ЛАЗЕРНАЯ МЕДИЦИНА

Динамика лазерного нагрева и спектры свечения углерод-, титан- и эрбийсодержащих оптотермических волоконных конвертеров для лазерной медицины^{*}

А.В.Беликов, А.В.Скрипник

Впервые обсуждаются титан- и эрбийсодержащие оптотермические волоконные конвертеры лазерного излучения, расположенные на дистальном торце кварц-кварцевого оптического волокна. Описана технология создания таких конвертеров. Исследованы также конвертеры, содержащие углерод. Исследованы динамика лазерного нагрева конвертеров и спектры свечения, возникающего при воздействии на конвертер каждого типа излучения диодного лазера с длиной волны 980 ± 10 нм и средней мощностью до 4 Вт. Показано, что наряду с широкополосным тепловым излучением, сопровождающим лазерный нагрев всех трех типов конвертеров до температур в диапазоне 600–1100°С, только в спектре свечения эрбийсодержащего конвертера присутствуют интенсивные полосы с максимумами на длинах волн 493, 523, 544, 660 и 798 нм, отвечающие излучательным переходам эрбия ${}^4F_{7/2} \rightarrow {}^4I_{15/2}, {}^2H_{11/2} \rightarrow {}^4I_{15/2}, {}^4S_{3/2} \rightarrow {}^4I_{15/2}, {}^4F_{9/2} \rightarrow {}^4I_{15/2}, {}^2H_{15/2}, {}^4S_{3/2} \rightarrow {}^4I_{15/2}, {}^2H_{15/2}, {}^4S_{3/2} \rightarrow {}^4I_{15/2}, {}^2H_{15/2}, {}^4S_{3/2} \rightarrow {}^4I_{15/2}, {}^4F_{15/2}, {}^4H_{15/2}, {}^4F_{15/2}, {}^4F_{15/2}, {}^4F_{15/2}, {}^4F_{15/2}, {}^4H_{15/2}, {}^4F_{15/2}, {}$

Ключевые слова: лазерное излучение, конвертер, эрбий, титан, углерод, волокно, свечение, нагрев.

1. Введение

Излучение лазеров широко применяется при обработке различных материалов, а также в медицине для хирургии [1,2], биостимуляции [3], фотодинамической терапии [4] и т.д. Для большинства лазерных вмешательств эффективность воздействия тем выше, чем больше коэффициент поглощения света хромофором, содержащимся в биоткани или привнесенным в нее. Для фотодинамической терапии используются полупроводниковые лазеры и светодиоды, генерирующие излучение с длинами волн 600-700 нм [4, 5], т.к. в качестве хромофора выступает фотосенсибилизатор, например радахлорин, поглощающий в этой области спектра [6]. Наиболее эффективными для хирургии принято считать CO2- и эрбиевые лазеры [1,2,7–9], коэффициенты поглощения излучения которых мягкими биотканями определяются сильным поглощением их излучения водой [10]. В последнее время в контактной лазерной хирургии стали использоваться полупроводниковые лазеры [1,11-13], генерирующие излучение в ближней ИК области спектра на длинах волн 0.81-0.98 мкм. Излучение этих лазеров слабо поглощается мягкими биотканями. В результате эффективность удаления биоткани получается низкой, а размер зоны повреждения окружающих разрез тканей (коагуляции, денатурации, некроза) – значительным [9, 14–16].

Поступила в редакцию 24 марта 2017 г.

Для повышения эффективности действия полупроводникового лазера в контактной лазерной хирургии на дистальный торец оптического волокна, по которому лазерное излучение доставляется к биоткани, помещают специальный оптотермический волоконный конвертер (ОТВК) [17-22]. Большинство известных в лазерной медицине таких конвертеров (blackened tip) содержат углерод [19,23-26], при этом разрушение мягкой биоткани происходит в основном в результате контакта с нагретым под действием лазерного излучения до высоких температур (вплоть до 900°С [21]) углеродсодержащим ОТВК. Следует отметить, что возникающее при нагреве конвертера широкополосное тепловое излучение также может быть использовано для дополнительного воздействия на биоткань [20]. Известны наконечники «hybrid probe», сочетающие воздействие на биоткань теплового и видимого излучения [27]. Таким образом, расширение областей применения полупроводниковых лазеров в медицине возможно в том числе и за счет создания новых конвертеров лазерного излучения.

В этой связи разработка конвертеров, позволяющих не только эффективно иссекать биоткань, но и оказывать при этом селективное, например биостимулирующее или фотодинамическое воздействие на хромофоры, поглощающие в видимой области спектра, является весьма перспективной.

В настоящей работе исследованы конвертеры трех типов, различающиеся преобразующим лазерное излучение веществом (эрбий, титан и углерод). Впервые описаны конвертеры, содержащие эрбий и титан. Исследована динамика лазерного нагрева углерод-, титан- и эрбийсодержащих конвертеров под действием излучения полупроводникового лазера с длиной волны 980 ± 10 нм. Определены средние мощности лазерного излучения и температуры, при которых каждый из конвертеров разрушается. Получены спектры свечения, возникающего под действием

^{*}Доложена на международном симпозиуме «Фундаментальные основы лазерных микро- и нанотехнологий» (FLAMN-16) (Ленинградская обл., Пушкин, 27 июня – 1 июля 2016).

А.В.Беликов, А.В.Скрипник. Университет ИТМО, Россия, 197101 С.-Петербург, Кронверкский просп., 49; e-mail: alesch_skrypnik@mail.ru

излучения полупроводникового лазера с длиной волны 980 ± 10 нм на конвертер каждого из трех типов. Обсуждаются возможные медицинские применения таких конвертеров.

2. Материалы и методы

В настоящем исследовании использована полупроводниковая лазерная система Alta-ST (Dental Photonics, Inc., США) [21]. Лазерное излучение с длиной волны 980 ± 10 нм передавалось по кварц-кварцевому оптическому волокну. Диаметр световедущей жилы оптического волокна составлял 400 ± 5 мкм, общий диаметр волокна без полимерного покрытия – 440 ± 5 мкм, с полимерным покрытием – 475 ± 10 мкм. Средняя мощность излучения на выходе кварц-кварцевого волокна достигала 25 Вт. Лазерное излучение представляло собой последовательность импульсов длительностью 400 мкс, следующих друг за другом с частотой 2 кГц, которая была предустановлена компанией-производителем в качестве оптимальной для корректной работы системы.

Система Alta-ST имеет уникальную встроенную систему измерения температуры дистального торца оптического волокна, на котором и располагается конвертер. Система измеряет интенсивность теплового излучения, возникающего в результате нагрева ОТВК лазерным излучением, которое доставляется к конвертеру по оптическому волокну. Тепловое излучение распространяется от конвертера по тому же волокну, но в противоположном лазерному излучению направлении. На входе в оптическое волокно тепловое излучение отделяется от лазерного спектроделителем и регистрируется ИК приемником FD10D (Thorlabs, США), сигнал с которого поступает на аналого-цифровой преобразователь (АЦП) и далее в соответствии с калибровочной кривой соотносится с температурой. Калибровка выполняется путем сопоставления амплитуды регистрируемого ИК приемником сигнала на выходе АЦП с температурой на поверхности конвертера, измеренной в диапазоне 300-800°С с помощью тепловизора Fluke Ti 400FT (Fluke, США), а в диапазоне 800-2500°С - с помощью пирометра «Проминь» (Каменец-Подольский приборостроительный завод, Украина). Минимальная температура, которую можно было измерить из-за ограниченной спектральной чувствительности ИК приемника и внутренних шумов приемного тракта, составляла 280°С. АЦП позволяет измерять температуру каждые 30 мс, при этом погрешность измерения температуры не превышает 5%. Значение измеренной таким образом температуры конвертера отображается в режиме реального времени в окне программы stLase-1.19 (Dental Photonics, Inc., США) при подключении к usb-порту персонального компьютера.

При достижении заранее установленного в программе stLase-1.19 значения температуры система Alta-ST изменяла среднюю мощность лазерного излучения таким образом, чтобы текущая температура дистального торца оптического волокна отличалась от заданного значения не более чем на $\pm 5\%$. Программа управления системой позволяла также формировать заранее заданные временные профили изменения средней мощности лазерного излучения и регистрировать динамику лазерного нагрева дистального торца волокна (или конвертера, расположенного на этом торце), что важно при формировании конвертера. Для фотографирования и измерения геометрических размеров конвертеров использовался микроскоп AxioScope A1 со встроенной программой AxioVision rel.4.8.2 (Carl Zeiss GmbH, Германия), позволяющей определять размер помещенного в поле зрения микроскопа предмета с точностью до 1 мкм. Расчет среднего значения измеряемого размера, например диаметра конвертера каждого типа, проводился на основе данных десяти отдельных измерений. Доверительный интервал определялся с помощью программы StatGraphics Plus 2.1 (Statistical Graphics Corp., США).

Спектры свечения, возникающего в конвертерах под действием излучения лазера Alta-ST, доставляемого к конвертеру по волокну, на дистальном торце которого располагается исследуемый конвертер, измерялись в диапазоне 200-900 нм спектрометром Ocean Optics USB2000 (Ocean Optics, США). При регистрации спектра входной торец приемного волокна спектрометра устанавливался перпендикулярно оси оптического волокна, на дистальном торце которого находился конвертер, а оптическая ось приемного волокна спектрометра проходила через центр конвертера. При этом расстояние между плоскостью торца приемного волокна спектрометра и осью оптического волокна с конвертером для всех типов конвертеров было постоянным и составляло 50.0 ± 1.0 мм. Для всех спектральных измерений постоянная интегрирования приемной системы была одинаковой и равной 100 мс. Для построения спектра усреднялись данные десяти отдельных измерений.

3. Углеродсодержащий оптотермический волоконный конвертер

Конвертер этого типа формировался по двухстадийной технологии, описанной в [18, 28, 30], и представлял собой «объемный» сферический углеродсодержащий ОТВК [28]. При создании этого конвертера дистальный торец оптического волокна находился в контакте с плоской поверхностью мишени из активированного угля, при этом излучение полупроводникового лазера с максимальной средней мощностью до 12.0 ± 0.1 Вт, распространяясь по оптическому волокну в течение 0.50 ± 0.01 с, воздействовало на поверхность углеродсодержащей мишени. В результате мишень разрушалась, а продукты ее разрушения оседали на поверхности дистального торца волокна (шаг 1). После этого дистальный торец волокна размещался свободно в воздухе, а импульс излучения полупроводникового лазера с максимальной средней мощностью 11.0 ± 0.1 Вт и длительностью 1.00 ± 0.01 с, распространяясь по оптическому волокну дважды (с паузой в 0.50 ± 0.01 с), воздействовал на конвертер, формируя модифицированный слой (шаг 2). Характерный внешний вид углеродсодержащего ОТВК представлен на рис.1.

Рис.1. Характерный внешний вид углеродсодержащего ОТВК.

Диаметр углеродсодержащего ОТВК составляет 680 ± 20 мкм, длина – 340 ± 20 мкм [28]. Его боковая и торцевая поверхности покрыты углеродной пленкой, в центре, на продольной оси волокна, присутствует прозрачное «окно» диаметром 150 ± 20 мкм. Достаточно подробно устройство «объемного» углеродсодержащего ОТВК описано в работах [28,29], где показано, что наряду с углеродной пленкой конвертер состоит из кварца, внутри которого находятся поглощающие лазерное излучение микровключения.

4. Титансодержащий оптотермический волоконный конвертер

Конвертер этого типа формировался по трехстадийной технологии. При создании титансодержащего ОТВК дистальный торец оптического волокна погружался на 2-3 мм в кювету с порошком TiO₂ со средним размером частиц 0.1-0.2 мкм (ЗАО «Новосибирские наноматериалы», Россия). Излучение полупроводникового лазера с максимальной средней мощностью до 12.0 ± 0.1 Вт, распространяясь по оптическому волокну в течение 0.50 ± 0.01 с, воздействовало на этот порошок (шаг 1). В результате продукты абляции порошка оседали на поверхность дистального торца волокна. После этого дистальный торец волокна оставался погруженным в порошок, а импульс излучения полупроводникового лазера специальной формы с максимальной средней мощностью 11.0 ± 0.1 Вт и длительностью 1.00 ± 0.01 с, распространяясь по оптическому волокну, дважды с паузой в 0.50 ± 0.01 с воздействовал на конвертер, формируя модифицированный слой

Рис.2. Типичные осциллограммы средней мощности лазерного излучения (*a*) и температуры конвертера (б) в процессе формирования титансодержащего ОТВК.

Рис.3. Характерный внешний вид титансодержащего ОТВК.

(шаг 2), представляющий собой слабо связанную с волокном смесь порошка TiO₂ и кварца. Затем на конвертер, состоящий из модифицированного слоя и находящийся на воздухе, в течение 30 с воздействовало лазерное излучение со средней мощностью 3.5 ± 0.1 Вт (шаг 3). Осциллограммы, демонстрирующие поведение средней мощности лазерного излучения и температуры конвертера в процессе его создания, представлены на рис.2. Характерный внешний вид титансодержащего ОТВК представлен на рис.3. Его диаметр составлял 780 ± 20 мкм, длина – 700 ± 20 мкм.

Титансодержащий конвертер представлял собой спекшийся с кварцем в результате термообработки (шаг 3) оксид титана TiO_2 , о чем свидетельствует его белый цвет [33]. Следует также отметить высокую механическую связность конвертера с волокном, возникающую в результате спекания (шаг 3).

5. Эрбийсодержащий оптотермический волоконный конвертер

Конвертер этого типа формировался по трехстадийной технологии. При его создании дистальный торец оптического волокна на 2-3 мм погружался в кювету с порошком оксида эрбия Er₂O₃ со средним размером частиц 0.5-1.0 мкм (ЕСОМ, Япония). Излучение полупроводникового лазера с максимальной средней мощностью до 13.0 ± 0.1 Вт, распространяясь по оптическому волокну в течение 0.50 ± 0.01 с, воздействовало на этот порошок (шаг 1). В результате продукты абляции порошка оседали на поверхность дистального торца волокна. После этого дистальный торец волокна оставался погруженным в порошок, а импульс излучения полупроводникового лазера специальной формы с максимальной средней мощностью 11.0 ± 0.1 Вт и длительностью 1.00 ± 0.01 с, распространяясь по оптическому волокну, дважды с паузой в 0.50 ± 0.01 с воздействовал на конвертер, формируя модифицированный слой (шаг 2), представляющий собой слабо связанную с волокном смесь порошка Er₂O₃ и кварца. Затем на конвертер, состоящий из модифицированного слоя и находящийся на воздухе, в течение 15 с воздействовало лазерное излучение со средней мощностью 5.0 ± 0.5 Вт (шаг 3). Осциллограммы, демонстрирующие поведение средней мощности лазерного излучения и температуры конвертера в процессе его создания, представлены на рис.4. Характерный внешний вид эрбийсодержащего ОТВК представлен на рис.5. Его диаметр составлял 890 ± 20 мкм, а длина – 820 ± 20 мкм.

Эрбийсодержащий конвертер представлял собой спекшийся с кварцем в результате термообработки (шаг 3) оксид эрбия Er_2O_3 , о чем свидетельствует его розовый цвет [31]. Следует также отметить высокую механическую связность конвертера с волокном, возникающую в результате спекания (шаг 3).

Рис.4. Типичные осциллограммы средней мощности лазерного излучения (a) и температуры конвертера (δ) в процессе формирования эрбийсодержащего ОТВК.

Рис.5. Характерный внешний вид эрбийсодержащего ОТВК.

6. Динамика лазерного нагрева углерод-, титан- и эрбийсодержащих конвертеров

Типичные зависимости, характеризующие динамику лазерного нагрева конвертеров, находящихся на воздухе, при различных средних мощностях действующего на конвертер излучения полупроводникового лазера с длиной волны 980 ± 10 нм представлены на рис.6.

При воздействии лазерного излучения со средней мощностью 0.30 ± 0.05 Вт температура эрбийсодержащего конвертера стабилизируется на уровне 400 ± 40 °C, углеродсодержащего – на уровне 600 ± 50 °C, а титансодержащего – на уровне 800 ± 50 °C. При такой мощности конвертеры не разрушаются.

При воздействии лазерного излучения со средней мощностью 1.0 ± 0.1 Вт температура эрбийсодержащего конвертера стабилизируется на уровне 600 ± 50 °C, углеродсодержащего – на уровне 1000 ± 50 °C, а титансодержащего – на уровне 1450 ± 50 °C. При такой мощности конвертеры также не разрушаются. При средней мощности лазерного излучения 4.0 ± 0.1 Вт температура титан-

Рис.6. Динамика лазерного нагрева углерод- (*a*), титан- (*б*) и эрбийсодержащих (*в*) ОТВК при различной средней мощности падающего на конвертер излучения полупроводникового лазера с длиной волны 980 ± 10 нм.

содержащего конвертера достигает 2700 ± 50 °C, эрбийсодержащего – 1600 ± 50 °C, а динамика нагрева углеродсодержащего конвертера отличается от динамика нагрева двух других: его температура в течение первых 4–5 с лазерного воздействия ведет себя нестабильно, что объясняется частичным разрушением конвертера, а именно утратой углеродной пленки на поверхности, что отмечалось также в [28, 29].

Разрушение конвертеров на воздухе под действием лазерного излучения сопровождается деформацией (изменением формы) конвертера и приводит к падению регистрируемой в эксперименте температуры. Оно наблюдается для титан- и эрбийсодержащих ОТВК при средней мощности лазерного излучения свыше 10.0 ± 0.1 Вт, а для углеродсодержащего ОТВК – свыше 4.0 ± 0.1 Вт.

Таким образом, наименее эффективно при одинаковых условиях нагревается эрбийсодержащий ОТВК, а наиболее эффективно – титансодержащий. При этом оба они демонстрируют более высокую, чем углеродсодержащий конвертер, стойкость к воздействию лазерного излучения. Наблюдаемые различия, очевидно, связаны с различием в поглощающих способностях материалов конвертеров.

7. Спектры свечения углерод-, титани эрбийсодержащих конвертеров

Типичные спектры свечения конвертеров, возникающего при их нагреве лазерным излучением до температур из диапазона 600–1100 °С, регистрируемые в области 200–900 нм, представлены на рис.7.

Спектры свечения для углерод- и титансодержащих конвертеров в области 200–900 нм не содержат ярко выраженных полос (рис.7, a, δ). Регистрируемое свечение этих двух конвертеров можно связать с тепловым излучением, возникающим при их нагреве до температур 600–1100°С.

Рис.7. Спектры свечения углерод- (*a*), титан- (*б*) и эрбийсодержащих ОТВК (*в*) при различных температурах конвертеров и средних мощностях падающего на них излучения полупроводникового лазера с длиной волны 980 ± 10 нм.

Если предположить, что конвертер является абсолютно черным телом, то, согласно [32, 34], максимум его спектра свечения при повышении температуры смещается в область коротких длин волн. Этим обстоятельством можно объяснить рост интенсивности свечения в диапазоне 500–900 нм при увеличении температуры углерод- и титансодержащих конвертеров.

Спектр свечения эрбийсодержащего конвертера, регистрируемый в области 200–900 нм, существенно отличается от спектра свечения двух других рассмотренных конвертеров и имеет ярко выраженные полосы с максимумами на длинах волн 493, 523, 544, 660 и 798 нм, соответствующие излучательным переходам эрбия ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2} \rightarrow {}^{4}I_{15/2} , {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ и связанные с ап-конверсией [35].

Свечение эрбийсодержащего конвертера в видимой области может быть использовано для биостимуляции при одновременном иссечении биоткани, что согласно [36] позволяет сократить сроки ее постоперационного восстановления. Близость полосы свечения этого конвертера с максимумом на длине волны 660 нм к полосе поглощения радахлорина [6] открывает перспективы использования эрбийсодержащего ОТВК для фотодинамической терапии в онкологии, дерматологии и др. Титан- и эрбийсодержащие конвертеры также могут быть использованы для иссечения биотканей в контактной лазерной хирургии в качестве альтернативы углеродсодержащим конвертерам. Титансодержащий конвертер за счет высокой эффективности преобразования лазерной энергии в тепловую может повысить эффективность иссечения биоткани при сопоставимой мощности лазерного излучения.

8. Выводы

В работе исследованы углерод-, титан- и эрбийсодержащие оптотермические волоконные конвертеры, расположенные на дистальном торце кварц-кварцевого оптического волокна. Углеродсодержащий ОТВК сформирован по двухстадийной технологии, а титан- и эрбийсодержащие ОТВК - по трехстадийной. Показано, что наиболее эффективно под действием излучения полупроводникового лазера с длиной волны 980 нм нагревается титансодержащий ОТВК. Экспериментально установлено, что титан- и эрбийсодержащие конвертеры более устойчивы к воздействию лазерного излучения, чем углеродсодержащие. Обнаружено, что под действием лазерного излучения с длиной волны 980 нм все конвертеры излучают в области 200-900 нм. При этом наряду с тепловым излучением только в спектре свечения эрбийсодержащего конвертера наблюдаются ярко выраженные полосы, наличие которых позволит расширить область его биомедицинских применений. Например, полоса с максимумом в области 660 нм может быть использована для биостимуляции и фотодинамической терапии. Титан- и эрбийсодержащие конвертеры могут рассматриваться в качестве альтернативы существующим углеродсодержащим ОТВК в контактной лазерной хирургии.

- 1. Rai P.K., in *Emerging Trends in Laser & Spectroscopy and Applications* (New Delhi: Allied Publi., 2010).
- Gubitosi A., Ruggiero R., Ortolani R., Podzemny V., Parmeggiani D., Esposito E., Foroni F., Esposito A., Villaccio G. Ann. Ital. Chir., 75, 515 (2012).
- 3. Karu T., in Lasers in Medicine (New York: CRC Press, 2011, p.171).

- Гафтон Г.И., Семилетова Ю.В., Анисимов В.В., Гельфонд М.Л., Мяснянкин М.Ю., Новик А.В., Нехаева Т.Л., Балдуева И.А., Гафтон И.Г. Сибирский онкологический экурн., 4. 23 (2013).
- Samsöe Andersen E. Laser Diode Systems for Photodynamic Therapy and Medical Diagnostics (Lund: Lund University, 2004).
- 6. Власова О.Л. Вестник СПбГУ, Сер. 11, Медицина, 1, 170 (2011).
- Kaufmann R., Hartmann A., Hibst R. J. Dermatol. Surg. Onc., 20, 112 (1994).
- 8. Rao G., Tripthi P.S., Srinivasan K. Int. J. Laser Dent., 2, 74 (2012).
- 9. Kaufmann R., Hibst R. Clin. Exp. Dermatol., 15, 389 (1990).
- 10. Wieliczka D.M., Weng S., Querry M.R. Appl. Opt., 28, 1714 (1989).
- 11. Romanos G., Nentwig G.H. J. Clin. Laser Med. Sur., 17, 193 (1999).
- Sanz-Moliner J.D., Nart J., Cohen R.E., Ciancio S.G. J. Periodontol., 84, 152 (2013).
- Romanos G.E., Belikov A.V., Skrypnik A.V., Feldchtein F.I., Smirnov M.Z., Altshuler G.B. Laser. Surg. Med., 47, 411 (2015).
- Beer F., Körpert W., Passow H., Steidler A., Meinl A., Buchmair A.G., Moritz A. Laser. Med. Sci., 27, 917 (2012).
- 15. Capon A., Mordon S. Am. J. Clin. Dermatol., 4, 1 (2003).
- Rizzo L.B., Ritchey J.W., Higbee R.G., Bartels K.E., Lucroy M.D. J. Am. Vet. Med. Assoc., 225, 1562 (2004).
- Альтшулер Г.Б., Беликов А.В., Скрипник А.В., Фельдштейн Ф.И. Инновационная стоматология, 1, 2 (2012).
- Скрипник А.В. *Изв. вузов. Сер. Приборостроение*, **56**, 37 (2013).
 Belikov A.V., Feldchtein F.I., Altshuler G.B. US Patent № 2012/
- 0123399 A1/ № 13/379,916; appl. 31.12.2010; pub. 17.05.2012.
 20. Altshuler G.B. Proc. 19th Annual Conf. of the Academy of Laser Dentistry (Scottsdale, AZ, USA, 2012).
- Alta-ST Soft Tissue Surgical Modular System User Manual (Walpole, MA, USA, Dental Photonics, Inc., 2015).

- Belikov A.V., Skrypnik A.V., Shatilova K.V. Frontiers Optoelectron., 8, 212 (2015).
- Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. *Laser Phys.*, 20, 1641 (2010).
- Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser Phys., 21, 1230 (2011).
- Bagratashvili V.N., Yusupov V.I., Chudnovskii V.M. Proc. III Int. Symp. «Topical Problems of Biophotonics» (St. Petersburg – N.Novgorod, 2011).
- Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N., in *Hydrodynamics – Advanced Topics* (Rijeka, Croatia: InTech, 2011, p.95).
- Abela G.S., Barbeau G.R., in *Lasers in Cardiovascular Medicine* and Surgery: Fundamentals and Techniques (Norwell: Kluwer Acad. Publ., 1990, p.229).
- Беликов А.В., Скрипник А.В., Курнышев В.Ю., Шатилова К.В. Квантовая электроника, 46 (6), 534 (2016) [Quantum Electron, 46 (6), 534 (2016)].
- Belikov A.V., Skrypnik A.V., Kurnyshev V.Y. Proc. SPIE, 9917, 99170G (2016).
- 30. Скрипник А.В. Изв. вузов. Сер. Приборостроение, 58, 385 (2015).
- 31. Huber E.J., Head E.L., Holley C.E. J. Phys. Chem., 60, 1582 (1956).
- 32. Ландсберг Г.С. Оптика (М.: Физмалит, 2003).
- 33. Gesenhues U. Chem. Eng. Technol., 24 (5), 685 (2001).
- Панов В.А. Справочник конструктора оптико-механических приборов (Л.: Машиностроение, 1980).
- Narro-Garcia R., Chillce E.F., Barbosa L.C., de Posada E., Arronte M., Rodriguez E. J. Lumin., 134, 528 (2013).
- Копаев С.Ю., Малюгин Б.Э., Копаева В.Г. Вестник ТГУ, 20 (3), 619 (2015).

ПОПРАВКА

Ю.П.Яценко, Е.Н.Плетенева, А.Г.Охримчук, А.В.Гладышев, А.Ф.Косолапов, А.Н.Колядин, И.А.Буфетов. Генерация многозонного суперконтинуума в револьверном световоде с полой воздушной сердцевиной («Квантовая электрони-ка», 2017, т. 47, №6, с. 553–560).

В статье допущен ряд опечаток. На с. 557 в подрисуночной подписи к рис.9 вместо

Рис.9. Распространение спектрально-ограниченного гауссового импульса длительностью 200 фс в модах LP_{01} и LP_{21} при энергии входного импульса в каждой моде 6 мкДж: форма и спектр излучения на выходе световода длиной 3 м для мод LP_{01} (*a*) и LP_{02} (*b*); денситограммы эволюции спектра и формы импульса по длине световода для мод LP_{01} (*b*) и LP_{02} (*b*). На этом рисунке и рис.10 штриховой кривой показаны форма и спектр импульса на входе в световод.

должно быть

Рис.9. Распространение спектрально-ограниченного гауссова импульса длительностью 200 фс в модах LP_{01} и LP_{21} при энергии входного импульса в каждой моде 6 мкДж: форма и спектр излучения на выходе световода длиной 3 м для мод LP_{01} (*a*) и LP_{21} (*b*); денситограммы эволюции спектра и формы импульса по длине световода для мод LP_{01} (*b*) и LP_{21} (*c*). На этом рисунке и рис.10 штриховой кривой показаны форма и спектр импульса на входе в световода.