Антиотражающее покрытие элементов силовой алмазной оптики для CO₂-лазеров

П.А.Пивоваров, В.С.Павельев, В.А.Сойфер, К.В.Черепанов, В.И.Анисимов, В.В.Бутузов, В.Р.Сороченко, Н.В.Артюшкин, В.Е.Рогалин, Н.И.Щебетова, В.Г.Плотниченко, В.И.Конов

Разработана технология нанесения на алмазные подложки однослойного антиотражающего для излучения CO_2 -лазеров с $\lambda = 10.6$ мкм покрытия из PbF₂. В качестве подложек использованы пластины из поликристаллического CVD алмаза. Коэффициент пропускания алмазных пластин с двухсторонним покрытием достигал 98.5%–99%. Измеренная лучевая стойкость таких пластин в нормальных условиях окружающей среды для импульсного ($\tau \sim 100$ нс) и непрерывного излучения CO_2 -лазеров составила 250 и 4 MBm/см² соответственно. Эти значения сравнимы с порогами разрушения алмазных подложек. Обнаружено увеличение порога разрушения антиотражающего покрытия в непрерывном режиме воздействия до 5.5 MBm/см² при предварительном многократном облучении образцов менее интенсивным лазерным излучением. Этот эффект может быть объяснен удалением с поверхности пленки частиц и слоя адсорбата без ее разрушения (эффект лазерной очистки).

Ключевые слова: антиотражающее покрытие, лучевая стойкость, алмазная оптика, CO₂-лазер.

1. Введение

Для удовлетворения потребностей бурно развивающейся лазерной техники необходимо уменьшать массогабаритные размеры лазеров и других компонентов при одновременном увеличении мощности и снижении расходимости лазерного излучения. Для решения этих задач требуются новые оптические материалы со значительно улучшенными эксплуатационными свойствами. Одним из наиболее интересных с этой точки зрения материалов является синтетический алмаз, промышленные технологии получения которого активно развиваются с конца XX века.

В.Г.Плотниченко. Научный центр волоконной оптики РАН, Россия, 119333 Москва, ул. Вавилова, 38

Поступила в редакцию 12 октября 2018 г., после доработки – 19 октября 2018 г.

Алмаз обладает уникальными оптическими (диапазон прозрачности - от ближнего ультрафиолета до миллиметровых длин волн за исключением области фононного поглощения (2-6 мкм)) [1,2] и теплофизическими (коэффициент теплопроводности свыше 20 Вт-см⁻¹-К⁻¹) [3] свойствами. Благодаря рекордной теплопроводности алмаз способен выдерживать значительно большие лучевые нагрузки, чем традиционно применяемые оптические материалы [4-9]. Эти факты в комбинации с современными возможностями синтеза методом химического осаждения из газовой фазы (CVD) поликристаллических алмазных пластин больших размеров [10, 11] открывают новые перспективы использования алмаза как основного материала для элементов силовой оптики мощных лазеров - делительных пластин, выходных окон, линз и дифракционных оптических элементов (ДОЭ). В частности, это относится к СО₂-лазерам, являющимся наиболее мощными источниками импульсного и непрерывного излучения в среднем ИК диапазоне [9, 12, 13].

Однако большой показатель преломления алмаза приводит в нормальных условиях к значительным потерям энергии излучения на френелевское отражение (до ~30% на одном оптическом элементе). Использование микропрофилирования алмазной поверхности [14-16] или нанесение на нее антиотражающих (АО) тонких пленок [9,17-20] позволяет уменьшить такие потери до единиц процентов. При этом данные подходы не лишены недостатков. Создание поверхностных антиотражающих микроструктур затруднительно для исходно профилированной алмазной поверхности, например для поверхности ДОЭ. В случае интерференционных АО покрытий для получения минимальных потерь на отражение обычно используют многослойные и многокомпонентные покрытия. В то же время хорошо известно, что их лучевая прочность заметно снижается с ростом толщины и числа слоев [21, 22]. Выбор состава пленки определяется показателем преломления материала просветляемого элемента (подложки) и ее оптическими характеристиками в рабочем диапазоне

П.А.Пивоваров, В.И. Конов. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; Национальный исследовательский ядерный университет «МИФИ», Россия, 115409 Москва, Каширское ш., 31; е-mail: p_pivovarov@hotmail.com В.С.Павельев, В.А.Сойфер. Самарский университет, Россия, 443086 Самара, Московское ш., 34; Институт систем обработки изображений РАН, Россия, 443001 Самара, ул. Молодогвардейская, 151

К.В.Черепанов. Самарский университет, Россия, 443086 Самара, Московское ш., 34; Акционерное общество «Научно-исследовательский институт "Экран"», Россия, 443022 Самара, просп. Кирова, 24

В.И.Анисимов, В.В.Бутузов. Акционерное общество «Научно-исследовательский институт "Экран"», Россия, 443022 Самара, просп. Кирова, 24

В.Р.Сороченко. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38

Н.В.Артюшкин, Н.И.Щебетова. АО «Национальный центр лазерных систем и комплексов "Астрофизика"», Россия, 125424 Москва, Волоколамское ш., 95

В.Е.Рогалин. АО «Национальный центр лазерных систем и комплексов "Астрофизика"», Россия, 125424 Москва, Волоколамское ш., 95; Тверской государственный университет, Россия, 170100 Тверь, ул. Желябова, 33

длин волн лазерного излучения. При этом также необходимо учитывать адгезионные и теплофизические характеристики покрытия. Существенное отличие последних от характеристик материала подложки может привести к разрушению покрытия под действием тепловых полей при лазерном воздействии [20–22] или даже к усталостному разрушению покрытия под действием внутренних напряжений в процессе хранения.

Цель настоящей работы – создание однослойного AO покрытия для алмазных оптических элементов, подвергающихся воздействию высокоэнергетичного импульсного или непрерывного излучения CO₂-лазера с длиной волны 10.6 мкм, и исследование лучевой стойкости этого покрытия.

2. Технология нанесения и оптические свойства покрытия

Разработка архитектуры просветляющих покрытий, а также численное моделирование их спектральных характеристик проводились с использованием программных пакетов OptiLayer (МГУ им. М.В.Ломоносова, Россия) и MCalc Multilayer Calculation (Detlef Arhilger, Германия).

Нанесение покрытия проводилось методом электронно-лучевого напыления в высоком вакууме на установке SYRUSpro 710 (LEYBOLD OPTICS, Швейцария). Контроль роста пленки осуществлялся при помощи спектрофотометрической системы OMS-5000 (LEYBOLD OPTICS). Скорость напыления контролировалась кварцевой измерительной системой (INFICON, Швейцария). Для повышения качества наносимого покрытия и его адгезии перед напылением подложки прогревались, а затем подвергались обработке ионным пучком (ионная очистка аргоном).

Спектральные характеристики алмазной пластины с пленочным просветляющим покрытием контролировались ИК фурье-спектрометром Spectrum 100 Optica (Perkin Elmer, США). Измерение оптических констант (показателей преломления и поглощения) проводилось с использованием ИК эллипсометра IR-VASE (J.A.Woollam, США).

Для силовой лазерной оптики ИК диапазона ($\lambda \leq 8$ мкм) обычно используются покрытия на основе окислов [18, 19, 22]. В более длинноволновом диапазоне коэффициент поглощения окислов начинает заметно возрастать [23], что препятствует их применению в силовой оптике CO₂-лазеров. Покрытия на базе фторидов прозрачны в средней ИК области спектра (до 15 мкм) и имеют хорошие адгезионные свойства. Также такие покрытия обладают высокой климатической стойкостью и минимальными внутренними напряжениями на алмазной подложке, что особенно важно при их использовании в элементах силовой оптики.

В качестве пленкообразующего материала для АО покрытия был выбран фторид свинца (PbF₂), измеренный показатель преломления которого для излучения CO₂-лазера на $\lambda = 10.6$ мкм $n_{AR} = 1.55 - 1.56$ (при отсутствии заметного (измеримого) поглощения). Для покрытия из фторида свинца величина n_{AR} практически идеально удовлетворяет условию минимума потерь на отражение для однослойного четвертьволнового АО покрытия: $n_{AR} = \sqrt{n_d n}$, где $n_d = 2.4$ и n = 1 – показатели преломления алмазной пластины и окружающей среды (воздуха) соответственно. Рассчитанная зависимость коэффициента от-

1.0

Рис.1. Расчетный спектр отражения однослойного АО покрытия, нанесенного на обе поверхности CVD-алмазной подложки.

ражения покрытия от длины волны в среднем ИК диапазоне с учетом дисперсии показателя преломления пленки и подложки приведена на рис.1.

На полированную пластину из поликристаллического алмаза диаметром 1 см и толщиной 600 мкм было нанесено четвертьволновое AO покрытие из PbF₂ (с двух сторон). Измеренные спектры пропускания пластины в среднем ИК диапазоне до и после нанесения пленки показаны на рис.2.

Из рис.2 видно, что коэффициент пропускания достигает максимального значения 98.5% как раз в области длин волн 10-11 мкм (спектр 2 на рис.2), соответствующей рабочей длине волны генерации СО₂-лазеров. Изменение длины волны как в более коротковолновую, так и в длинноволновую области среднего ИК диапазона приводит к заметному увеличению оптических потерь излучения. Измерения коэффициента пропускания с использованием излучения CO₂-лазера с фиксированной длиной волны 10.6 мкм при малых интенсивностях излучения, заведомо не повреждающих покрытия, дало еще более оптимистическое значение – 99% ± 0.5%. Таким образом, на $\lambda = 10.6$ мкм коэффициент пропускания алмазной пластины за счет нанесения однослойного АО покрытия удалось увеличить более чем на 30% (относительно исходного значения для алмазной пластины, равного 68.5%). При этом измеренные потери R на отражение от поверхностей пластины с АО покрытием не превысили 0.5%.

Рис.2. Спектры пропускания алмазной пластины до нанесения AO пленки (I) и с двухсторонним антиотражающим покрытием из PbF₂ (2).

3. Исследования лучевой стойкости АО покрытия

В экспериментах по изучению лучевой стойкости покрытия из PbF_2 на алмазной пластине использовались CO_2 -лазеры, работающие как в непрерывном, так и в импульсном режимах генерации. Импульсное воздействие осуществлялось тем же CO_2 -лазером, что и в работе [20], в которой изучалась стойкость многослойного широкополосного покрытия на алмазной пластине, подробно описанным в работе [24]. Лазерный импульс состоял из пичка длительностью по полувысоте 85–90 нс и последующего пологого участка длительностью до 1 мкс. При этом в переднем пичке содержалось ~70% энергии всего импульса.

В качестве источника непрерывного лазерного излучения был выбран технологический лазер ТЛ 2.5 (ООО «Лазерный технологический центр», Россия). Использование в лазере внутрирезонаторной диафрагмы для улучшения качества излучения позволило получить близкое к одномодовому излучение с выходной мощностью до 1100 Вт. Лазерная мощность измерялась калориметром, встроенным в схему лазера. Поскольку в процессе эксперимента алмазная пластина не охлаждалась, то во избежание термодеформационных разрушений образца максимальное время воздействия лазерного пучка не превышало 1 с.

Методики регистрации параметров падающего на алмазную пластину и прошедшего через нее излучения CO₂лазера, а также проведения экспериментов по лазерному воздействию в целом повторяют описанные в работе [20].

Излучение фокусировалось на поверхность алмазного образца сферическими линзами из ZnSe с фокусными расстояниями 127 и 63.5 мм (импульсный режим воздействия) и из KCl с фокусным расстоянием 93 мм (воздействие непрерывного излучения). В первом случае размер перетяжки лазерного пучка по уровню 1/е² в фокусе линзы составлял 400 и 200 мкм соответственно, что позволило получить предельные интенсивности излучения 150 и 600 MBt/cm². В случае фокусировки непрерывного излучения (в пятно диаметром 160 мкм) максимальная интенсивность была равна 5.5 MBt/cm².

Признаки повреждения покрытия регистрировались (как в процессе лазерного облучения, так и после его завершения) оптическими методами. В первом случае начало процесса разрушения фиксировалось по уменьшению коэффициента пропускания пластины и/или по изменению распределения интенсивности излучения в пятне пробного пучка непрерывного излучения Не-Ne-лазера. Пробный пучок, прошедший через область воздействия излучения СО₂-лазера, проецировался на экран так, что характерный размер лазерного пятна на нем составлял \sim 7 мм. Любое, даже малое по размеру, повреждение пленочного покрытия вызывало дифракцию излучения с $\lambda =$ 0.63 мкм, приводящую к появлению в изначально однородном пятне черной точки размером 0.5-1.0 мм, окруженной ярким ореолом. После окончания воздействия излучения CO₂-лазера состояния АО покрытия и объема алмаза контролировались с помощью оптического микроскопа Axiotech Vario (Carl Zeiss, Германия). Измерялись также спектры оптического пропускания в среднем ИК диапазоне (5-14 мкм) облучаемой пластины. Спектральные характеристики контролировались как в областях, подвергаемых интенсивному лазерному воздействию, так и вне их (исходная алмазная пластина с двухсторонним покрытием). Измерения ИК спектров в ходе исследований лучевой стойкости покрытия проводились с помощью вакуумного ИК фурье-спектрометра IFS-113v (Bruker, США) с микроскопом, позволяющим измерять спектры оптического пропускания при диаметре пучка зондирующего излучения на образце вплоть до 40 мкм, что соответствовало условиям нашего эксперимента.

4. Результаты экспериментальных исследований лучевой стойкости АО покрытия и их обсуждение

Импульсный режим. Первая серия экспериментов проводилась с линзой с f = 127 мм, которая ранее применялась в наших исследованиях лучевой стойкости широкополосного многослойного АО покрытия алмаза [20]. Установлено, что даже при максимально достижимых в этих условиях интенсивностях излучения CO₂-лазера (до 150 MBt/cm²) каких-либо признаков повреждения пленки PbF₂ и алмаза не наблюдается. Дальнейшие исследования при этом режиме воздействия проводились с более короткофокусной линзой (f = 63,5 мм), позволяющей получать интенсивность излучения до 600 MBt/cm².

При импульсном воздействии излучения СО2-лазера порог возникновения приповерхностной плазмы и изменения пространственного распределения интенсивности пробного излучения Не-Ne-лазера были зафиксированы при $I_{tb}^{pulse} = 250 \text{ MBt/cm}^2$. Однако на облучаемой поверхности имелись области, в которых при появлении свечения плазмы вблизи пятна фокусировки изменений в распределении интенсивности пробного излучения Не-Ne-лазера не наблюдалось вплоть до 500-600 MBт/см². Контроль поверхности алмазной пластины с помощью оптического микроскопа при этом показал наличие заметного симметричного повреждения пленки PbF₂ как в случае регистрируемых изменений в пространственном распределении интенсивности пробного излучения при $I \approx I_{\text{th}}^{\text{pulse}}$ (рис.3,*a*), так и в случае их отсутствия в подобном распределении при $I \approx 600 \text{ MBt/cm}^2$.

Далее были проведены измерения коэффициента пропускания пластины с двухсторонним АО покрытием в зависимости от числа импульсов воздействующего излучения с интенсивностями, превышающими $I_{\rm th}^{\rm pulse}$. При однократном воздействии лазерного импульса с $I \approx$ 300 МВт/см² происходит уменьшение коэффициента пропускания от исходного, равного 99% ± 0.5%, до 96% ± 0.5%. При увеличении числа импульсов воздействия с указанной интенсивностью никакого дополнительного изменения пропускания не наблюдалось. Также не было зафиксировано заметных изменений характера повреж-

Рис.3. Микрофотографии областей повреждения антиотражающего покрытия после воздействия одного импульса CO₂-лазера с I = 300 (a) и 550 MBT/см² (δ).

Рис.4. Зависимость коэффициента пропускания алмазной пластины с двухсторонним покрытием из PbF_2 от числа лазерных импульсов с $I \approx 600 \text{ MBT/cm}^2$. Штриховая линия соответствует коэффициенту пропускания алмазной пластины без АО покрытия.

дений покрытия с ростом числа импульсов воздействия в сравнении с представленными на рис.3,*a*. Заметные изменения были зафиксированы только при увеличении интенсивности лазерного излучения до максимально достижимого в нашем эксперименте значения 600 MBt/cm². На рис.4 представлена зависимость коэффициента пропускания алмазной пластины с АО покрытием на обеих ее сторонах от числа импульсов лазерного воздействия при $I \approx 600 \text{ MBt/cm}^2$. Штриховая линия на рис.4 соответствует коэффициенту пропускания 68.5% непросветленной алмазной пластины.

При увеличении числа лазерных импульсов с выбранной интенсивностью до 24 наблюдались не только повреждения покрытия, но и повреждения в объеме алмаза, что приводило к уменьшению коэффициента пропускания ниже исходного уровня для чистой алмазной пластины, т. е. имел место эффект накопления повреждений в алмазе, иначе называемый оптической усталостью.

Воздействие непрерывным излучением. В процессе исследования лучевой прочности АО покрытия при работе с излучением непрерывного CO₂-лазера интенсивность облучения варьировалась от 100 кВт/см² до максимально достижимой в условиях нашего эксперимента (5.5 МВт/см²). Временной интервал τ , в течение которого осуществлялось лазерное воздействие, выбирался в диапазоне 0.6–1 с с помощью механического затвора, установленного на выходе CO₂-лазера. Состояние покрытия и объема алмаза контролировалось после каждого пуска с помощью оптического микроскопа. Постепенное увеличение интенсивности облучения показало, что при $I_{\rm th}^{\rm CW} = 4.2 - 4.4$ МВт/см² в 75% случаев наблюдалось повреждение АО покрытия алмазной пластины.

Микрофотография типичной области повреждения, полученная с помощью оптического микроскопа, представлена на рис.5. Обращает на себя внимание несимметричность зоны разрушения пленки, в отличие от случая импульсного воздействия. Исходное пространственное распределение интенсивности лазерного излучения в пятне фокусировки было, как и в случае с импульсным воздействием, симметричным относительно оси пучка и близким к гауссову. Темное пятно, смещенное на рис.5 выше центра пятна облучения (характерный размер области повреждения 160 мкм), отвечает области максимального повреждения поверхности пленки. Полагаем, что данная несимметричность связана с тем, что эпицентрами начала разрушения покрытия могут служить неодно-

Рис.5. Микрофотография области повреждения АО покрытия при воздействии излучения непрерывного CO₂-лазера с $\lambda = 10.6$ мкм при I = 4.5 MBT/см² и $\tau = 0.6$ с.

родности самой пленки, дефекты исходной поверхности алмаза, а также осевшие из воздуха частицы пыли и слой поверхностного адсорбата [25].

Экспериментально нами обнаружено достаточно заметное влияние поверхностного адсорбата (по-видимому, смесь воды и частиц) на процесс разрушения АО покрытия под действием непрерывного лазерного излучения. Тестируемый образец сдвигался из фокальной плоскости навстречу лазерному пучку, к линзе. Постепенно, путем передвижения образца в обратном направлении, характерный размер пятна облучения на поверхности алмазной пластины варьировался от 1 мм до исходных 160 мкм. Плавно изменяя мощность излучения и размер пятна, мы смогли достичь предельной для наших экспериментов интенсивности 5.5 МВт/см². При этом признаков повреждения АО покрытия и объема алмазной пластины обнаружено не было. Этот эффект мы связываем с лазерной очисткой поверхности пленки [25] в допороговом режиме.

На рис.6 показаны спектры пропускания областей алмазной пластины с АО покрытием, в которых наблюдалось повреждение просветляющей пленки (спектры 2 и 3), и спектр области, предварительно обработанной методом лазерной очистки, после воздействия излучения с $I = 5.5 \text{ MBT/cm}^2$ (спектр 4). Для сравнения на рис.6 также показан спектр исходной просветленной пластины (спектр I). Спектр 2 на рис.6 соответствует области повреждения АО покрытия, показанной на рис.5. Из рис.6 видно, что повреждение пленки приводит к заметным потерям излучения на рабочей длине волны 10.6 мкм (спектры 2 и 3), а

Рис.6. Спектры пропускания алмазной пластины с АО покрытием: I – до воздействия излучения непрерывного CO₂-лазера, 2 и 3 – для поврежденных областей пленки после воздействия с I = 4.4 (τ = 0.8 с) и 4.5 MBT/см² (τ = 0.6 с) соответственно, 4 – после процедуры лазерной очистки и последующего облучения с I = 5.5 MBT/см² (τ = 1 с).

лазерная очистка и последующее лазерное воздействие с $I > I_{th}^{CW}$ не изменяют спектральных характеристик АО покрытия (спектр 4). В связи с этим возможной причиной различия спектров 2 и 3 на рис.6 для зон повреждения, полученных в близких экспериментальных условиях, является наличие поверхностного адсорбата и частиц на исходной необлученной поверхности. Уменьшение коэффициента пропускания ниже уровня, характерного для поликристаллического алмаза без АО покрытия (спектр 3), объясняется, вероятнее всего, рассеянием и поглощением излучения как на дефектах разрушенной подложке.

Наши оценки температуры покрытия Т в центре пятна облучения на поверхности пластины, исходя из решения уравнения теплопроводности [26] (без учета нелинейного поглощения), показали, что наибольшие изменения температуры достигаются, если предположить, что все наблюдаемые в эксперименте потери излучения (~0.1%), с учетом отражения $R \le 0.5\%$, в просветленном элементе определяются оптическим поглощением покрытия толщиной ~1 мкм. При этом реализуется модель поверхностного источника тепла с преимущественным теплоотводом в алмазную подложку (коэффициент теплопроводности алмаза $k_{\rm d} \ge 20 \ {\rm Br} \cdot {\rm cm}^{-1} \cdot {\rm K}^{-1}$ значительно превышает коэффициент для PbF₂ (k = 0.014 Вт·см⁻¹·K⁻¹ [27])). Такое предположение дает максимальное изменение температуры $\Delta T \leq 100$ К как при импульсном, так и при непрерывном лазерном воздействии, что намного ниже температуры плавления PbF_2 ($T \approx 1100$ K). Таким образом, лазерный нагрев в наших условиях не может привести к разрушению покрытия. По-видимому, определяющую роль в реальных процессах поглощения энергии лазерного излучения и теплоотвода из области воздействия должны играть дефекты самой алмазной пластины или локальное отслоение и неоднородности покрытия [28], а также поверхностный водный адсорбат и частицы из окружающего алмазный элемент воздуха [25]. Такое объяснение также допускает зафиксированный в наших экспериментах разброс по порогу разрушения при импульсном воздействии (см. рис.3).

Экспериментально полученные пороги разрушения однослойного АО покрытия сравнимы с порогами разрушения поликристаллического алмаза [6-9,14] и значительно превышают порог разрушения многослойного покрытия для диапазона длин волн 8-12 мкм [20], в состав которого также входит PbF₂, при импульсном воздействии излучения CO₂-лазера (с I = 50 MBt/см² до $I \ge$ 250 MBt/см²). В случае непрерывного воздействия также наблюдается увеличение лучевой стойкости однослойной пленки, но менее выраженное (с $I \ge 3$ MBt/см² до I =4-5.5 MBt/см² соответственно). Мы связываем это с заметным увеличением размера пятна облучения в настоящих исследованиях лучевой стойкости при непрерывном воздействии (с 35 до 160 мкм), что сказывается на процессах поглощения и теплоотвода из области лазерного воздействия, определяемых дефектами алмазного образца с АО покрытием.

5. Заключение

Нами продемонстрирована большая перспективность использования однослойных четвертьволновых пленок из PbF₂ в качестве АО покрытий для алмазной оптики

мощных CO_2 -лазеров как в импульсном, так и в непрерывных режимах облучения. Пороговые интенсивности разрушения таких просветляющих пленок оказались сравнимыми с лучевой стойкостью собственно алмазных пластин [6–9, 14], а также не уступают порогам лазерного разрушения субволновых поверхностных структур [15], обладая при этом целым рядом преимуществ (простота технологий изготовления, возможность использования на неплоских поверхностях оптических элементов и др.).

Исследования лучевой стойкости АО покрытия выполнены при поддержке Российского научного фонда (проект № 14-22-00243), разработка технологии АО покрытия частично финансировалась Минобрнауки РФ (проект № 16.7894.2017/6.7).

- 1. Zaitsev A. Optical Properties of Diamond (Berlin, Heidelberg: Springer, 2001)
- Sussmann R.S., Brandon J.R., Scarsbrook G.A., Sweeney C.G., et al. Diam. Rel. Mater., 3, 303 (1994).
- 3. Nazare M.H. Properties, Growth and Applications of Diamond (Liverpool: Inspec, 2001).
- Рогалин В.Е. Изв. вузов. Сер. Матер. электрон. техники, № 2, 11 (2013).
- Sussmann R.S., Scarsbrook G.A., Wort C.J.H., Wood R.M. *Diam. Rel. Mater.*, 3, 1173 (1994).
- Pickles C.S.J., Madgwick T.D., Sussmann R.S., Wort C.J.H. *Diam. Rel. Mater.*, 9, 916 (2000).
- Rogalin V.E., Ashkenazi E.E., Popovich A.F., Ral'chenko V.G., Konov V.I., Aranchii S.M., Ruzin M.V., Uspenskii S.A. *Rus. Microelectron.*, 41 (8), 464 (2012).
- Rogalin V.E., Ashkinazi E.E., Popovich A.F., Ral'chenko V.G., Konov V.I., Aranchii S.M., Ruzin M.V., Rogozhin M.V. *Phys. Wave Phenom.*, 26 (2), 75 (2018).
- Massart M., Union P., Scarsbrook G. A., Sussmann R.S., Muys P. Proc. SPIE, 2714, 177 (1996).
- 10. Конов В.И. (ред.) Углеродная фотоника (М: Наука, 2017).
- 11. Хмельницкий Р.А. УФН, 185, 143 (2015).
- Godfried H.P., Coe S.E., Hall C.E., Pickles Ch.S., Sussmann R.S., Tang X., van der Voorden W.K.L. *Proc. SPIE*, 3889, 553 (2000).
- Кононенко В.В., Конов В.И., Пименов С.М., Прохоров А.М., Павельев В.С., Сойфер В.А. Квантовая электроника, 26 (1), 9 (1999) [Quantum Electron., 29 (1), 9 (1999)].
- Kononenko T.V., Kononenko V.V., Konov V.I., Pimenov S.M., Garnov S.V., Tishchenko A.V., Prokhorov A.M., Khomich A.V. *Appl. Phys. A: Mater. Sci. Proc.*, 68 (1), 99 (1999).
- 15. Muhr A., Mulligan G. Photon. Spectra, 50 (3), 46 (2016).
- Гололобов В.М., Кононенко В.В., Конов В.И. Квантовая электроника, 46 (12), 1154 (2016) [Quantum Electron., 46 (12), 1154 (2016)].
- 17. Mollart T.P., Lewis K.L. Diam. Rel. Mater., 10 (3-7), 536 (2001).
- Klemm K.A., Patterson H.S., Johnson L.F., Moran M.B. Proc. SPIE, 2286, 347 (1994).
- Lu F.X., Guo H.B., Guo S.B., He Q., Li C.M., Tang W.Z., Chen G.C. Diam. Rel. Mater., 18 (2), 244 (2009).
- Komlenok M.S., Pivovarov P.A., Volodkin B.O., Pavelyev V.S., Anisimov V.I., et al. *Phys. Lett.*, **15** (3), 036001 (2018).
- 21. Song Z., Cheng X., Ma H., et al. Appl. Opt., 56 (4), 188 (2017).
- Свечников М.Б. Лучевая прочность диэлектрических покрытий вдиапазонедлинволн0.251004–1.06мкм(С.Пб.:ВНЦГОИим.С.И. Вавилова, 1992).
- Traylor Kruschwitz, J.D., Pawlewicz, W.T. Appl. Opt., 36 (10), 2157 (1997).
- 24. Сороченко В.Р. Квантовая электроника, **47** (1), 20 (2017) [*Quantum Electron.*, **47** (1), 20 (2017)].
- Ковалёв В.И., Файзуллов Ф.С. Квантовая электроника, 4 (3), 587 (1977) [Quantum Electron., 4 (3), 587 (1977)].
- Вейко В.П., Либенсон М.Н., Червяков Г.Г., Яковлев Е.Б. Под ред. В.И. Конова. Взаимодействие лазерного излучения с веществом. Силовая оптика (М.: Физматлит, 2008).
- Popov P.A., Sidorov A.A., Kul'chenkov E.A., Anishchenko A.M., Avetissov I.Ch., Sorokin N.I., Fedorov P.P. *Ionics*, 23, 233 (2017).
- Артемьев А.А., Бонч-Бруевич А.М., Свечников М.Б. ЖТФ, 48 (12), 2566 (1978).