H_{y}|_{x=-L-0} = \frac{1}{\sin\alpha} \frac{Vk_{z}}{c\sqrt{\chi}} \left[A \exp(i\sqrt{\chi}L) - B \exp(-i\sqrt{\chi}L)\right], (29)$$

где

$$A = \frac{4\pi}{c} \frac{J_{\text{surf}}}{f_{-} - (f_{+}^{2}/f_{-})\exp(2i\sqrt{\chi}L)};$$

$$B = \frac{4\pi}{c} \frac{J_{\text{surf}}}{f_{+} - (f_{-}^{2}/f_{+})\exp(-2i\sqrt{\chi}L)};$$

$$f_{\pm} = 1 \pm \frac{k_{z}V}{c\sqrt{\chi}\sin\alpha}.$$

Возвращаясь к условиям применимости использованного в уравнении (11) приближения, отметим, что из выражения для поперечной компоненты векторного уравнения (12) по аналогии с (26) следует соотношение

$$E_x \sim \frac{c}{V} \frac{k_z^2 H_y}{\chi}.$$
(30)

Откуда очевидно, что

$$\frac{\partial H_y}{\partial z} = \frac{V}{c} \frac{\partial E_z}{\partial x} \gg \frac{V}{c} \frac{\partial E_x}{\partial z}.$$

В случае полупространства, занятого висмутом, решение, представленное выше, соответствует с точностью до малых поправок общему решению из работ [7,8]

$$E_z = \frac{4\pi}{c\sqrt{-\varepsilon_{\rm THz}}} j_{\rm surf},\tag{31}$$

где *ε*_{THz} – диэлектрическая проницаемость в ТГц диапазоне частот. Магнитное поле над поверхностью металла (в вакууме) может быть найдено из уравнений Максвелла:

$$H_y = \frac{E_z}{\sin \alpha} \,. \tag{32}$$

Поток энергии низкочастотного излучения с единицы поверхности (т.е. нормальная компонента вектора Пойнтинга)

$$S_{x} = \frac{c}{4\pi} E_{z} H_{y}^{*} = \frac{4\pi}{c |\varepsilon_{\text{THz}}| \sin \alpha} |j_{\text{surf}}|^{2}.$$
 (33)

Для оценки предположим, что падающий оптический импульс имеет гауссову огибающую по радиальной координате и по времени, т. е. его интенсивность на поверхности образца пропорциональна

$$|E|^{2} = E_{0}^{2} \exp\left(-\frac{y^{2}}{a^{2}} - \frac{z^{2}}{a_{z}^{2}} - \frac{\xi^{2}}{T^{2}}\right),$$
(34)

где a – поперечный размер лазерного пучка; T – длительность лазерного импульса, причем $cT \ll a$; $a_z = a/\sin \alpha$. В соответствии с условием черенковского синхронизма низкочастотное излучение будет сосредоточено в направлении отражения лазерного пучка. Интегрируя по времени и по площади поверхности поток энергии (33), можно вычислить полную энергию, излученную в виде низкочастотного импульса при отражении оптического излучения от полуметалла:

$$W_{\rm Bi} \simeq \frac{e^6 E_0^4 n_0^2}{c \, |\varepsilon| \, \omega_0^6} \, a^2 \, T \left(\frac{0.77}{m_x m_z} + \frac{1}{m_z^2} \right)^2 \\ \times \frac{\sin^2 \alpha \cos^2 \alpha}{(1 + 4 \sin \alpha + 29 \sin^2 \alpha)^2} \,. \tag{35}$$

Как видно из формулы (35), энергия низкочастотного отклика должна сильно зависеть от ориентации монокристаллического образца (которая определяет величину эффективных масс m_z и m_x).

Полученные выше аналитические результаты сравнивались с численным решением задачи Коши, описывающей падение и отражение лазерного импульса, формирование низкочастотных нелинейных токов и их излучение в виде ТГц импульсов. Моделирование проводилось до достижения стационарного состояния, соответствующего черенковскому режиму генерации и исключающего эффекты включения (подробности см. в Приложении). Результаты моделирования для угла падения $\alpha = 33.5^{\circ}$ представлены на рис.1. При численном моделировании использовался достаточно тонкий слой висмута с толщиной $\lambda_0/3$, где λ_0 – длина волны оптического импульса.

Наилучшее совпадение численного решения с аналитическим для излученного низкочастотного поля достигается при наибольшей поперечной эффективной массе электронов. В этом случае излучение может быть описано только продольными токами. В табл.1 представлена рассчитанная эффективность генерации для различных расположений осей кристалла по отношению к плоско-

Табл.1. Энергия ТГц излучения (в отн. ед.) для различных комбинаций эффективных масс электрона по осям *x* и *z*, полученная при численном моделировании в рамках полной системы уравнений гидродинамики электронного газа. Рассмотрена пластинка конечной толщины, ТГц сигналы с верхней и нижней поверхностей просуммированы.

m_0/m_z	m_0/m_x		
	3.84	200	1000
3.84	_	1.15×10 ⁻⁵	2.15×10^{-3}
200	3.3×10^{-3}	_	3.12×10^{-1}
1000	1.88	2.25	-

Рис.1. Форма излученного ТГц сигнала с верхней и нижней поверхностей пластинки висмута конечной толщины при $m_0/m_x = 3.84$, $m_0/m_z = 1000$ (*a*) и $m_0/m_x = 200$, $m_0/m_z = 1000$ (*б*). Сплошные кривые отображают результаты численного моделирования полной системы нелинейных гидродинамических уравнений, штриховые кривые соответствует аналитическому решению, штрих-пунктирные – численному моделированию с заданным тангенциальным источником тока (7).

сти падения. Видно, что наибольшая эффективность генерации достигается, когда наименьшая эффективная масса электронов соответствует направлению, определяемому пересечением плоскости падения с поверхностью образца.

Сравним энергию низкочастотного излучения (35) для висмута с энергией излучения с поверхности хорошо проводящего металла (золото, медь, алюминий и др.). При оптимальном угле падения лазерного импульса на металл полная энергия ТГц отклика, обусловленного мгновенной квадратичной нелинейностью, описывается следующим выражением [7]:

$$W_{\rm m} = \frac{9}{32} \sqrt{\pi/2} \, \frac{e^2}{m_0^2} \frac{a^2}{\omega_0^2 \omega_{\rm m}^2 c T} \, E_0^4, \tag{36}$$

где $\omega_{\rm m}$ – плазменная частота электронов в металле. Отношение энергий (35) и (36) для характерной плазменной частоты металла $\omega_{\rm m} \simeq 20-30~{\rm dc}^{-1}$ при длительности лазерного импульса 50 фс

$$\frac{W_{\rm Bi}}{W_{\rm m}} \simeq 10^4. \tag{37}$$

Таким образом, при переходе к полуметаллам следует ожидать значительного увеличения энергии генерируемого низкочастотного излучения из-за существенного уменьшения эффективной массы электрона в кристалле. Кроме того, степень экранировки оптического и низкочастотного излучений внутри полуметалла (пропорциональная $|\varepsilon|^{-3}|\varepsilon_{\text{THz}}|^{-1}$) может оказаться меньше, чем в нормальном металле (где она пропорциональна ($\omega_{\rm m}T$)⁻²).

5. Заключение

В настоящей работе предложена теоретическая модель генерации ТГц излучения при воздействии на поверхность полуметалла фемтосекундного лазерного импульса. Рассмотренный механизм является обобщением механизма мгновенного квадратичного отклика металлов, проанализированного в работах [5, 7].

Показано, что при переходе от хорошо проводящих металлов к полуметаллам следует ожидать значительного увеличения амплитуды низкочастотного отклика (37) за счет снижения эффективной массы носителя заряда и ослабления экранировки электромагнитных полей. Кроме того, модель предсказывает сильную зависимость энергии ТГц сигнала от эффективных масс электрона по направлениям *x* и *z* (35), т. е. от ориентации монокристаллического образца.

Авторы выражают благодарность В.Я.Алёшкину, А.М.Сатанину и А.А.Балакину за полезные обсуждения содержания работы и помощь в подготовке рукописи.

Работа поддержана РФФИ (гранты №16-32-00717, 16-02-01078 и 14-22-02034).

Приложение. Численное моделирование

Для численного расчета задачи об излучении ТГц импульсов был модифицирован подход, разработанный ранее для металлов в работе [7]. В этом подходе рассчитывается задача Коши с источником, моделирующим падение оптического импульса с плоским волновым фронтом на поверхность. Расчет ведется до установления стационарной картины черенковского излучения. При численном моделировании учитываются как гидродинамические нелинейности, появляющиеся из слагаемого $(v\nabla)v$, так и нелинейности, связанные с действием магнитного поля и с неоднородностью концентрации свободных носителей, возникающей под действием лазерного поля. При этом учитывается также наличие у электронного газа температуры T_{0 eff}, соответствующей энергии Ферми в висмуте. Для учета влияния связанных электронов в модель [7] было добавлено уравнение, описывающее поляризацию:

$$\frac{\partial H}{\partial t} = -c \operatorname{rot} E,$$

$$\frac{\partial E}{\partial t} = c \operatorname{rot} H - 4\pi \frac{\partial P}{\partial t} - 4\pi j,$$

$$\frac{\partial^2 P}{\partial t^2} + v_b \frac{\partial P}{\partial t} + \omega_b^2 P = \beta E,$$

$$\frac{\partial n}{\partial t} = -\frac{1}{e} \operatorname{div} j,$$

$$\frac{\partial j}{\partial t} + v_f j = \frac{1}{n} [(j\nabla)j - v \operatorname{div} j] + e^2 \hat{M}_f^{-1} n E$$

$$+ \frac{e}{c} \hat{M}_f^{-1} j \times B + T_{\text{oeff}} \nabla n,$$

где *v* – скорость упорядоченного движения свободных электронов.

Второе уравнение гидродинамики для тока свободных электронов было модифицировано введением анизотропной массы свободных носителей, описываемых тензором эффективных масс $\hat{M}_{\rm f}$. Система решалась тем же способом, что и в работе [7]. Уравнение для поляризации интегрировалось неявным методом. Переписывая (4) в виде обыкновенного дифференциального уравнения первого порядка для вектора (P, Q), где $Q = \dot{P}$, и используя значения данных величин в разные моменты времени: $p_i = P(t_i), q_i = Q(t_i - dt/2)$, получаем следующую алгебраическую систему:

$$q_{i+1} - q_i + \frac{v_{\mathrm{b}}}{2}(q_{i+1} + q_i)\mathrm{d}t = (-\omega_{\mathrm{b}}^2 p_i + \beta E_i)\mathrm{d}t,$$
$$p_{i+1} - p_i = q_{i+1}\mathrm{d}t.$$

Видно, что величины p_{i+1} и q_{i+1} могут быть явно вычислены по значениям p_i и q_i . Расчет величины q_{i+1} проводился

до расчета электрического поля $E_{i+1} = E(t_i + dt)$.

- Hilton D.J., Averitt R.D., Meserole C.A., et al. Opt. Lett., 29, 1805 (2004).
- 2. Kadlec F., Kuzel P., Coutaz J.-L. Opt. Lett., 29, 2674 (2004).
- 3. Kadlec F., Kuzel P., Coutaz J.-L. Opt. Lett., 30, 1402 (2005).
- Suvorov E.V., Akhmedzhanov R.A., Fadeev D.A., et al. *Opt. Lett.*, 37, 2520 (2012).
- 5. Урюпин С.А., Фролов А.А. ЖЭТФ, 141, 1006 (2012).
- Урюпин С.А., Фролов А.А. Квантовая электроника, 44 (9), 866 (2014).
- Миронов В.А., Оладышкин И.В., Суворов Е.В., Фадеев Д.А. ЖЭТФ, 146 (2), 211 (2014).
- Ахмеджанов Р.А., Иляков И.Е., Миронов В.А., Оладышкин И.В., Суворов Е.В., Фадеев Д.А., Шишкин Б.В. Изв. вузов. Сер. Радиофизика, 57 (11), 902 (2014).
- Oladyshkin I.V., Fadeev D.A., Mironov V.A. J. Opt., 17, 075502 (2015).
 Поверхностные поляритоны. Сборник статей. Под ред. В.М.Аграновича, Д.Д.Миллса (М.: Наука, 1985).
- Мамонова М.А., Прудников В.В., Прудникова И.А. Физика поверхности. Теоретические модели и экспериментальные методы (М.: Физматлит, 2011).
- 12. Оладышкин И.В. *Письма в ЖЭТФ*, **103**, 495 (2016).
- Фальковский Л.А. УФН, 94, 3 (1968).
- 14. Эдельман В.С. *УФН*, **123**, 257 (1977).
- Madelung O. Semiconductors: Data Handbook (New York: Springer-Verlag, 2003).
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред (М.: Наука, 1982).