О рентгеновском контрасте биологической наномикроскопии

И.А.Артюков, А.В.Виноградов, Н.Л.Попов

С целью проведения наномикроскопических исследований проанализирован абсорбционный контраст гистологических и цитологических препаратов при использовании монохроматического излучения в спектральной области 90 – 600 зВ (14 – 2 нм). Рассмотрены два типа биологических объектов: необработанные и фиксированные в парафине, и определены оптимальные длины волн при изучении образцов толщиной 0.5 – 10 мкм с пространственным разрешением 100 – 20 нм. С учётом эффективности рентгеновской оптики дана оценка числа фотонов источника, которое требуется для получения одного изображения. Показано, что наибольший интерес для исследования фиксированных объектов представляет спектральная область 7 – 14 нм, в которой на основе быстро развивающихся компактных источников некогерентного и когерентного излучения и эффективной оптики могут быть созданы микроскопы для научных и клинических исследований.

Ключевые слова: наномикроскопия, спектральный диапазон 2 – 14 нм, биологический объект, экспозиционная доза.

1. Введение

За последние два десятилетия рентгеновская микроскопия продемонстрировала впечатляющий прогресс благодаря развитию отражающих и дифракционных рентгенооптических элементов. Пространственное разрешение увеличилось по крайней мере в 100 раз и составляет порядка 10 нм во всём диапазоне от 100 эВ до 10 кэВ [1]. Эти рекордные результаты получены на самых совершенных перестраиваемых источниках рентгеновского излучения - синхротронах третьего поколения, число которых не достигает двух десятков [2]. Одновременно появились серийные рентгеновские микроскопы, позволяющие вести исследования наноматериалов с пространственным разрешением до 50 нм [3, 4], однако работать они могут на одной длине волны или на небольшом числе длин волн, ограниченном возможностями рентгеновских трубок. В связи с этим одной из самых актуальных задач, как и прежде, остаётся развитие компактных, желательно перестраиваемых источников излучения, доступных небольшим лабораториям и научным группам, для которых тем самым откроется возможность воспользоваться достижениями рентгеновской оптики, а также методами микроскопии, разработанными и опробованными на синхротронах третьего поколения [5, 6]. Выполнение этой задачи является одной из практических целей совершенствования лабораторных рентгеновских лазеров, генераторов коротковолновых гармоник ИК лазеров, некогерентных лазерно-плазменных рентгеновских источников и томсоновских лазерно-электронных генераторов [7].

И.А.Артюков, А.В.Виноградов, Н.Л.Попов. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: iart@sci.lebedev.ru, vinograd@sci.lebedev.ru, nlpopov@mail.ru

Поступила в редакцию 18 июня 2017 г.

В настоящей работе рассматривается спектральный диапазон 90 - 600 эВ, в котором уже имеется и используется ряд компактных источников рентгеновского излучения. Более того, это область резкого изменения сечения фотопоглощения живого вещества. В частности, в ней находятся скачки фотопоглощения элементов О, С, N и S, входящих в состав основных аминокислот и других биологических материалов. Наиболее удобным для микроскопии в этой области спектра считается диапазон водяного окна - спектральный интервал между скачками фотопоглощения кислорода и углерода (284 – 543 эВ). В нём обеспечивается наибольшая разность фотопоглощения этих элементов, т.е. наибольший контраст изображения биологических молекул, содержащих, в основном, углерод, на фоне воды, составляющей основу живой ткани [8,9]. Причём в отличие от других современных методов гистологического анализа необходимый для исследования образца контраст в рентгеновской микроскопии достигается без использования специальных красителей и контрастирующих веществ за счёт резонансного спектра фотопоглощения.

В работе [10] для исследования обезвоженных и фиксированных в парафине образцов было предложено использовать углеродное окно, примыкающее к водяному окну со стороны низких энергий. Несмотря на уменьшение контраста биологических молекул в этом случае, использование более мягкого, чем водяное окно, спектрального диапазона представляет интерес благодаря упомянутому выше быстрому развитию монохроматических когерентных и некогерентных источников монохроматического излучения. При этом следует иметь в виду два обстоятельства. С одной стороны, постоянно расширяется число длин волн, освоенных компактными монохроматическими источниками (лабораторные лазеры, генераторы гармоник, лазерная плазма) с энергией кванта вплоть до 100 эВ. С другой стороны, дальнейшее продвижение в коротковолновый диапазон наталкивается на значительные трудности.

В настоящей работе мы исследуем в диапазоне 90 – 600 эВ контраст биологических объектов, фиксированных с целью сохранения пространственной структуры. Фиксация достигается путём обезвоживания и замены воды на парафин [11]. Цель исследования – установить наиболее благоприятные длины волн источников для микроскопии фиксированных в парафине биологических объектов, а также оценить число рентгеновских фотонов источника, необходимое для получения одного изображения.

2. Модель для определения пространственного разрешения и экспозиционной дозы

Пусть биообъект с характерным размером δ заключён в слое фиксирующего материала толщиной L (рис.1). Качество изображения, получаемого в монохроматическом пучке, характеризуется величиной контрастного отношения CNR. Оно равно отношению средней разности числа фотонов в пучках, прошедших через слой, минуя

Рис.1. Биообъект с характерным размером δ в слое фиксирующего материала толщиной L (остальные обозначения см. в тексте).

объект и через него, к корню из дисперсии этой разности. Полагая, что число падающих на образец фотонов подчиняется пуассоновской статистике, находим:

$$CNR = \frac{N_{\delta} \exp(-\mu L) - N_{\delta} \exp[-\mu L - (\kappa - \mu)\delta]}{\sqrt{N_{\delta} \exp(-\mu L) + N_{\delta} \exp[-\mu L - (\kappa - \mu)\delta]}} = \sqrt{N_{\delta} \exp(-\mu L)} \frac{1 - \exp[-(\kappa - \mu)\delta]}{\sqrt{1 + \exp[-(\kappa - \mu)\delta]}},$$
(1)

где N_{δ} – число фотонов, падающих на площадку δ на поверхности образца, а $\kappa(\lambda)$ и $\mu(\lambda)$ – коэффициенты поглощения обезвоженного объекта и фиксирующего материала, зависящие от длины волны источника λ . Для них мы будем использовать значения, приведённые в [12, 13].

Из (1) следует требование на полное число фотонов $N = M^2 N_{\delta}$, необходимое для получения одного изображения, содержащего M^2 пикселей, т.е., по существу, условие на энергетику источника:

$$N \ge [(\text{CNR})^2 M^2 \exp(\mu L) \frac{1 + \exp[-(\kappa - \mu)\delta]}{\{1 - \exp[-(\kappa - \mu)\delta]\}^2}.$$
 (2)

Формула (1), строго говоря, справедлива лишь для идеального приёмника излучения, поэтому при переходе от (1) к (2) появился знак \geq .

Соотношение (2) выражает условие получения изображений в микроскопии при использовании абсорбционного контраста. Оно связывает полное число фотонов с пространственным разрешением и имеет простой смысл. Первый множитель даёт нижнюю оценку для N и соответствует полному поглощению в исследуемом объекте ($\kappa - \mu$) $\delta \gg 1$. Эта оптимистическая оценка определяется только пропусканием фиксирующего материала и числом пикселей.

Рис.2. Зависимость величины g от длины волны для белковых структур в воде при толщине среза L = 0.5 (a), 1 (b), 3 (b) и 5 мкм (z) и различном пространственном разрешении.

Рис.3. Спектральные зависимости коэффициентов поглощения белка (1) и воды (2), а также их разности (3) от длины волны.

Второй множитель показывает, во сколько раз возрастает требуемое число фотонов *N* из-за неполного поглощения в объекте. Соотношение (2) поясняет также смысл величины (CNR)² – это число фотонов, требующееся для регистрации одного (M = 1) элемента δ при полном поглощении (($\kappa - \mu$) $\delta \gg 1$) и отсутствии фона ($\mu L \ll 1$).

Для анализа условия получения изображения (2) при различных длинах волн удобно записать его в виде N = Gg, где

$$G = (\text{CNR})^2 M^2,$$
(3)
$$(1 + \exp[-(\kappa - \mu)\delta]$$

 $g(\kappa, \mu, L, \delta) = \exp(\mu L) \frac{1}{\left\{1 - \exp[-(\kappa - \mu)\delta]\right\}^2}.$

Рис.5. Спектральные зависимости коэффициентов поглощения белка (1) и парафина (2), а также их разности (3) от длины волны.

Величина $g(\kappa, \mu, L, \delta)$ определяет зависимость N как от оптических свойств, так и от геометрии образца.

На рис.2 показаны значения $g(\kappa, \mu, L, \delta)$ для белковых структур, фиксированных в H₂O, при пространственном разрешении $\delta = 20, 30, 50$ и 100 нм и толщинах образца L = 0.5, 1, 3 и 5 мкм. Коэффициент поглощения белка определялся из значения средней плотности 1.35 г/см³ [14] при весовых долях элементов H, C, N, O и S, приведённых в [12] (с.371). Соответствующие кривые $\mu(\lambda)$ и $\kappa(\lambda)$ для воды и белка приведены на рис.3.

На рис.4 и 5 приведены аналогичные данные для тех же белковых структур, фиксированных в парафине $C_{20}H_{42}$, с плотностью 0.9 г/см³.

Рис.4. Зависимость величины g от длины волны для белковых структур в парафине при толщине среза L = 0.5 (a), 1 (b), 3 (b) и 5 мкм (z) и различном пространственном разрешении.

Табл.1. Оптимальные диапазоны длин волн λ и числа фотонов N, требующиеся для получения одного изображения биологического объекта, фиксированного в парафине, с пространственным разрешением $\delta = 50$ нм (см. (3) и рис.2, 4).

Параметр			
λ (нм)	G	g	Ν
7-14	3.6×10 ⁷	$10^3 - 3 \times 10^2$	$3.6 \times 10^{10} - 10^{10}$
7-14	3.6×10^{7}	$2 \times 10^{3} - 10^{3}$	$7.2 \times 10^{10} - 3.6 \times 10^{10}$
5 - 10	3.6×10^{7}	$4 \times 10^{3} - 10^{4}$	$1.5 \times 10^{11} - 3.6 \times 10^{11}$
4.4-10	3.6×10^{7}	$10^4 - 10^5$	$3.6 \times 10^{11} - 3.6 \times 10^{12}$
	$\frac{1}{\lambda (\text{HM})}$ 7-14 7-14 5-10 4.4-10	$\begin{array}{c c} & & & \\ \hline \lambda \ (\text{HM}) & G \\ \hline 7-14 & 3.6 \times 10^7 \\ \hline 7-14 & 3.6 \times 10^7 \\ \hline 5-10 & 3.6 \times 10^7 \\ \hline 4.4-10 & 3.6 \times 10^7 \end{array}$	$\begin{tabular}{ c c c c c } \hline Πapamety$ \hline $$\lambda$ (hm) $$G$ $$g$ \\ \hline $$7-14$ $$3.6 \times 10^7$ $$10^3 - 3 \times 10^2$ \\ \hline $$7-14$ $$3.6 \times 10^7$ $$2 \times 10^3 - 10^3$ \\ \hline $$5-10$ $$3.6 \times 10^7$ $$4 \times 10^3 - 10^4$ \\ \hline $$4.4 - 10$ $$3.6 \times 10^7$ $$10^4 - 10^5$ \\ \hline \end{tabular}$

3. Обсуждение результатов расчёта

Результаты, приведённые на рис.2 и 4, позволяют установить требования к монохроматическим источникам излучения в диапазоне длин волн 2 – 14 нм для применений в диагностике биологических структур, фиксированных в парафине, с пространственным разрешением 100 – 20 нм при толщине среза 10 – 0.5 мкм. Отметим, что указанные параметры не достижимы одновременно как для оптической, так и для электронной микроскопии.

Табл.1 демонстрирует пример использования данных рис. 4 для биологического объекта, фиксированного в парафине. В ней приведены оптимальные для микроскопии диапазоны длин волн λ , в которых число фотонов N, необходимое для получения одного изображения с пространственным разрешением $\delta = 50$ нм, минимально. При вычислении *G* согласно (3) число пикселей полагалось равным 1.6×10^5 , а контрастное отношение CNR = 15.

До сих пор мы не учитывали наличие увеличивающей изображение оптики. Её роль – согласовать поперечное разрешение, которое мы также полагаем равным δ , с размером пикселя. Принимая во внимание, что эффективность зонных пластинок около 10% (см. [15]), это даст дополнительный фактор не более 10^2 . Таким образом, для получения одного изображения полная энергия источника на поверхности образцов различной толщины (табл.1) лежит в диапазоне 0.02 - 10 мДж.

4. Выводы

1. Для получения изображений биологических срезов в парафине толщиной 0.5 - 3 мкм с разрешением 50 нм следует использовать монохроматические источники излучения в диапазоне длин волн 7 – 14 нм. Число фотонов, необходимое для получения одного изображения, не превышает $3.6 \times 10^{12} - 3.6 \times 10^{13}$. При энергии фотона 100 эВ это соответствует полной энергии источника на образце

2. Результаты расчётов, проведённых в работе, подтверждают целесообразность разработки компактных и доступных рентгеновских источников в спектральном диапазоне от углеродного скачка фотопоглощения (4.4– 14 нм) для микроскопии биообъектов, фиксированных в парафине. При этом следует иметь в виду широкое распространение «парафиновой» технологии фиксирования в биологии и медицине – как в научных исследованиях, так и на практике, а также резкое уменьшение контраста подобных объектов при переходе в спектральную область водяного окна.

Авторы благодарны Д.Атвуду, К.Менони и Дж.Рокке за обсуждение работы. Работа выполнена при поддержке программы фундаментальных исследований Президиума РАН «Фундаментальные и прикладные проблемы фотоники и физика новых оптических материалов».

- Attwood D., Sakdinawat A. X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge: Cambridge University Press, 2017).
- Watanabe M., Sato S., Munro I., Lodha G.S. A Guide to Synchrotron Radiation Science (New Deli, Chennai, Mumbai, Kolkata: Narosa, 2016).
- 3. Epting W.K., Gelb J., Litster S. Adv. Funct. Mater., 22, 555 (2011).
- https://www.zeiss.com/microscopy/int/products/x-ray-microscopy/ xradia-810-ultra.html.
- 5. Sakdinawat A., Attwood D. Nat. Photonics, 4, 840 (2010).
- 6. Jacobsen C. AIP Conf. Proc., 1696, 020035 (2016).
- Assoufid L., Arp U., Naulleau P., Biedron S., Graves W. Opt. Photonics News, 26, 40 (2015).
- Schmahl G., Rudolph D. X-ray Microscopy (Berlin: Springer-Verlag, 1984, Springer Series in Optical Sciences, Vol. 43).
- 9. Michette A.G. *Optical Systems for Soft X Rays* (New York: Plenum Press, 1986).
- Артюков И.А., Виноградов А.В., Касьянов Ю.С., Савельев С.В. Квантовая электроника, 34 (8), 691 (2004) [Quantum Electron., 34 (8), 691 (2004)].
- Макги Дж. О'Д., Хериет Э.Р., Гаттер К.С. и др. Молекулярная клиническая диагностика. Методы (М.: Мир, 1999).
- Attwood D. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge: Cambridge University Press, 1999).
- 13. http://henke.lbl.gov/optical_constants/
- Fischer H., Polikarpov I., Craievich A.F. Protein Sci., 13 (10), 2825 (2004).
- 15. https://www.appliednt.com/x-ray-zone-plates/3Π.
- 16. Rocca J.J. et al. SPIE Optics + Optoelectronics (Prague, 2017).