Вариация структуры спектра нестационарного ВКР в воде, подвергнутой микрофильтрации

В.А.Бабенко, Н.Ф. Бункин, А.А.Сычев

Проведены исследования нестационарного вынужденного комбинационного рассеяния света в воде, подвергнутой структурной перестройке методом трековой мембранной микрофильтрации. Показано, что вероятность возникновения ВКР на частоте спектральной компоненты льда в полосе валентных ОН-колебаний молекул воды уменьшается при ее фильтрации.

Ключевые слова: структура воды, молекулярные комплексы, нелинейное рассеяние света.

1. Введение

Вода представляет собой сложную конфигурацию из различных структурных элементов, возникающих в результате межмолекулярных взаимодействий и, в частности, водородной связи. Согласно современным представлениям, вода в жидком состоянии является смесью льдоподобных структур (гексагональный лед Ih), алмазоподобных тетрамерных структур и малоразмерных комплексов (димеры, тримеры и пр.), а также мономеров воды. Существование структур гексагонального льда Ih в жидкой воде было обнаружено в работе [1] в ходе спектроскопического анализа малоуглового рассеяния рентгеновских синхротронных пучков в объеме воды и подробно описано в работе [2]. Аналогичный вывод был сделан и в работе [3] при спектроскопическом исследовании спонтанного комбинационного рассеяния света в воде. Было установлено, что вплоть до температуры кипения в воде существуют молекулярные комплексы с частотами колебаний ~3600 и 3450 см⁻¹, а также с частотой \sim 3200 см⁻¹, характерной для льдоподобных гексамеров. В работе [4] при генерации суммарной частоты в отраженном излучении в случае воздействия на поверхность воды двух разночастотных лазерных импульсов было установлено существование у ее поверхности фракции, характерной для структуры льда (характерная частота ~3200 см⁻¹). Аналогичный результат при генерации второй гармоники в случае отражения от поверхности воды был получен в работе [5], в которой отмечалось отсутствие центросимметричности воды в поверхностном слое, вызванное выстраиванием молекул на пограничном слое «воздух-вода». Следует

Поступила в редакцию 24 мая 2017 г., после доработки – 6 июля 2017 г.

3 Квантовая электроника, т. 47, № 10

отметить также, что существование как минимум двух характерных структурных фракций в воде было установлено и в работе Вальрафена [6] по наличию изобестической точки в спектре спонтанного комбинационного рассеяния (КР) при вариации температуры. Спектр КР в полосе частот 3200-3600 см⁻¹ соответствует валентным ОН-колебаниям молекул воды. Сам спектр представляет собой широкую полосу со слабовыраженной структурой, определяемой молекулами, входящими в различные структурные комплексы воды. Компьютерный анализ этой полосы позволил найти компоненты с частотами ~3247, 3435, 3535 и 3622 см⁻¹. В дальнейшем авторы работы [7] впервые предложили для более детального исследования структуры молекулярных комплексов использовать процесс ВКР в воде.

Однако эксперименты по наблюдению ВКР в воде [7-10] при возбуждении излучением цуга ультракоротких лазерных импульсов показали, что характеристики ВКР описываются с позиций макроскопической теории, представляющей параметры среды как результат усреднения вкладов различных молекулярных комплексов, входящих в ансамбль. Вместе с тем, как известно, характерные времена их структурных перестроек лежат в пикосекундном диапазоне длительностей. Так, например, время жизни водородной связи, оцененное по степени деполяризации рэлеевского рассеяния [11], составляет при комнатной температуре ~0.5 пс, а время ориентационной перестройки молекул равно ~1 пс [12]. Разнообразие молекулярных структур в воде в значительной степени определяется наличием водородной связи между отдельными молекулами, а также взаимодействием молекул в пограничных слоях поверхности раздела «воздух-вода». Учитывая малые времена перестройки молекулярных комплексов, представляется возможным выявить особенности микроскопической структуры воды методом ВКР в поле принципиально одиночного ультракороткого лазерного импульса.

В последнее время объектом пристального внимания при изучении структуры воды стали газовые нанообъекты – бабстоны [13,14]. Бабстон (bubble stabilized by ions) – это относительно устойчивый газовый пузырек размером 10–100 нм, механическая устойчивость которого обусловлена балансом сжимающих сил поверхностного на-

В.А.Бабенко. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп.,53

Н.Ф.Бункин. Московский государственный технический университет им. Н.Э Баумана, Россия, 105005 Москва, Вторая Бауманская ул., 5

А.А.Сычев. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп.,53; Московский государственный технический университет им. Н.Э Баумана, Россия, 105005 Москва, Вторая Бауманская ул., 5; e-mail: sychev4@yandex.ru

тяжения и растягивающих кулоновских сил, связанных с тем, что в оболочку бабстонов специфически адсорбированы ионы определенного типа. Как показано в работе [15], ими чаще всего являются анионы электролита. Они имеют одинаковый знак, и это приводит к появлению пондемоторной силы, растягивающей пузырек. Внешнюю оболочку бабстона формируют катионы, находящиеся в растворе. В целом бабстон с двойным электрическим слоем оболочки ионов представляет собой электронейтральный комплекс, что было подтверждено в [15] в результате теоретических расчетов плотности зарядов в окрестности бабстона с использованием теории Пуассона-Больцмана. Помимо этого прямым доказательством существования бабстонов в водных растворах стала их регистрация методом фазовой микроскопии [16]. В результате специфического взаимодействия, а именно коагуляции друг с другом, эти наноразмерные бабстоны могут образовывать так называемые бабстонные кластеры с характерным размером ~1 мкм.

В химически чистой воде бабстоны стабилизируются отрицательно заряженными анионами ОН⁻, адсорбированными на их внутренних поверхностях [17]. При этом в результате адсорбции ионов ОН⁻ на поверхности бабстонов возможно выстраивание ионов воды в некоторую упорядоченную структуру, по-видимому, аналогичную структуре, возникающей на границе поверхности «воздух-вода».

Целью настоящей работы являлась попытка описания микроскопической структуры воды, для чего, учитывая динамичный характер ее молекулярных структур и малое время их перестройки, исследовались особенности ВКР в воде в поле одиночного ультракороткого импульса пикосекундного диапазона длительности.

2. Экспериментальная установка и методика эксперимента

Исходным излучением было излучение одиночного импульса второй оптической гармоники ($\lambda = 532$ нм) с длительностью 15 пс, преобразованного из импульса, выделенного из цуга импульсов YAG:Nd³⁺-лазера ($\lambda = 1064$ нм) с пассивным затвором.

Для наблюдения нелинейного рассеяния в воде была создана лазерная установка на основе активного элемента YAG: Nd³⁺ с пассивным затвором, генерирующая лазерные импульсы пикосекундной длительности. Принципиальная схема экспериментальной установки представлена на рис. 1. Резонатор задающего генератора был сформирован концевыми зеркалами 31 и 32, поворотным зеркалом 33 и поляризационной призмой П. «Глухое» зеркало 31 (коэффициент отражения R = 100%) имело радиус кривизны 2.5 м. Использование такого зеркала позволяло получать устойчивую генерацию моды TEM_{00q}. Концевое зеркало 32 представляло собой кювету с пассивным затвором с красителем № 3262 в ортодихлорбензоле на плоском зеркале (*R* = 100%). Стабильная генерация в лазере УКИ длительностью ~20 пс осуществлялась за счет реализации режима генерации, при котором насыщение усиления активной среды совпадало по времени с просветлением пассивного затвора (так называемый режим второго порога генерации) [18].

Исходная вертикальная поляризация излучения лазера обеспечивалась поляризационной призмой П на основе кристалла DKDP. Для выделения из цуга импульсов

Рис.1. Схема установки для регистрации нелинейного рассеяния света в воде:

АЭ – активный элемент YAG: Nd³⁺ диаметром 4 мм и длиной 73 мм; 31 – «глухое» зеркало (R = 100%); 32 – кювета с пассивным затвором на зеркале (R = 100%); П – поляризационная призма; М – электрооптический модулятор (кристалл DKDP); Д – диафрагма диаметром 2.5 мм; 34–37 – поворотные зеркала (R = 100%); УК – усилительный каскад (кристалл YAG: Nd³⁺ диаметром 6 мм и длиной 80 мм); ФЭР – фотоэлектронный регистратор; Л1 – линза с $F_1 = 100$ мм; Л2 – линза с $F_2 = 30$ мм; Ф1 – фильтр, отсекающий возбуждающее излучение второй оптической гармоники с $\lambda = 532$ нм; ФЗ – фильтр, пропускающий только излучение с $\lambda = 1064$ нм; ФП – фотоприемник; СП – спектральный прибор.

генерации одиночного УКИ использовался электрооптический модулятор М. При подаче на модулятор высоковольтного электрического импульса с длительностью, равной аксиальному периоду излучения лазера, происходил поворот плоскости поляризации лазерного излучения на 90°. Такое излучение выводилось из резонатора поляризационной призмой П. С помощью поворотных зеркал 34 и 36 излучение одиночного импульса направлялось в усилительный каскад УК. Максимальная энергия одиночного УКИ излучения с $\lambda = 1064$ нм, средней длительностью ~ 20 пс и шириной спектра ~ 0.8 см⁻¹ после усиления составляла 3 мДж. Диаметр выходного пучка равнялся 1 мм. Далее это излучение с помощью кристалла KDP преобразовывалось в излучение второй гармоники ($\lambda = 532$ нм), отфильтровывалось фильтром Ф1 и фокусировалось линзой Л1 с фокусным расстоянием $F_1 = 100$ мм в кювету К с водой (длина кюветы 20 мм). Форма импульса излучения второй гармоники регистрировалась с помощью фотоэлектронного регистратора ФЭР с временным разрешением 6 пс. На рис.2 приведена типичная фэрограмма УКИ излучения длительностью 15 пс (λ = 532 нм), полученного в описанной установке.

Излучение видимого диапазона, выходящее из кюветы К с водой в направлении распространения лазерного излучения, фокусировалось линзой Л2 на входную щель мини-спектрометра СП со спектральным разрешением $\delta v = 20 \text{ см}^{-1}$. В дополнение к исследованию спектров нелинейного рассеяния в направлении лазерного излучения с помощью фотоприемника ФП проводилась регистрация рассеянного излучения из трека под углом 90° к падающему пучку.

Исследования были выполнены на деионизованной воде с удельным сопротивлением 5 МОм · см, очищенной

Рис.2. Фэрограмма УКИ второй гармоники (λ = 532 нм).

от твердых микрочастиц и внешних ионогенных примесей. Вместе с тем источниками негомогенности такой воды, как уже отмечалось, могут являться бабстонные кластеры - стабильные частицы, состоящие из бабстонов, которые могут приводить к дополнительному структурированию молекул воды на границе «воздух – вода» с образованием льдоподобной структуры. В свою очередь бабстонные кластеры, а также бабстоны могут стать причиной дополнительного рассеяния света, значительно превышающего уровень рэлеевского рассеяния света на молекулах воды. Вместе с тем добиться уменьшения количества бабстонов и их кластеров, как оказалось, можно было с помощью примененной нами методики трековой мембранной микрокапиллярной фильтрации. Мембранная пластина толщиной 15 мкм обладала множеством треков с диаметром отверстий ~0.4 мкм. На рис.3 приведена зависимость интенсивности света, рассеянного в подвергнутой такой фильтрации воде, от времени фильтрации. Начальный уровень интенсивности соответствовал воде, находящейся долгое время в контакте с атмосферой (не менее 24 ч). Видно, что при такой микрокапиллярной фильтрации в режиме капельного протекания воды через кювету в отсутствие контакта с атмосферой интенсивность света, рассеянного в воде, уменьшилась более чем в десять раз. Вода становилась оптически более однородной, с пониженной концентрацией бабстонов, в ней отсутствовали визуально наблюдаемые центры рассеяния - воздушные пузыри микронного размера. Таким образом, методика трековой мембранной микрофильтрации позволила провести исследования как воды, долгое время находящейся в контакте с атмосферой и содержащей бабстоны и бабстонные кластеры, так и воды, в значительной степени лишенной этих компонентов в результате микрофильтрации.

Эксперименты по наблюдению ВКР как в фильтрованной воде, так и в воде, находящейся в контакте с атмосферой, показали, что ВКР возникает на молекулярных валентных ОН-колебаниях в частотном диапазоне 3200–3500 см⁻¹. При этом независимо от превышения уровня накачки над пороговым значением имеет место только процесс «ВКР–вперед». Тот факт, что в наших условиях возбуждения ВКР одиночным пикосекундным импульсом длительностью $\Delta t \approx 15$ пс ВКР в воде реализуется только в виде этого процесса, означает, что само формирование ВКР имеет нестационарный характер, когда $v\Delta t \leq l (l - длина перетяжки в каустике линзы, v – ско-$

Рис.3. Интенсивность света, рассеянного в подвергнутой трековой мембранной микрокапиллярной фильтрации воде, в зависимости от времени фильтрации ($T \ge 0$). Начальный уровень интенсивности ($T \le 0$) соответствует воде, долгое время находящейся в контакте с атмосферой.

рость света в воде). На рис.4 показана картина излучения ВКР в дальней зоне, снятая в фокусе линзы. Видно, что расходимость этого излучения не превышает 35 мрад.

Первые эксперименты по исследованию спектров ВКР на пороге его возникновения были выполнены с водой, находящейся в контакте с атмосферой. На рис.5 представлены характерные спектры ВКР в такой воде. Каждый из них регистрировался при возбуждении ВКР одиночным УКИ. Видно, что спектр ВКР в каждом случае представляет собой одиночные линии, частоты которых изменяются от импульса к импульсу, а диапазон частот возникающего ВКР излучения лежит в пределах контура спектра спонтанного КР света на валентных ОН-колебаниях молекул воды (v = 3000 - 3700 см⁻¹).

Спектр КР света, регистрируемый в области валентных ОН-колебаний молекул воды, обычно представляет собой набор усредненных по времени и по ансамблю контуров отдельных структурных комплексов молекул типа

Рис.4. Картина излучения ВКР в воде, снятая в дальней зоне на пороге возникновения ВКР под действием пикосекундного импульса длительностью 15 пс.

Рис.5. Спектры ВКР, полученные при его возбуждении одиночными пикосекундными импульсами в воде, находящейся в контакте с атмосферой. Точки – сигналы с приемных элементов многоканальной регистрирующей матрицы со спектральным шагом ~6 см⁻¹/канал (погрешность измерения менее 10% от величины измеряемого сигнала), сплошные кривые – контуры спонтанного комбинационного рассеяния в области валентных ОН-колебаний (по данным работы [6]).

гексагонального льда Ih, тетрамерных и малоразмерных объектов (типа димеров, тримеров и т.п.), а также мономеров воды. Такое неоднородное уширение линии КР света отражает распределение колебательных частот самих молекулярных комплексов и неоднородность их локального окружения. Вместе с тем динамика структурных изменений, происходящих, главным образом, при перестройке водородной связи между молекулами воды, приводит к изменению мгновенного распределения колебательных частот, что характерно для динамического неоднородного уширения. И поскольку такие флуктуации происходят в пикосекундном временном диапазоне, их регистрация возможна при наблюдении спектров ВКР, возбуждаемых одиночными пикосекундными импульсами. В нашем случае ВКР света в воде формируется за время $\Delta t = 15$ пс ($\lambda = 532$ нм). Как следует из рис.5, спектры ВКР в воде, находящейся в контакте с атмосферой, при возбуждении одиночными пикосекундными импульсами возникают на различных частотах.

На рис.6, *а* приведена гистограмма частот линий в спектрах ВКР в воде, контактирующей с атмосферой. Эта гистограмма характеризует вероятность возникновения ВКР на различных частотах за серию вспышек. Интервал выборки частот и статистического усреднения составлял 20 см⁻¹. Как следует из рис.6, *а*, наибольшей вероятностью возникновения обладает излучение ВКР с частотой $v \approx 3400$ см⁻¹ в области максимума спектра спонтанного КР. Вместе с тем обращает на себя внимание

Рис.6. Гистограммы числа реализаций N частот линий в спектрах ВКР в воде, находящейся в контакте с атмосферой (*a*), и в воде, подвергнутой трековой мембранной микрофильтрации (*б*). Каждый спектр получен при возбуждении ВКР одиночным пикосекундным импульсом излучения с $\lambda = 532$ нм. Сплошные кривые – контуры спонтанного КР в области валентных ОН-колебаний (по данным работы [6]).

возникновение ВКР вблизи области частот $v \approx 3200$ см⁻¹, характерной для льдоподобных гексамеров. В соответствии с нашей гипотезой образование этих структур связано с наличием в воде бабстонов и бабстонных кластеров. Значительного уменьшения этих объектов оказалось возможным достичь в результате применения методики микрокапиллярной фильтрации (см. рис.3). Принцип такой фильтрации состоит в медленном прохождении воды через большое число микрокапилляров. Полученная таким образом вода плавно протекала через кювету К, и дальнейшие исследования ВКР проводились на такой фильтрованной (капиллярной) воде.

Соответствующая гистограмма частот линий в спектрах ВКР в фильтрованной воде показана на рис.6, б. Как и в случае воды, находящейся в контакте с атмосферой, спектр ВКР воды, подвергнутой микрокапиллярной фильтрации, на пороге возникновения ВКР представлял собой одиночную линию. Максимальная вероятность возникновения ВКР по-прежнему приходилась на область частот вблизи $v \approx 3400 \text{ см}^{-1}$. Однако излучения ВКР на частотах $v \approx 3200 \text{ см}^{-1}$ зарегистрировано не было. Это обстоятельство, а также значительное уменьшение интенсивности рассеянного света при микрофильтрации воды (см. рис.3) подтверждает наше предположение о связи гексамерной структуры воды, характерной для льда, с присутствием в ней бабстонов и бабстонных кластеров. Поэтому микрокапиллярная фильтрация воды и, как следствие, уменьшение концентрации ее гексагонального структурного элемента должны приводить к деформации контура спектра КР света. В этом случае следует ожидать уменьшения интенсивности низкочастотного крыла линии (*v* ≈ 3200 см⁻¹) спонтанного КР света и, следовательно, возрастания интенсивности ее высокочастотного крыла ($v \approx$ 3400-3500 см⁻¹). Такая деформация спектра КР в воде должна приводить к увеличению коэффициента усиления ВКР на частотах, соответствующих колебаниям малоразмерных комплексов, а значит, к снижению порога возникновения ВКР на этих частотах.

Для проверки данного утверждения были определены пороговые энергии возникновения ВКР в воде разного состава (рис.7). Как и следовало ожидать, энергия, при которой ВКР возникает в воде, подвергнутой микрокапиллярной фильтрации, оказалась практически в два раза ниже, чем в случае контакта воды с атмосферой. Полученный результат показал, что переформатирование молекулярной структуры воды позволяет получить воду с низким порогом возникновения ВКР.

В дополнение к результатам, полученным при исследовании капиллярной воды, особый интерес представляло исследование такой воды на предмет оптического пробоя в поле УКИ на основной частоте YAG: Nd³⁺-лазера $(\lambda = 1064 \text{ нм})$. Для этого на исследуемую кювету К с водой (см. рис.1) через фокусирующую линзу Л1 после удаления фильтра Ф1 направлялся одиночный импульс длительностью 20 пс только на основной длине волны ($\lambda = 1064$ нм) $YAG: Nd^{3+}$ -лазера. Сигнал S рассеянного в кювете излучения регистрировался под углом 90° к падающему пучку с помощью фотоприемника ФП. На рис.8 приведены зависимости сигнала рассеянного излучения от энергии падающего пикосекундного импульса для воды, длительное время контактирующей с атмосферой, и для воды, находящейся в процессе микрокапиллярной фильтрации. Об оптическом пробое воды свидетельствовало резкое возрастание сигнала рассеянного излучения из фокальной

Рис.7. Зависимости от энергии возбуждающего пикосекундного лазерного импульса интенсивности излучения ВКР, возникающего только в режиме «ВКР-вперед» в воде, находящейся в контакте с атмосферой (*a*), и в воде, подвергнутой трековой мембранной микрофильтрации (δ). Пороговые значения энергии возникновения сигнала ВКР отмечены стрелками.

области перетяжки лазерного излучения. Из рис.8 видно, что для капиллярной воды пороговая энергия пробоя $E_{\rm th} = 0.5$ мДж, что существенно больше, чем для воды, находящейся в контакте с атмосферой ($E_{\rm th} = 0.05$ мДж). Отсюда следует, что капиллярная вода обладает большей оптической прочностью, а в сочетании с более низким порогом возникновения ВКР она становится перспективным объектом исследования нелинейной оптики жидкости в сильных световых полях.

Таким образом, в настоящей работе показано, что метод исследования ВКР света в поле одиночного пикосекундного импульса позволяет выйти на микроскопическое описание структуры воды. В ходе исследования спектров ВКР были выявлены структурные особенности воды, находящейся в контакте с атмосферой, и воды, подвергнутой микрокапиллярной фильтрации. Выполненные эксперименты показали связь гексагональной структуры, характерной для льда и наблюдаемой в воде, с присутствием в ней бабстонов и бабстонных кластеров.

- Huang C., Wikfeldt K.T., TokushimaT., Nordlund D., Harada Y., et al. *Proc. Natl. Sci. USA*, **106** (36), 15214 (2009).
- 2. Nilsson A., Pettersson L.G.M. Chem. Phys., 389, 1 (2011).

Рис.8. Зависимости сигнала рассеяния от энергии возбуждающего пикосекундного импульса излучения на длине волны $\lambda = 1064$ нм в воде, длительное время контактирующей с атмосферой (*a*), и в воде, находящейся в процессе микрокапиллярной фильтрации (*б*).

- Першин С.М., Бункин А.Ф., Лукьянченко В.А. Квантовая электроника, 40, 1146 (2010) [Quantum Electron., 40, 1146 (2010)].
- Wei Xing, Miranda Paulo B., Shen Y.R. Phys. Rev. Lett., 86, 1554 (2001).
- Goh M.C., Hicks J.M., Kemnitz K., Pinto G.R., Bhattacharyya K., Eisenthal K.B., Heinz T.F. J. Phys. Chem., 92, 5074 (1988).
- 6. Walrafen G.E. J. Chem. Phys., 47, 114 (1967).
- 7. Colles M.J., Walrafen G.E., Wecht K.W. Chem. Phys. Lett., 4, 621 (1970).
- 8. Rahn O., Maier M., Kaiser W. Opt. Commun., 1, 109 (1969).
- Bespalov V.I., Kerevkin Yu.K., Pasmanik G.A. Opt. Spectrosc., 38, 643 (1975).
- 10. Sceats M., Rice S.A., Butler J.E. J. Chem. Phys., 63, 5390 (1975).
- Montrose C.J., Bucaro J.A., Marschall-Coakley J., Litovitz T.A. J. Chem. Phys., 60, 5025 (1974).
- Hindman J.C., Zielen A.J., Svirmickas A., Wood M. J. Chem. Phys., 54, 621 (1971).
- 13. Бункин Н.Ф., Бункин Ф.В. ЖЭТФ, 74, 271 (1992).
- Бабенко В.А., Бункин Н.Ф., Суязов Н.В., Сычев А.А. Квантовая электропика, 37 (9), 804 (2007) [Quantum Electron., 37 (9), 804 (2007)].
- Yurchenko S.O., Shkirin A.V., Ninham B.W., Sychev A.A., Babenko V.A., Penkov N.V., Kryuchkov N.P., Bunkin N.F. *Langmuir*, 32, 11245 (2016).
- Bunkin N.F., Shkirin A.V., Suyazov N.V., Babenko V.A., Sychev A.A., Penkov N.V., Belosludtsev K.N., Gudkov S.V. J. Phys. Chem. B, 120, 1291 (2016).
- Kelsall G.H., Tang S., Yurdakul S., Smith A., J. Chem. Soc., Faraday Trans., 92, 3887 (1996).
- 18. Babenko V.A., Sychev A.A. J. Rus. Laser Res., 20, 478 (1999).