ЛАЗЕРЫ

Генерационные характеристики новых лазерных керамик отечественного производства

В.В.Безотосный, В.В.Балашов, В.Д.Булаев, А.А.Каминский, А.Ю.Канаев, В.Б.Кравченко, А.В.Киселев, Ю.Л.Копылов, А.Л.Коромыслов, О.Н.Крохин, К.В.Лопухин, С.Л.Лысенко, М.А.Панков, К.А.Полевов, Ю.М.Попов, Е.А.Чешев, И.М.Тупицын

Исследована эффективность генерации образцов керамики на основе иттрий-алюминиевого граната (ИАГ), легированного неодимом, полученных в 2016-2017 гг. в ФИРЭ им. В.И Котельникова РАН и ФКП «ГЛП "Радуга"», в усло-Bugx продольной и поперечной диодной накачки. Эффективность генерации лазеров на основе керамик составила 64%при продольной накачке и 68%-70% при поперечной. Измерены времена жизни лазерного уровня в керамиках с концентрацией иона-активатора 1, 2, 3 и 4 ат.%. Полученные значения времени жизни хорошо согласуются с литературными данными. При полуконфокальной конфигурации резонатора в условиях синхронизации поперечных мод и продольной диодной накачки (т.е. в условиях, проявляющих высокую чувствительность к концентрации остаточных пор, исследованы зависимости порогов генерации от длины резонатора для различных образцов лазерных керамик. По совокупности проведенных исследований показано, что качество первых образцов российских лазерных керамик, полученных в промышленных условиях, практически не уступает качеству керамики производства Konoshima Chem. Corp., Ltd., принимаемой в лазерном сообществе в качестве эталона.

Ключевые слова: лазерная керамика, спекающие добавки, синхронизация поперечных мод.

1. Введение

Одной из проблем технологии получения высококачественной оптической керамики, в частности керамики на основе иттрий-алюминиевого граната (ИАГ) лазерного качества, является задача устранения остаточных пор. Появление остаточной пористости в процессе твердофазного реактивного спекания обусловлено рядом факторов, в том числе морфологией и дисперсностью порошков исходных оксидов [1-4], отступлением от стехиометрии в химическом составе смеси оксидов [5], условиями компактирования и спекания [6-10], а также наличием и типом спекающих добавок (СД) [11-16]. В ФИРЭ им. В.А.Котельникова РАН были найдены комбинации спекающих добавок, обеспечивающие концентрацию остаточных пор, не превышающую 0.0002% [17]. В лабораторных и производственных условиях в качестве исходных материалов использовались порошки оксидов иттрия и неодима (ООО «Ланхит»), а также оксида алюминия (Sumitomo Chem. Co., Ltd). Далее все материалы и образцы, произведенные в ФИРЭ и в «Радуге», отмечены индексами Ф

В.В.Безотосный, А.Л.Коромыслов, О.Н.Крохин, К.А.Полевов, Ю.М.Попов, Е.А.Чешев, И.М.Тупицын. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: imtupitsyn@yandex.ru

В.В.Балашов, В.Б.Кравченко, Ю.Л.Копылов, К.В.Лопухин. Фрязинский филиал Института радиотехники и электроники им. В.А.Котельникова РАН, Россия, Московская обл., 141190 Фрязино, пл. Введенского, 1

В.Д.Булаев, А.Ю.Канаев, А.В.Киселев, С.Л.Лысенко, М.А.Панков. ФКП «ГЛП "Радуга"», Россия, Владимирская обл., 600910 Радужный, а/я 771

А.А.Каминский. Федеральный научно-исследовательский центр «Кристаллография и фотоника» РАН, Россия, 119333 Москва, Ленинский просп., 59

Поступила в редакцию 13 июня 2018 г., после доработки – 1 августа 2018 г.

и Р соответственно, а образцы производства Konoshima Chem. Co., Ltd – индексом К.

Порошки редкоземельных оксидов предварительно подвергались химическому переосаждению по традиционной методике [7] с целью устранения жестких агломератов. Порошки оксида алюминия использовались без предварительной обработки. Порошки оксидов, взятые в стехиометрическом соотношении соединения $Y_{3-x}Nd_xAl_5O_{12}$ (*x* = 0.001, 0.002, 0.003 и 0.004), смешивались в планетарной мельнице с использованием изопропанола в качестве дисперсной среды. Затем смесь гранулировалась в установке распылительной сушки (грануляторе) для получения пресс-порошка. Использование гранулированного пресс-порошка - крайне важный технологический прием в стремлении получить минимальную остаточную пористость керамики. Идеальные сферы такого пресс-порошка обеспечивают максимально однородную плотность упаковки частиц при компактировании. На рис.1 показаны общий вид пресс-порошка и микроструктура керамики, не содержащей остаточных пор.

Пресс-порошок с гранулами диаметром 50-70 мкм предварительно формировался в компакт нужных разме-

100 мкм

б

Рис.1. Общий вид пресс-порошка, полученного распылительной сушкой (а), и микроструктура керамики (б).

ров одноосным прессованием при давлении 20–50 МПа и окончательно – в изостате при давлении 250 МПа. Компакты спекались в вакуумной печи с вольфрамовым нагревателем при температуре 1600–1780 °С. После спекания образцы отжигались в атмосфере воздуха при температуре 1100–1450 °С.

Цель настоящей работы – оценка генерационных характеристик образцов керамик, а также использование лазерной методики в качестве инструмента экспресс-оценки пористости лазерных керамик.

2. Эффективность генерации образцов новых керамик Nd: YAG

Исследовались образцы керамик Nd^{3+} : YAG с концентрацией иона-активатора 1 ат.%. Исследованные образцы имели размеры: P – 3×3×4 мм, 3×3×11 мм и 4.5×5×20 мм; $\Phi - \emptyset12 \times 5$ мм. Размеры образцов эталонной керамики К были $10 \times 10 \times 3.3$ мм. Общий вид образцов керамик и заготовок, из которых они получены, приведен на рис.2.

Генерационные характеристики новых керамик исследовались в лазерных схемах с продольной и поперечной диодной накачкой. Схема лазера с продольной диодной накачкой приведена на рис.3. Резонатор лазера был образован сферическим зеркалом 31 и плоским выходным зеркалом 32, что позволило избежать проявлений внутрирезонаторного астигматизма [18]. Сферическое зеркало 31 являлось глухим на длине волны генерации ($R_{1064} = 99.96\%$) и просветленным на длине волны накачки ($T_{808} \ge 99\%$). В экспериментах использовались зеркала 31 с радиусами кривизны 150 и 200 мм. Плоское зеркало 32 имело коэффициент отражения 96% на длине волны генерации. Торцы активных элементов были просветлены на длинах волн генерации и накачки. При измерениях эффективно-

Рис.2. Общий вид образцов керамик $\Phi(a)$ и Р (б, в).

Рис.3. Схема лазерной установки с продольной диодной накачкой: *I* – лазерный диод; 2, 3 – элементы коллимации излучения накачки; 4 и 6 – зеркала резонатора 31 и 32 соответственно; 5 – керамический активный элемент на основе Nd:YAG; 7 – эталонная пластина-ослабитель; 8 – ССD-камера; 9 – калориметрический приемник; *10* – цветные светофильтры.

Рис.4. Принципиальная схема измерения эффективности образцов лазерной керамики при поперечной диодной накачке матрицами ЛД (МЛД).

сти генерации применялась конфигурация резонатора, близкая к полуконфокальной.

Накачка осуществлялась излучением лазерного диода (ЛД) с выходной мощностью до 10 Вт и длиной волны излучения 808 нм. Для уменьшения влияния термооптических искажений активной среды использовался импульсно-периодический режим накачки со скважностью 20. При измерениях эффективности генерации применялся режим накачки со скважностью 2, что позволяло проводить измерения средней мощности с достаточной точностью. Диаметр сечения пучка накачки по уровню 0.5 в активном элементе составлял 220 мкм. Длина волны излучения накачки 808 нм обеспечивалась подстройкой температуры ЛД, для чего он устанавливался на термоэлектрический модуль, работающий на эффекте Пельтье.

Порог генерации регистрировался с помощью CCDкамеры THORLABSBS C106-VIS (диапазон регистрируемых длин волн излучения 350–1100 нм). Ослабление интенсивности излучения, падающего на ПЗС-матрицу CCD-камеры, осуществлялось за счет его отражения от поверхности пластины из стекла К8. Перед CCD-камерой устанавливался светофильтр ИКС-7, обеспечивающий подавление остаточного излучения накачки.

Схема эксперимента для лазера с поперечной диодной накачкой представлена на рис.4. Резонатор лазера в этом случае образован двумя плоскими зеркалами, одно из которых на длине волны генерации было глухим, а другое имело коэффициент отражения R = 70%.

Энергии импульсов излучений накачки и генерации измерялись калориметрическим измерителем энергии PE-50. Мощности импульсов генерации и накачки рассчитывались по измеренной энергии с учетом регистрируемой формы импульсов (рис.5). Импульсная мощность генерации определялась после ее выхода на стационарное значение в конце импульса накачки. Последняя осуществлялась диодными матрицами (ООО «НПП "Инжект"») через две боковые грани активного керамического элемента. Длительность импульса накачки составляла 250 мкс, частота следования импульсов – 1 Гц.

Сравнение эффективностей генерации образцов керамик Р и К в схеме с продольной диодной накачкой дано на рис.6. Измеренные значения дифференциальной эффективности η_{1p} составили для керамики Р 64% и для керамики К 65%.

Результаты исследования генерационных характеристик образцов керамики Р в схеме с поперечной накачкой приведены на рис.7. Дифференциальная эффективность

Рис.5. Временные формы импульсов мощности накачки (1) и генерации (2) при поперечной накачке матрицами ЛД.

Рис.6. Сравнение эффективностей эталонного образца керамики К (1) и образца керамики Р размером 3×3×4 мм (2) при продольной диодной накачке.

Рис.7. Эффективность лазерной генерации при поперечной диодной накачке для образцов керамики Р размером $3 \times 3 \times 11$ мм ($\eta_{tp} = 68\%$, $P_{th} = 136$ Вт) (*1*) и размером $4.5 \times 5 \times 20$ мм ($\eta_{tp} = 70\%$, $P_{th} = 462$ Вт) (*2*).

составила 68%-70%. Более высокая эффективность в этом случае объясняется равномерностью накачки активных керамических элементов в условиях двухсторонней поперечной накачки. Нужно отметить, что указанная эффективность образцов керамики Р получена при мощности

Табл.1. Время жизни лазерного уровня для Nd:YAG-керамик Ф и К.

Концентрация Nd ³⁺ (ат.%)	Время жизни (мкс)	
	Керамика Ф	Керамика К
1	243	234
2	200	174
3	136	_
4	105	94

Рис.8. Кинетика люминесценции образцов керамики Φ с концентрациями иона Nd³⁺ 1 (*I*), 2 (*2*), 3 (*3*) и 4 ат.% (*4*).

накачки до 1.8 кВт. При этом импульсная мощность генерируемого лазерного излучения составила 900 Вт.

3. Времена жизни лазерного уровня в Nd: YAG-керамиках с различной концентрацией иона-активатора

Для измерения времени жизни электронов на лазерном уровне использовались образцы керамики Nd: YAG Ф диаметром 6 мм и толщиной 1 мм с концентрациями иона-активатора 1, 2, 3 и 4 ат.%. Времена жизни измерялись по кинетике люминесценции, возбуждаемой импульсами излучения ЛД длительностью 250 мкс со скважностью 40. Излучение накачки коллимировалось в исследуемые образцы керамик в пучок диаметром около 1 мм. Кинетика люминесценции образцов регистрировалась с помощью фотоприемника InGaAs с полосой 5 ГГц и осциллографа Tektronix TDS 2012C с полосой 100 МГц. Полученные кривые тушения люминесценции в указанных образцах керамики показаны на рис.8.

Измеренные значения времени жизни лазерного уровня для Nd:YAG-керамики Ф и (для сравнения) соответствующие значения для керамики К, взятые из работы [19], приведены в табл.1. Видно, что полученные значения времени жизни лазерного уровня в образцах керамики Ф при различных концентрациях иона-активатора хорошо согласуются с аналогичными литературными данными для керамики К.

4. Методика экспресс-оценки пористости лазерной керамики

В работе [20] показано, что остаточная пористость лазерных керамик приводит к заметному снижению выходной мощности и эффективности лазера с керамическим активным элементом. В основном это вызвано рассеянием излучения на остаточных порах с размерами, сравнимыми с длиной волны генерации. Качественной можно считать ту керамику, в которой объемная концентрация остаточных пор находится на уровне 0.0001%, т. к. именно при такой концентрации остаточных пор их влияние на лазерную эффективность практически не наблюдается. Таким образом, поиск эффективного метода оценки малых концентраций остаточных пор становится актуальным. В наших экспериментах измерялся порог генерации, величина которого, как оказалось, весьма чувствительна к малым потерям, связанным с рассеянием в пористых керамиках [17].

Измерение порога генерации осуществлялось в схеме с продольной накачкой в областях конфигураций резонатора, в которых в условиях синхронизации поперечных мод проявляется высокая чувствительность к потерям, связанным с любыми фазовыми искажениями, приводящими к изменениям ансамбля мод в составе основной моды и вызванными, например, рассеянием в активной среде [21]. Для измерения зависимости порога генерации от длины резонатора в области полуконфокальной конфигурации в условиях синхронизации поперечных мод использовалась схема лазера с продольной накачкой (см. рис.3). Выходное зеркало 32 устанавливалось на трансляционную платформу (Standa), что позволяло изменять длину резонатора с точностью 2.5 мкм практически во всей области его устойчивости без разъюстировки. В активном элементе оптической системой формировался пучок накачки диаметром 220 мкм, что вдвое меньше размера гауссовой моды резонатора. Это удовлетворяло условию реализации синхронизации поперечных мод [22] в конфигурациях резонатора, описываемых выражением

$$\arccos\sqrt{g_1g_2} = \pi \frac{r}{s},$$

где r/s – параметр, характеризующий вырождение; $g_{1,2}$ = 1 – *L*/*R*_{1,2} – параметр устойчивости резонатора; *L* – длина резонатора; R_{1,2} – радиусы кривизны зеркал [22]. В экспериментах по измерению порогов генерации образцов керамики использовалась конфигурация резонатора, близкая к полуконфокальной: r/s = 1/4, L = 76 мм для зеркала с $R_1 = 150$ мм. Коэффициент пропускания *T* выходного плоского зеркала составлял 4%. Результаты измерений зависимости порога генерации от отстройки от длины резонатора L, соответствующей полуконфокальной конфигурации резонатора, для образцов керамик YAG: Nd (1 ат.%) Ф, Р и К приведены на рис.9. Видно, что для всех трех типов керамики зависимости порога генерации P_{th} от отстройки ΔL отличаются не более чем на 4 мВт. Поскольку порог генерации лазера на основе керамики Nd : YAG с концентрацией остаточных пор 60 ррт равен 1.6 Вт, образцов с пористостью 20 ррт – 0.7 Вт, а образца с пористостью 1 ppm – 12 мВт [21], методом линейной регрессии была оценена крутизна зависимости порога от концентрации пор, составившая 26 мВт/ррт. При этом оценка среднеквадратичного отклонения в пределах указанного диапазона пористости дает ошибку не более 10%. Поэтому оценка разброса пористости исследованных керамик не превышает 0.0001 % относительно пористости эталонной керамики К 1 ррт, что свидетельствует о высоком лазерном качестве керамик указанных производителей.

Исследовалась также однородность образцов лазерной керамики P с размерами 3×3×4 мм и 3×3×6 мм, вы-

Рис.9. Зависимости порогов генерации от отстройки от длины резонатора в области полуконфокальной конфигурации для активных элементов из керамики $\Phi(1)$, K (2) и P (3, 4) (a), а также для активных элементов из керамики P с размерами $3 \times 3 \times 4$ мм (4, 5, 6) и $3 \times 3 \times 6$ мм (3), вырезанных из различных участков керамического диска диаметром 70 мм (δ).

резанных из различных мест керамического диска диаметром 70 мм (рис.9, *б*).

Зависимости $P_{\text{th}}(\Delta L)$ измерялись в импульсно-периодическом режиме с длительностью импульса $\tau = 1$ мс и периодом T = 20 мс. Рабочая температура лазерного диода обеспечивала длину волны излучения накачки 808.5 нм, что совпадало с максимумом поглощения накачки в активном элементе. Ширина спектра излучения накачки составляла 1.2 нм при токе ЛД до 4 А. Доля поглощенной мощности накачки в образцах $3 \times 3 \times 4$ мм составляла $80 \pm 1\%$, а для образцов $3 \times 3 \times 6$ мм – $99 \pm 1\%$.

 ствует остаточной пористости 0.1 ppm), что свидетельствует о высокой однородности образцов лазерной керамики.

5. Заключение

Исследование генерационных характеристик отечественных керамик Р и Ф показало высокую (до 70%) дифференциальную эффективность η_{dif} преобразования излучения накачки в генерируемое излучение при предельно возможной эффективности для этого типа керамики $\eta = 72\%$ (из них 76% приходится на квантовый дефект, а 95% – на квантовый выход [23]). Оценка объемных потерь α в керамике (на рассеяние и поглощение) по формуле

$$\eta_{\rm dif} = \frac{1-R}{1+R} \frac{\eta}{\alpha L + 0.5 \ln(1/R)}$$

дает $\alpha \le 0.0016 \text{ см}^{-1}$ при $\eta_{\text{dif}} = 70 \%$.

Полученные результаты позволяют утверждать, что созданная в ФИРЭ им. В.А.Котельникова технология лазерной керамики соответствует уровню мировых достижений. Технология внедрена на предприятии ФКП «ГЛП "Радуга"».

Работа выполнена при поддержке Программы Президиума РАН №07 «Актуальные проблемы фотоники, зондирование неоднородных сред и материалов».

- Esposito L., Costa A.L., Medri V. J. Europ. Ceram. Soc., 28, 1065 (2008).
- Ikesue A., Furusato A., Kamata K. J. Am. Ceram. Soc., 78 (1), 225 (1995).
- Liu J., Lin L., Li J., Liu J, Yuan Y., Ivanov M., Chen M., Liu B., Ge L., Xie T., Kou H., Shi Y., Pan Y., Guo J. *Ceram. Internat.*, 40 (7), 71271 (2014).
- Li X., Li J.-G., Xiu Z., Huo D., Sun X. J. Am. Ceram. Soc., 92 (1), 241 (2009).

- Patel A.P., Levy M.R., Grimes R.W., Gaume R.M., Feigelson R.S., McClellan K.J., Stanek C.R. *Appl. Phys. Lett.*, 93, 191902 (2008).
- Boulesteix R., Maitre A., Chretien L., Rabinovitch Y., Salle C. J. Am. Ceram. Soc., 96, 1724 (2013).
- Kopylov Yu.L., Kravchenko V.B., Bagayev S.N., Shemet V.V., Komarov A.A., Karban O.F., Kaminskii A.A. *Opt. Mater.*, **31** (5), 707 (2009).
- Ge L., Li J., Zhou Z., Liu B., Xie T., Liu J., Kou H., Shi Y., Pan Y., Guo J. Opt. Mater., 50, 25 (2015).
- Kwadwo A.A., Messing G.L., Dumme J.Q. Ceram. Internat., 34 (5), 1313 (2008).
- Zhang W., Lu T., Ma B., Wei N., Lu Z., Li F., Guan Y., Chen X., Liu W., Qi L. Opt. Mater., 35, 2405 (2013).
- Stevenson A.J., Li X., Martinez M.A., Anderson J.M., Suchy D.L., Kupp E.R., Dickey E.C., Mueller K.T., Messing G.L. J. Am. Ceram. Soc., 94 (5), 1380 (2011).
- 12. Yagi H., Yanagitani T., Ueda K.-I. J. Alloys Compd., 421, 195 (2006).
- Yagi H., Yanagitani T., Takaichi K., Ueda K.I., Kaminskii A.A. Opt. Mater., 29, 1258 (2007).
- Gaume R., Markosyan He.A., Baer R.L. J. Appl. Phys., 111, 093104 (2012).
- Li Y., Zhou S., Lin H., Hou X., Li W., Teng H., Jia T. J. Alloys Compd., 502 (1), 225 (2010).
- Yang H., Qin X., Zhang J, Ma J., Tang D., Wang S, Zhang Q. Opt. Mater., 34 (6), 940 (2012).
- Kaminskii A.A., Balashov V.V., Cheshev E.A., Kopylov Yu.L., Koromyslov A.L., Krokhin O.N., et al. Opt. Mater., 71, 103 (2017).
- Bezotosnyi V.V., Cheshev E.A., Gorbunkov M.V., Kostryukov P.V., Tunkin V.G. *Appl. Opt.*, **47** (20), 3651 (2008).
- Lu J., Prabhu M., Ueda K., Yagi H., Yanagitani T., Kudryashov A., Kaminskii A.A. *Laser. Phys.*, 11, 1053 (2001).
- Boulesteix R., Maitre A., Baumard J.-F., Rabinovite Y., Reynaud F. Opt. Express, 18 (14), 14992 (2010).
- Bezotosnyi V.V., Cheshev E.A., Gorbunkov M.V., Koromyslov A.L., Kostryukov P.V., Krivonos M.S., et al. *Laser Phys. Lett.*, **12**, 025001 (2015).
- Горбунков М.В., Кострюков П.В., Телегин Л.С., Тункин В.Г., Яковлев Д.В. Квантовая электроника, 37 (2), 173 (2007) [Quantum Electron., 37 (2), 173 (2007)].
- 23. Vetrovec J. Proc. SPIE, 4760, 491 (2002).