Измерение и коррекция волнового фронта лазерного излучения в мутной среде

И.В.Галактионов, А.В.Кудряшов, Ю.В.Шелдакова, А.А.Бялко, Ж.Борсони

Проведены численное и экспериментальное исследования распространения лазерного пучка сквозь суспензию полистироловых микросфер в дистиллированной воде, показано наличие высших центрально-симметричных аберраций для диапазона концентраций рассеивателей $1.3 \times 10^5 - 10^6$ мм⁻³ и проанализирована зависимость искажений волнового фронта рассеянного излучения от концентрации частиц в мутной среде. Исследование показало также эффективность компенсации аберраций волнового фронта рассеянного лазерного пучка с использованием биморфного адаптивного зеркала.

Ключевые слова: мутная среда, рассеяние света, датчик волнового фронта Шака–Гартмана, корректор волнового фронта, адаптивная оптика.

1. Введение

Среда считается мутной или рассеивающей, если она обладает явно выраженной оптической неоднородностью, вызванной присутствием примесей частиц с отличающимся показателем преломления. Ярким примером служат атмосферный аэрозоль, дымка, туман, биологические ткани [1]. В таких средах часть энергии пучка поглощается, а часть перераспределяется в пространстве, образуя ореол рассеянного света, который делает очертания рассматриваемых объектов размытыми и препятствует фокусировке излучения. Решение этой проблемы имеет особую значимость для задач увеличения дальности распространения излучения, распознавания образов, передачи информации по оптическим каналам связи, а также для медицинской неинвазивной диагностики, в частности для исследования состояния кровеносных сосудов и сетчатки глаза, диагностики злокачественных и доброкачественных опухолей [2-4].

Для исследования распространения излучения сквозь случайно-неоднородные среды применяются различные подходы, суть которых заключается в нахождении решения уравнения переноса: метод интегралов по траекториям, методы диффузионного приближения, метод рассеяния на броуновских частицах, метод малоуглового приближения [5]. Однако все указанные подходы не являются универсальными, поскольку они основаны на теоретических результатах, полученных при различных допущениях. Поэтому часто прибегают к использованию метода стохастического моделирования Монте-Карло, который даёт приближённое решение уравнения переноса для любых условий задачи: произвольных конфигурации среды

Поступила в редакцию 29 февраля 2016 г., после доработки – 25 октября 2016 г.

и граничных условий. Метод Монте-Карло подразумевает моделирование поведения отдельных элементарных частей физической системы, в частности для задачи распространения излучения он учитывает квантовую природу света и моделирует поведение потока фотонов [6].

Традиционно в рассеянном излучении выделяют фотоны трёх типов [7]: баллистические, приосевые (или snake-фотоны) и внеосевые (или диффузные фотоны). Баллистические фотоны распространяются сквозь мутную среду по прямым траекториям, не взаимодействуя с рассеивателями. Эта когерентная составляющая рассеянного излучения представляет наибольшую ценность для задач распознавания образов объектов. Приосевые фотоны испытывают несколько столкновений с рассеивателями и движутся по траекториям, близким к начальному направлению распространения пучка. Эти фотоны начинают играть важную роль при увеличении толщины слоя рассеивающей среды, поскольку число баллистических фотонов в этом случае экспоненциально убывает [2]. Внеосевые фотоны многократно рассеиваются во всех направлениях и формируют некогерентную компоненту рассеянного излучения.

Как уже было отмечено, баллистические фотоны отвечают за формирование неискажённого изображения объекта, однако их число экспоненциально убывает с увеличением толщины слоя или концентрации мутной среды. Поэтому необходимо учитывать влияние приосевых и диффузных фотонов на распределение интенсивности и фазы рассеянного излучения. Для увеличения эффективности обнаружения злокачественных и доброкачественных опухолей был успешно применён метод комбинированного спектрального анализа [8]. Повышение контрастности изображений рассматриваемых объектов стало возможным благодаря использованию принципов голографии, основанных на обратимости процесса рассеяния [9,10]. В работе [11] описывается метод мультиспектральной низкокогерентной интерферометрии, использующий принципы когерентности и пространственной фильтрации для получения изображений объектов с миллиметровым разрешением, расположенных в биологических тканях на глубине до 9 мм. Авторы работы [12] пред-

И.В.Галактионов, А.В.Кудряшов, Ю.В.Шелдакова, А.А.Бялко. ООО «Активная оптика НайтН», Россия, 115407 Москва, ул. Судостроительная, 18, корп. 5; e-mail: galaktionov@activeoptics.ru **G.Borsoni.** AKA Optics SAS, Hotel Technoptic, 2 rue Marc Donadille, CS80001, 13453 Marseille Cedex 13 France

лагают методику оптической, обращённой во времени фокусировки на движущихся объектах, скрытых слоем рассеивающей среды. Если нет доступа к пространству за рассеивающим слоем, предлагается использовать неинвазивный подход для получения изображений флуоресцентных объектов [13]. Для задач фокусировки [14] и восстановления изображений объектов, расположенных внутри или за слоем рассеивающей среды [15–19], применяются фазовые модуляторы [14].

В настоящей работе проведены численные и экспериментальные измерения волнового фронта лазерного излучения, прошедшего сквозь мутную среду, с использованием датчика Шака-Гартмана. Продемонстрирована также возможность компенсации измеренных искажений биморфным адаптивным зеркалом [20]. Для расчёта интенсивности и фазы рассеянного излучения была реализована компьютерная модель распространения света в мутной среде на основе метода Монте-Карло. В программе была предусмотрена возможность формирования гартманограмм (изображений фокальных пятен микролинзового растра датчика Шака-Гартмана). Была разработана экспериментальная установка для измерения аберраций лазерного излучения, прошедшего сквозь кювету с суспензией полистироловых микросфер в дистиллированной воде. Для компенсации измеренных аберраций использовались экспериментально измеренные функции отклика биморфного зеркала с 32 электродами.

2. Модель распространения излучения в мутной среде

2.1. Метод Монте-Карло

В настоящей работе исследовалось рассеяние лазерного излучения с длиной волны $\lambda = 0.65$ мкм [21] на полистироловых микросферах диаметром 1 мкм, взвешенных в дистиллированной воде. Концентрация частиц варьировалась от 1.3×10^5 до 10^6 мм⁻³. Начальная апертура пучка составляла 4 мм, показатель преломления среды был равен 1.33, а показатель преломления полистироловых микросфер для выбранной длины волны излучения – 1.582 [22].

Для моделирования распространения излучения сквозь рассеивающую среду использовался стохастический метод Монте-Карло [23]. Суть его заключается в многократной реализации случайного процесса, вероятностные характеристики которого совпадают с используемыми в задаче физическими величинами [24]. Лазерный пучок в конкретный момент времени представлялся в виде большого числа фотонов (в настоящей работе – 2.5 × 10¹¹), равномерно распределённых по начальной апертуре, что физически эквивалентно однородному распределению интенсивности пучка (рис.1).

В работе рассматривался коллимированный пучок излучения, поэтому начальное направление для всех фотонов было одинаковым (перпендикулярно слою мутной среды). Расстояние между двумя последовательными столкновениями фотона с рассеивателями, называемое длиной свободного пробега, вычислялось по формуле $l = -\ln \xi_l / \mu_s$, где μ_s – показатель рассеяния среды [24], а ξ_l – равномерно распределённая на полуинтервале [0, 1) случайная величина. Показатель рассеяния μ_s измеряется в обратных миллиметрах и является одной из основных характеристик мутной среды – он показывает силу рассея

Рис.1. Схема рассеяния фотонов на неоднородностях мутной среды.

ния на единицу длины. Этот показатель вычисляется по формулам теории Ми [24]. В качестве фазовой функции для моделирования угла рассеяния в зависимости от параметров рассеивающей среды была выбрана функция Хеньи-Гринштейна благодаря высокой скорости её вычисления и тому, что она достаточно точно аппроксимирует функцию рассеянния излучения при выбранных концентрациях [25]. Для определения нового направления распространения фотона после его столкновения с рассеивателем вычислялись два угла. Угол между текущим и новым направлением движения, называемый углом рассеяния θ , и угол между проекцией нового направления движения на плоскость, перпендикулярную начальному направлению, и некоторой фиксированной осью на этой плоскости, называемый азимутальным углом φ , рассчитывались по формулам [24]

$$\cos \theta = \begin{cases} \frac{1}{2g} \left[1 + g^2 - \left(\frac{1 - g^2}{1 - g + 2g\xi_{\theta}} \right)^2 \right], g > 0, \\ 2\xi_{\theta} - 1, g = 0, \end{cases}$$
(1)

$$\varphi = 2\pi\xi_{\varphi}.\tag{2}$$

Здесь g – фактор анизотропии [24]; ξ_{θ} , ξ_{φ} – равномерно распределённые на полуинтервале [0, 1) случайные величины. Исходя из длины свободного пробега и нового направления движения, вычислялось новое положение фотона в пространстве и выполнялась проверка на пересечение границ среды. Если фотон оставался в пределах рассеивающего объема, вычисления *l*, θ и φ повторялись. Таким образом, по завершении процесса моделирования мы имели информацию об оптической длине пройденного пути и конечном направлении распространения каждого фотона.

2.2. Модель датчика Шака – Гартмана для измерения волнового фронта

Для численного измерения аберраций волнового фронта излучения, прошедшего сквозь слой мутной среды, была разработана модель датчика Шака–Гартмана, реализующая упрощённую схему реального датчика: массив микролинз с диаметром 150 мкм и фокусным расстоянием f = 6 мм и сенсор ПЗС-камеры, расположенный в фокальной плоскости линзового растра.

Рассмотрим перемещение фотона, прошедшего через мутную среду и оказавшегося на одной из субапертур линзового растра. Введём локальную декартову систему координат с центром, соответствующим центру субапертуры растра. Положим, что фотон, попавший на линзу, имеет некое случайное направление движения, задаваемое направляющими косинусами μ_x , μ_y и μ_z по осям x, y и z соответственно. Тогда его положение на сенсоре после прохождения через линзу можно вычислить по формулам $x_f = f\mu_x/\mu_z$, $y_f = f\mu_y/\mu_z$, $z_f = f$. Выполнив аналогичные расчёты для всех фотонов, мы получали изображения фокальных пятен на сенсоре – гартманограмму.

Для оценки аберраций излучения необходимо иметь эталонный опорный волновой фронт. Для получения гартманограммы такого волнового фронта коллимированный лазерный пучок распространялся от источника до датчика в отсутствие рассеивающей среды. Фотоны, попадавшие на микролинзы растра, в этом случае сосредотачивались в их фокусах на сенсоре. Таким образом формировалась гартманограмма опорного волнового фронта. При наличии мутной среды на пути распространения пучка приосевые и диффузные фотоны попадали на микролинзовый растр под ненулевыми углами относительно своего начального направления движения, параллельного оптической оси системы. В результате в плоскости сенсора ПЗС-камеры формировались фокальные пятна некоторого диаметра с центрами, положения которых, вообще говоря, отличаются от положений центров фокальных пятен опорного пучка.

В датчике волнового фронта Шака-Гартмана для оценки аберраций применялся алгоритм, основанный на вычислении смещений центров фокальных пятен. Положения центров фокальных пятен вычислялись как положения центров тяжести [26]. Исходя из величины смещений фокальных пятен рассчитывались локальные наклоны волнового фронта. Фазовая поверхность аппроксимировалась полиномами Цернике [27]. Результаты численного эксперимента показали тенденцию к росту центрально-симметричных аберраций с увеличением концентрации рассеивателей (табл.1).

На рис.2 приведена интерферограмма волнового фронта лазерного пучка, прошедшего сквозь мутную среду с концентрацией частиц 7.4×10^5 мм⁻³, а соответствующие коэффициенты при некоторых полиномах Цернике представлены в табл.2.

Табл.1. Коэффициенты при полиномах Цернике, PV и RMS волнового фронта для разных концентраций рассеивателей в мутной среде.

Концентрация (10 ⁵ мм ⁻³)	$PV(\lambda)$	RMS(λ)	Дефокуси- ровка (λ) (2ρ ² – 1)	Сферическая аберрация (λ) $(6\rho^4 - 6\rho^2 + 1)$
1.3	2.64	0.59	0.74	0.82
7.38	2.78	0.62	0.91	0.86
9.43	3.28	0.76	1.02	1.03
10.2	3.57	0.83	1.12	1.11

Примечания: PV (peak-to-valley) – амплитуда аберраций волнового фронта; RMS – среднеквадратичное отклонение; ρ – модуль радиуса-вектора в сечении пучка.

Рис.2. Интерферограмма волнового фронта пучка, прошедшего сквозь мутную среду с концентрацией рассеивателей $7.4\times10^5~{\rm Mm^{-3}}.$

Табл.2. Коэффициенты при полиномах Цернике, соответствущие интерферограмме, приведённой на рис.2.

Номер полинома	Название аберрации	Коэффициент (λ)
1	Наклон по оси $x (\rho \cos \theta)$	0.008
2	Наклон по оси $y(\rho \sin \theta)$	0.005
3	Дефокусировка ($2\rho^2$ –1)	0.798
8	Сферическая аберрация (6 ρ^4 – 6 ρ^2 + 1)	0.866
15	Сферическая аберрация $(20\rho^6 - 30\rho^4 + 12\rho^2 - 1)$	0.559
24	Сферическая аберрация $(70\rho^8 - 140\rho^6 + 90\rho^4 - 20\rho^2 + 1)$	-0.166

3. Экспериментальные измерения волнового фронта

3.1. Экспериментальная установка

Для измерения искажений лазерного излучения в мутной среде была собрана экспериментальная установка, схема которой приведена на рис.3. Лазерный пучок проходил сквозь стеклянную кювету, содержащую суспензию полистироловых микросфер диаметром 1 мкм в дистиллированной воде, и падал на датчик волнового фронта Шака–Гартмана [28–31]. Датчик представлял собой цифровую ПЗС-камеру Basler A302fs с сенсором 1/2" (раз-

Рис.3. Схема экспериментальной установки: *I* – диодный лазер с длиной волны излучения 0.65 мкм и выходной апертурой 4 мм; *2* – оптический фильтр; *3* – стеклянная кювета с мутной средой; *4* – датчик волнового фронта Шака–Гартмана.

мер приёмной площадки сенсора 6.4 × 4.8 мм) и линзовым растром (фокусное расстояние 6 мм, расстояние между микролинзами 150 мкм, число микролинз превышает 1350). Частота кадров камеры составляла 30 Гц.

3.2. Результаты измерений

Анализ волнового фронта проводился в апертуре диаметром 4.8 мм, центр которой совпадал с центром сенсора камеры [32]. Увеличение диаметра апертуры по сравнению с начальным размером пучка было вызвано необходимостью анализа вклада приосевых и диффузных фотонов в волновой фронт излучения. Фазовая поверхность, измеренная датчиком Шака-Гартмана, аппроксимировалась полиномами Цернике. Зависимости коэффициентов при симметричных полиномах Цернике № 3, № 8 и № 15 [33] от концентрации полистироловых микросфер представлены на рис.4. Измерения волнового фронта датчиком Шака-Гартмана проводились при усреднении по 10 кадрам, поступающим от этого датчика с частотой 30 Гц. Видно, что с увеличением концентрации частиц существенно возрастали дефокусировка (коэффициент при полиноме Цернике № 3 увеличивался от 0.12λ до 1.39λ) и сферическая аберрация (коэффициент при полиноме Цернике № 8 увеличивался от 0.09 λ до 0.91 λ).

В качестве примера рассмотрим волновой фронт излучения, прошедшего сквозь мутную среду с концентра-

Рис.4. Зависимости амплитуд аберраций волнового фронта от концентрации рассеивателей в мутной среде при дефокусировке (полином Цернике № 3) (1) и сферических аберрациях низшего (полином Цернике № 8) (2) и высшего (полином Цернике № 15) порядков (3).

Табл.3. Среднеквадратичные отклонения волнового фронта, аппроксимированного первыми 24 полиномами Цернике (RMS₂₄) и первыми 8 полиномами Цернике (RMS₈).

-			
Концентрация (10 ⁵ мм ⁻³)	$RMS_{24}(\lambda)$	$RMS_8(\lambda)$	
1.3	0.077	0.058	
2.5	0.085	0.077	
4.5	0.103	0.095	
6.0	0.155	0.138	
7.4	0.217	0.192	
8.5	0.377	0.349	
9.4	0.611	0.588	
10.3	0.958	0.945	

цией рассеивателей 7.4 × 10⁵ мм⁻³. Интерферограмма такого волнового фронта показана на рис.5, в. Среднеквадратичное отклонение поверхности (RMS), рассчитанной по первым 24 полиномам Цернике (RMS₂₄), в этом случае составляло 0.217 λ . Если учитывать только аберрации низшего порядка (коэффициенты при полиномах Цернике № 3–№ 8), а все остальные коэффициенты искусственно обнулить, то среднеквадратичное отклонение RMS₈ будет равно 0.192 λ . Аналогичные результаты имеют место для остальных значений концентраций, используемых в настоящей работе (табл.3).

3.3. Проблемы измерений волнового фронта

Вследствие симметричной природы рассеяния Ми мы ожидали увидеть лишь центрально-симметричные аберрации при измерении волнового фронта рассеянного излучения, в частности дефокусировку и сферическую аберрацию (рис. 5, δ). Однако проведённые исследования продемонстрировали наличие целого спектра аберраций низшего и высшего порядков. Возможные причины этого таковы:

1. Неидеальные поверхности стенок используемой стеклянной кюветы.

 Наличие турбулентных флуктуаций в среде на пути распространения пучка света.

Измерения с помощью датчика Шака–Гартмана показали, что стеклянная кювета имела непараллельные стенки, и это привело к возникновению наклона волнового фронта. Амплитуда аберраций волнового фронта (PV) лазерного пучка, прошедшего сквозь пустую кювету (рис.5,*a*),

Рис.5. Аберрации, вносимые стеклянной кюветой (*a*), ожидаемая интерферограмма волнового фронта излучения, прошедшего сквозь мутную среду с концентрацией рассеивателей 7.4 × 10⁵ мм⁻³ (*b*), и интерферограмма реально измеренного волнового фронта (*в*).

составила 1.05 мкм (1.62 λ), среднеквадратичное отклонение RMS оказалось равным 0.3 мкм (0.46 λ), наклон по оси *x* составил –0.6 мкм (–0.9 λ), величина комы по оси *x* была равна –0.05 мкм (–0.08 λ). По мере заполнения кюветы рассеивающей суспензией кома также увеличивалась вследствие смещения пучка от оптической оси системы.

4. Коррекция волнового фронта

4.1. Биморфное деформируемое зеркало

Из табл.3 видно, что основной вклад в искажение волнового фронта рассеянного излучения вносят центральносимметричные аберрации низших порядков. Для компенсации подобного рода искажений традиционно используются биморфные деформируемые зеркала [34,35]. Биморфное зеркало состоит из двух склеенных пластин: относительно толстой (~2 мм) стеклянной или металлической подложки (толщина зависит от диаметра зеркала) с отражающим покрытием и тонкой (0.3 мм) пьезокерамической подложки (рис.6,*a*). На обе стороны пьезокерамического диска (пьезодиска) нанесены электроды. При подаче напряжения на электрод вследствие обратного пьезоэлектрического эффекта пьезодиск расширяется или сжимается (в зависимости от знака напряжения) в радиальном направлении. Это приводит к изгибу приклеенной подложки с отражающим покрытием. Для воспроизведения различных типов аберраций с помощью такого корректора внешний электрод делится на большое число отдельных секторов. Пример сетки электродов приведён на рис.6, б. Размер и число электродов зависят от типа аберраций, которые необходимо скомпенсировать. Иногда бывает полезно использовать дополнительный пьезодиск со сплошным электродом для воспроизведения дефокусировки.

Особенность биморфных адаптивных зеркал заключается в том, что они способны эффективно воспроизводить аберрации низшего порядка. Это очень важно в нашем случае, поскольку, как упоминалось выше, дефокусировка и сферическая аберрация низшего порядка вносят наибольший вклад в искажения волнового фронта рассеянного излучения. На рис.7 приведены интерферограммы соответствующих полиномам Цернике № 3 и № 8 волновых фронтов, воспроизведённых с использованием биморфного адаптивного зеркала с 32 электродами. Амплитуды начальной фазовой поверхности, которую необходимо было воспроизвести, составляли 2 мкм (полином № 3) и 1.2 мкм (полином № 8). Остаточная ошибка воспроизведения - среднеквадратичное отклонение фазовой поверхности, вычисляемое как поточечная разность амплитуд восстановленной и начальной поверхностей, составила 0.03 мкм для дефокусировки и

Рис.6. Схема биморфного зеркала с 32 электродами (a) и схема расположения этих электродов (δ).

Рис.7. Интерферограммы полиномов Цернике \mathbb{N} 3 (*a*) и \mathbb{N} 8 (*б*), воспроизведённые биморфным адаптивным зеркалом с 32 электродами.

0.005 мкм для сферической аберрации. Это говорит о высокой точности воспроизведения заданных симметричных полиномов Цернике с помощью биморфного деформируемого зеркала.

4.2. Алгоритм коррекции

Экспериментально измеренная фазовая поверхность излучения, прошедшего сквозь мутную среду, аппроксимировалась функциями отклика электродов зеркала. Функция отклика электрода представляет собой набор координат смещений фокальных пятен в ответ на воздействие напряжения с единичной амплитудой на данный электрод. Расчёт необходимых напряжений на электродах деформируемого зеркала осуществлялся таким образом, чтобы координаты центров фокальных пятен анализируемого пучка после подачи корректирующих напряжений максимально приближались к координатам центров фокальных пятен опорного пучка. Матрица смещений центров фокальных пятен определяется выражением

$$S_k = \begin{vmatrix} \Delta x_k \\ \Delta y_k \end{vmatrix} = \sum_{j=1}^N u_j b_j(x_k, y_k),$$

где Δx_k – смещение *k*-го фокального пятна по оси *x*; Δy_k – смещение *k*-го фокального пятна по оси *y*; *N* – число электродов зеркала; u_j – напряжение на *j*-м электроде; $b_j(x_k, y_k)$ – функция отклика *j*-го электрода в точке (x_k, y_k).

После вычисления смещений фокальных пятен и измерения функций отклика адаптивного зеркала осуществлялся расчёт напряжений на электродах методом наименьших квадратов [27]. Подача напряжений на электроды зеркала вызывала изгиб отражающей поверхности, что, в свою очередь, приводило к смещению фокальных пятен, регистрируемых на датчике Шака – Гартмана [36]. На основании новых данных о положении фокальных пятен вычислялся очередной набор напряжений. Эта процедура повторялась до достижения минимальной требуемой разности амплитуд опорного и корректируемого волновых фронтов.

4.3. Результаты коррекции

В табл.4 представлены амплитуды аберраций волнового фронта для каждой используемой концентрации рассеивателей до и после коррекции с использованием функций отклика биморфного зеркала. Например, видно, что для концентрации 7.4 × 10^5 мм⁻³ удалось уменьшить амплитуду аберраций от 1.26 λ до 0.05 λ .

Табл.4. Амплитуда аберраций волнового фронта излучения, прошедшего сквозь слой рассеивающей среды с различными концентрациями.

Концентрация (10 ⁵ мм ⁻³)	РV до коррекции (λ)	РV после коррекции (λ)
1.3	0.46	0.05
2.5	0.51	0.05
4.5	0.66	0.05
6.0	1.06	0.05
7.4	1.26	0.05
8.5	2.34	0.03
9.4	3.29	0.03
10.3	4.23	0.06

Рис.8. Интерферограммы и профили волнового фронта излучения, прошедшего сквозь мутную среду с концентрацией рассеивающих частиц 7.4 × 10^5 мм⁻³, до (*a*) и после (*б*) коррекции биморфным зеркалом.

На рис.8 приведены интерферограммы волновых фронтов излучения, прошедшего сквозь мутную среду с концентрацией рассеивающих частиц 7.4×10^5 мм⁻³, до и после коррекции биморфным зеркалом. Для измерения волнового фронта использовалось усреднение по 10 кадрам с видеокамеры.

5. Заключение

Проведены численное и экспериментальное исследования аберраций волнового фронта лазерного излучения, прошедшего сквозь слой мутной среды. Показано преобладание центрально-симметричных аберраций как низшего, так и высшего порядка (дефокусировка и сферическая аберрация) в рассеянном излучении для диапазона концентраций рассеивающих частиц $1.3 \times 10^5 - 10^6$ мм⁻³. Экспериментально измеренные искажения волнового фронта излучения, прошедшего сквозь суспензию полистироловых микросфер в дистиллированной воде, эффективно компенсировались с использованием функций отклика биморфного адаптивного зеркала с 32 электродами. Эффективность коррекции составила ~95%.

Исследование выполнено при финансовой поддержке РФФИ (грант № 16-07-01276а).

- Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях (М.: Физматлит, 2010).
- Mosk A.P., Lagendijk A., Lerosey G., Fink M. Nat. Photonics, 6, 283 (2012).
- 3. Vellekoop I.M., Mosk A.P. Opt. Lett., 32, 2309 (2007).
- Башкатов А.Н., Приезжев А.В., Тучин В.В. Квантовая электроника, 42 (5), 379 (2012).
- Воробьева Е.А., Гуров И.П. Модели распространения и рассеяния оптического излучения в случайно неоднородных средах (М.: Медицина, 2006).
- 6. Meglinski I.V. Physiol. Meas., 23, 741 (2002).
- 7. Ramachandran H. Current Science, 76, 1334 (1999).
- Zhang Y., Chen Y., Yu Y., Xue X., Tuchin V.V., Zhu D. J. Biomed. Opt., 18 (7), 077003 (2013).
- 9. Goodman J.W., Huntley W.H., Jr., Jackson D.W., Lehmann M. Appl. Phys. Lett., 8, 311 (1966).
- 10. Kogelnik H., Pennington K.S. J. Opt. Soc. Am., 58 (2), 273 (1968).
- Matthews T., Medina M., Maher J., Levinson H., Brown W., Wax A. Optica, 1 (2), 105 (2014).
- 12. Zhou E., Ruan H., Yang Ch., Judkewitz B. Optica, 1 (4), 227 (2014).
- Bertolotti J., van Putten E.G., Blum C., Lagendijk A., Vos W.L., Mosk A.P. *Nature*, **491** (7423), 232 (2012).
- 14. Vellekoop I.M., Lagendijk A., Mosk A.P. Nat. Photonics, 4, 320 (2010).
- 15. Katz O., Small E., Silberberg Y. Nat. Photonics, 6, 549 (2012).
- 16. Conkey D.B., Caravaca-Aguirre A.M., Piestun R. Opt. Express, 20,
- 1733 (2012).
 17. Hsieh C., Pu Y., Grange R., Laporte G., Psaltis D. *Opt. Express*, 18, 20723 (2010).
- Popoff S.M., Lerosey G., Carminati R., Fink M., Boccara A.C., Gigan S. *Phys. Rev. Lett.*, **104**, 100601 (2010).
- Hillman T.R., Yamauchi T., Choi W., Dasari R.R., Feld M.S., Park Y., Yaqoob Z. Scientific Reports, 3, 1909 (2013).
- Kudryashov A.V., Kulakov V.B., Kotsuba Y.V., Novikova L.V., Samarkin V.V. Proc. SPIE Int. Soc. Opt. Eng., 3688, 469 (1999).
- Быков А.В., Приезжев А.В., Мюллюля Р. Квантовая электроника, 41 (6), 557 (2011).
- Ma X., Lu J., Brocks S., Jacob K., Yang P., Xin X.-H. *Phys. Med. Biol.*, 48, 4165 (2003).
- Кириллин М.Ю., Приезжев А.В. Квантовая электроника, 32 (10), 883 (2002).
- 24. Wang L., Jacques S. Computer Programs and Methods in Biomedicine, 47, 131 (1995).
- 25. URL:http://omlc.org/education/ece532/class3/hg.html.
- Sheldakova J., Cherezova T., Alexandrov A., Rukosuev A.L., Kudryashov A.V. Proc. SPIE Int. Soc. Opt. Eng., 5708, 352 (2005).
- Александров А.Г., Завалова В.Е., Кудряшов А.В., Рукосуев А.Л., Романов П.Н., Самаркин В.В., Шелдакова Ю.В. Квантовая электпроника, 40 (4), 321 (2010).
- 28. Platt B., Shack R. J. Refractive Surgery, 17, 15 (2001).
- Liang J., Grimm B., Goelz S., Bille J.F. J. Opt. Soc. Am. A, 11, 1949 (1994).
- 30. Lane R.G., Tallon M. Appl. Opt., 31 (32), 6902 (1992).
- 31. URL: http://www.activeoptics.ru.
- Галактионов И.В., Шелдакова Ю.В., Кудряшов А.В. Квантовая электироника, 45 (2), 143 (2015).
- Wyant J.C., Creath K., in *Proceedings of Applied Optics and Optical Engineering* (San Diego: Academic Press, 1992, pp 27–39).
- Samarkin V., Aleksandrov A., Kudryashov A. Proc. SPIE Int. Soc. Opt. Eng., 4493, 269 (2002).
- Samarkin V., Kudryashov A. Proc. SPIE Int. Soc. Opt. Eng., 7789, 77890B (2010).
- Rukosuev A., Alexandrov A., Zavalova V., Samarkin V., Kudryashov A.. Proc. SPIE Int. Soc. Opt. Eng., 4493, 261 (2002).