ЛАЗЕРНЫЕ СТАНДАРТЫ ЧАСТОТЫ

Магические длины волн в области 800 нм для прецизионной спектроскопии внутриоболочечного перехода в атоме тулия

Д.О.Трегубов, А.А.Головизин, Е.С.Федорова, К.Ю.Хабарова, В.Н.Сорокин, Н.Н.Колачевский

Методом прецизионной лазерной спектроскопии измерена дифференциальная динамическая поляризуемость внутриоболочечного часового перехода на длине волны 1.14 мкм в атоме тулия в спектральном диапазоне 800–860 нм. Аппроксимация экспериментальных данных с помощью теоретической модели позволила определить вероятность перехода на $\lambda = 809.5$ нм: $A_{809.5} = 460(70) c^{-1}$. Экспериментально получены значения двух магических длин волн: $\lambda_{m1} =$ 807.727(18) нм и $\lambda_{m2} = 813.3(2)$ нм, причем λ_{m1} определена впервые. Выполнено сравнение основных параметров оптической решетки на этих длинах волн и сделан вывод, что для работы оптических часов предпочтителен захват атомов тулия в оптическую решетку на λ_{m2} .

Ключевые слова: поляризуемость, магическая длина волны, оптические часы, часовой переход, ультрахолодные атомы, тулий.

1. Введение

Высокая точность оптических реперов частоты позволяет проводить уникальные эксперименты, целью которых является исследование возможного дрейфа фундаментальных констант, проверка общей теории относительности, поиск темной материи и др. [1-3]. Чувствительность частоты переходов к гравитационному потенциалу открывает возможность построения карт гравитационного поля Земли, что требует создания высокоточных транспортируемых оптических часов [4]. Для достижения предельных характеристик оптических реперов частоты приходится либо с высокой точностью контролировать тепловое окружение атомов [5-7], либо использовать криогенные системы [8, 9], либо искать системы, малочувствительные к тепловому излучению [10-12].

Внутриоболочечные переходы некоторых атомов из группы лантаноидов обладают низкой чувствительностью к тепловому излучению. Ранее нами было показано [13], что относительный сдвиг частоты при температуре 300 К для внутриоболочечного часового перехода 1.14 мкм в атоме тулия составляет всего $2.3(1.1) \times 10^{-18}$, в результате чего отпадает необходимость стабилизации температуры окружающей среды.

Чувствительность перехода к тепловому излучению и внешним электрическим полям определяется его дифференциальной поляризуемостью. Метод расчета дифферен-

Е.С.Федорова, К.Ю.Хабарова, В.Н.Сорокин, Н.Н.Колачевский. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Международный центр квантовых технологий, Россия, 121205 Москва, Сколково, Большой б-р, 30, стр. 1

Поступила в редакцию 16 сентября 2019 г., после доработки – 27 сентября 2019 г.

циальной поляризуемости, описанный в работах [14-16], основан на использовании значений энергии и вероятности всех переходов с нижнего или верхнего уровня часового перехода (включая переходы в непрерывный спектр). Такой подход применяется и при предварительной оценке магических длин волн для часового перехода, при которых дифференциальная динамическая поляризуемость обнуляется. Погрешность расчета зависит от точности определения энергии известных переходов, их вероятностей и некоторых других факторов. Захват атомов в оптическую решетку на магической длине волны обеспечивает возможность прецизионной спектроскопии часового перехода и реализации оптических часов, относительная погрешность которых достигает 10^{-18} [6, 17].

Расчеты, выполненные нашей группой [14], показали, что в диапазоне 800-860 нм ожидается наличие как минимум одной магической длины волны для внутриоболочечного перехода в атоме тулия. Действительно, проведенные измерения [13] позволили определить магическую длину волны, равную 813.320(6) нм. Ее наличие и положение в большой степени определяются близлежащим переходом с верхнего часового уровня $|4f^{13}(^2F^{o})6s^2; J = 5/2\rangle \rightarrow$ $|4f^{12}({}^{3}F_{4})5d_{3/2}6s^{2}; J = 7/2 \rangle$ на длине волны 809.5 нм. В настоящей работе проведено измерение спектра дифференциальной поляризуемости часовых уровней и построена ее уточненная теоретическая модель в диапазоне длин волн 800-860 нм. С использованием полученной модели определены характеристики ранее неизученного перехода $|4f^{13}({}^{2}F^{o})6s^{2}; J = 5/2 \rangle \rightarrow |4f^{12}({}^{3}F_{4})5d_{3/2}6s^{2}; J = 7/2 \rangle$ на длине волны 809.5 нм, найдено положение еще одной магической длины волны, находящейся в этом диапазоне, и проведено ее сравнение с найденной ранее.

2. Модель спектра дифференциальной динамической поляризуемости

На рис.1 представлена схема уровней атома тулия, определяющих спектр дифференциальной поляризуемо-

Д.О.Трегубов, А.А.Головизин. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: treg.dim@gmail.com

Рис.1. Схема уровней атома тулия, в основном определяющих спектр дифференциальной динамической поляризуемости в диапазоне 800–815 нм. Все указанные вероятности переходов взяты из работ [18,25]. На схеме не указано сверхтонкое расщепление уровней.

сти в диапазоне 800–815 нм. Энергетические уровни атома под воздействием внешнего электромагнитного излучения испытывают сдвиг за счет эффекта Штарка, в результате происходит изменение частоты перехода между уровнями $|F, J, m_F \rangle \rightarrow |F', J', m_F' \rangle$ согласно формуле

$$\Delta v = -\frac{2\pi a_0^3}{hc} [\alpha_{J',F',m'_F} - \alpha_{J,F,m_F}] I_{\rm eff},$$
(1)

где a_0 – радиус Бора; h – постоянная Планка; c – скорость света; I_{eff} – интенсивность излучения; α_{J,F,m_F} – динамическая поляризуемость уровня $|J, F, m_F\rangle$ в атомных единицах (здесь J – момент электронной оболочки, F – полный момент атома, m_F – проекция полного момента). При этом $\Delta \alpha = \alpha_{J',F',m_F} - \alpha_{J,F,m_F}$ – дифференциальная динамическая поляризуемость перехода. В настоящей работе используются атомные единицы поляризуемости: 1 а.е. = $4\pi\varepsilon_0 a_0^3$.

Поляризуемость атомного уровня α_{J,F,m_F} в электромагнитном поле линейной поляризации складывается из скалярной $\alpha_J^{\rm S}$ и тензорной $\alpha_J^{\rm T}$ составляющих [16]:

$$\alpha_{J,F,m_F} = \alpha_J^{\rm S} + \frac{3\cos^2\theta - 1}{2} \frac{3m_F^2 - F(F+1)}{F(2F-1)} \alpha_{J,F}^{\rm T},$$
(2)

$$\alpha_{J,F}^{T} = \alpha_{J}^{T}(-1)^{I+J+F} \begin{cases} J \ J \ 2 \\ F \ F \ I \end{cases}$$

$$\times \frac{F(2F-1)(2F+1)(2J+3)(2J+1)(J+1)}{(2F+3)(F+1)(2J-1)J}, \quad (3)$$

где фигурными скобками обозначен 6*j*-символ Вигнера; θ – угол между поляризацией светового излучения и осью квантования; I – спин ядра атома.

Скалярная и тензорная поляризуемости определяются из суммы по всем возможным переходам с исследуемого уровня (здесь и далее в качестве исследуемого уровня понимается один из тонких подуровней основного состояния):

$$\alpha_{J,F}^{\mathrm{T}} = \sum_{k} \alpha_{J \to J_{k}} 6(2J+1)(-1)^{J+J_{k}} \begin{cases} 1 & 1 & 2 \\ J & J & J_{k} \end{cases}$$

$$\times \sqrt{\frac{5J(2J-1)}{6(J+1)(2J+1)(2J+3)}}, \qquad (4)$$

$$\alpha_J^{\mathbf{S}} = \sum_k \alpha_{J \to J_k},\tag{5}$$

$$\alpha_{J \to J_k} = \frac{c^3}{2a_0^3} \frac{2J_k + 1}{2J + 1} \frac{A_k}{\omega_k^2(\omega_k^2 - \omega^2)},\tag{6}$$

где J_k – момент электронной оболочки уровня k; A_k – вероятность перехода между исследуемым и k-м уровнями; ω_k – круговая частота этого перехода; ω – круговая частота светового излучения.

Табулированные экспериментальные данные для параметров A_k являются неполными [18], поэтому при расчетах поляризуемости приходится также использовать теоретические оценки для вероятностей переходов. В частности, для часового перехода в атоме тулия $|4f^{13}(^2F^o)6s^2; J = 7/2, F = 4, m_F = 0 \rangle \rightarrow |4f^{13}(^2F^o)6s^2; J = 5/2, F = 3, m_F = 0 \rangle$ среди многообразия переходов в интересующей нас области $\lambda > 800$ нм экспериментальные данные имеются лишь для перехода на 806.9 нм с вероятностью 7.5(1.1) × 10³ с⁻¹ [19, 20]. Для получения теоретических оценок вероятностей переходов использовался пакет COWAN [14, 21]. В свою очередь, было показано [14], что вклады в непрерывный спектр переходов с обоих часовых уровней очень близки, поэтому не оказывают существенного влияния на величину дифференциальной поляризуемости.

3. Эксперимент

Для определения дифференциальной динамической поляризуемости подготавливаются атомы тулия при температуре около 10 мкК. Охлаждение облака атомов происходит методом двухступенчатого лазерного охлаждения [22] с последующей загрузкой атомов в одномерную вертикальную оптическую решетку внутри усиливающего резонатора на определенной длине волны [23]. Мощность излучения Р внутри резонатора определяется с помощью калиброванного фотодиода, установленного после выходного зеркала с известным коэффициентом пропускания (рис.2), в то время как радиус перетяжки пучка w = 126 мкм определяется геометрией резонатора. В эксперименте мощность излучения внутри резонатора варьировалась от 1 до 3 Вт, что соответствует интенсивности в пучностях 16-42 кВт/см² (глубина ловушки в единицах температуры составляет 6.5-20 мкК).

Таким образом, входящая в формулу (1) интенсивность $I_{\text{eff}} = 8\eta P/(\pi w^2)$ связана с интенсивностью в пучностях решетки коэффициентом η ≤ 1. Атомы в решетке имеют ненулевую температуру и заполняют несколько колебательных уровней, что приводит к снижению интенсивности излучения, воспринимаемой атомами. В наших экспериментах поляризация излучения оптической решетки совпадает с направлением магнитного поля, задающего ось квантования (рис.2). Лазерное излучение, используемое для возбуждения часового перехода, настроено в резонанс с переходом между подуровнями |F =4, $m_F = 0$ \rightarrow $|F' = 3, m'_F = 0$, при этом его частота сканируется с помощью акустооптического модулятора для измерения контура возбуждения перехода. Для увеличения контраста спектра поглощения оптическая накачка осуществляется на подуровень $|F = 4, m_F = 0\rangle$ [24].

Прецизионная спектроскопия захваченных в решетку атомов с помощью узкополосного лазера на длине волны 1.14 мкм позволяет измерить сдвиг частоты часового перехода оптической решеткой, который оказывается про-

1029

Рис.2. Схема эксперимента по определению дифференциальной поляризуемости часового перехода:

 B_0 – магнитное поле, задающее ось квантования; ФД – фотодиод для измерения мощности излучения решетки; E_{lattice} и $E_{1.14}$ – векторы поляризации излучений решетки и 1.14 мкм соответственно; Tm – положение облака атомов в решетке. Излучение титан-сапфирового лазера, формирующее оптическую решетку, заводится снизу.

порционален дифференциальной динамической поляризуемости и мощности излучения:

$$\Delta v = -\frac{16\eta a_0^3}{hcw^2} \Delta \alpha P.$$
⁽⁷⁾

Согласно расчетам [14] магические длины волн ожидаются в диапазоне 800–815 нм. Оптическая решетка формировалась излучением титан-сапфирового лазера, его длина волны сканировалась в диапазоне 800–860 нм, который покрывает всю область поиска магических длин волн, что позволяет далее произвести точную аппроксимацию данных.

При построении модели для аппроксимации экспериментальных данных в (4) можно выделить два типа слагаемых, имеющих резонансный и нерезонансный характер в рассматриваемом диапазоне длин волн. К первой группе относится вклад переходов с часового уровня с длинами волн 806.9 и 809.5 нм (их электронная конфигурация и другие параметры представлены на рис.1). Вклад вероятностей $A(\omega)$ остальных переходов в дифференциальную поляризуемость слабо зависит от длины волны в рассматриваемом диапазоне и изменяется от -0.269 до -0.270 а.е. [14]. Таким образом, для аппроксимации экспериментальных данных использовалась следующая модель:

$$\Delta \alpha = \frac{\Delta v}{P} \frac{hcw^2}{16\eta a_0^3} = \frac{c^3}{a_0^3} \left[6.152 \frac{A_{806.9}}{\omega_{806.9}^2 (\omega_{806.9}^2 - \omega^2)} + 8.048 \frac{A_{809.5}}{\omega_{809.5}^2 (\omega_{809.5}^2 - \omega^2)} \right] + A(\omega) + \alpha_0.$$
(8)

В выражение (8) входят три свободных параметра: неизвестная вероятность перехода $A_{809.5}$, коэффициент η , характеризующий эффективную интенсивность поля решетки, и сдвиг α_0 , не зависящий от частоты, который связан с неточностью расчета вклада нерезонансных переходов. В условиях эксперимента мы выбрали поляризацию светового излучения оптической решетки, соответствующую $\theta = 0$ в (2), и регистрировали сдвиг сверхтонкой компоненты $|F = 4, m_F = 0\rangle \rightarrow |F' = 3, m'_F = 0\rangle$ часового перехо-

да. В соответствии с формулами (2)–(6) были посчитаны коэффициенты перед слагаемыми в выражении (8).

В результате аппроксимации получены следующие значения параметров:

$$\eta = 0.68(9),$$

 $A_{809.5} = 460(70) c^{-1},$ (9)
 $\alpha_0 = -0.11(6) a. e.$

Вероятность перехода $A_{806.9} = 7.5(1.1) \times 10^3 \text{ c}^{-1}$, измеренная ранее в [20], является основным источником погрешности аппроксимационных параметров. Корректность модели подтверждается близким к единице редуцированным параметром $\chi^2 = 1.8$. Значение параметра η согласуется с проведенной в [13] теоретической оценкой: $\eta = 0.76(15)$. Малое значение α_0 , сравнимое с погрешностью, подтверждает корректность теоретических расчетов вклада остальных атомных переходов в дифференциальную поляризуемость.

4. Результаты

На рис.3 показаны две области, где дифференциальная поляризуемость $\Delta \alpha$ обнуляется, что соответствует магическим длинам волн. Используя описанную выше модельную аппроксимацию, можно определить их значения, а именно $\lambda_{m1} = 807.727(18)$ нм и $\lambda_{m2} = 813.3(2)$ нм. Важно отметить, что найденное значение λ_{m2} совпадает в пределах погрешности с полученным ранее значением 813.320(6) нм [13]. Меньшая точность определения λ_{m2} в данном случае связана с использованием модели дифференциальной поляризуемости часовых уровней для широкого диапазона 800-860 нм, тогда как значение в [13] было определено по измерениям в непосредственной близости от этой длины волны. Соответствующие производные аппроксимирующей функции на магических длинах волн: $d\alpha/d\lambda|_{m1} = -1.39(20)$ a.e./нм и $d\alpha/d\lambda|_{m2} =$ -0.087(12) а.е./нм. Погрешность определения магической длины волны определяется в основном соответствующей производной и погрешностью α_0 в формуле (8). Поскольку обе эти магические длины волн доступны с помощью излучения титан-сапфирового и полупроводникового лазеров, необходимо сравнить перспективность их использования для создания оптических часов.

Рис.3. Спектр дифференциальной динамической поляризуемости часового перехода (точки – экспериментальные данные, сплошные кривые – аппроксимация с использованием модели (8)). На вставках в большем масштабе представлены области вблизи магических длин волн.

Производная d $\alpha/d\lambda|_{m2}$ оказывается примерно в 16 раз меньше, чем d $\alpha/d\lambda|_{m1}$, что смягчает требования к точности стабилизации частоты излучения лазера оптической решетки. Так, для достижения относительной нестабильности частоты часового перехода на уровне 5 × 10⁻¹⁸ в оптической решетке с интенсивностью $I_{eff} = 45$ кВт/см² (при этом глубина решетки в единицах энергии отдачи составляет 300 E_{recoil}) точность настройки на λ_{m2} должна составлять около 3 МГц, в то время как для λ_{m1} частоту лазера необходимо стабилизировать более точно – на уровне 200 кГц, что существенно усложняет задачу и требует дополнительных технических решений.

В свою очередь, тензорная составляющая дифференциальной динамической поляризуемости, входящая в формулы (1) и (2), оказывается в семь раз меньше для магической длины волны λ_{m2} , чем для λ_{m1} . Поэтому при одинаковой точности выставления угла поляризации оптической решетки соответствующий вклад в ошибку частоты часового перехода в случае работы на λ_{m2} будет на порядок ниже.

Отстройка от близлежащих резонансных переходов влияет на скорость рассеяния атомами фотонов оптической решетки и на их нагрев. Для оценки скорости рассеяния воспользуемся формулой из [14, 16]:

$$\Gamma(\omega)_{0 \to 0} = I_{\text{eff}} \frac{6\pi^2 c^2}{h} \sum_{k} \frac{\omega_k^2 + \omega^2}{(\omega_k^2 - \omega^2)^2} \frac{A_k \Gamma_k}{\omega_k^3} \times (2F_k + 1) \binom{F_k \ 1 \ F}{0 \ 0 \ 0}^2, \tag{10}$$

где Γ_k – скорость спонтанного распада уровня k (например, величины $\Gamma_{806.9}$ и $\Gamma_{809.5}$ определяются распадом на основной уровень, как видно из рис.1), а круглыми скобками обозначен Зј-символ Вигнера. Для скорости рассеяния фотонов оптической решетки, имеющей интенсивность 45 кВт/см², с верхнего уровня часового перехода имеем $\Gamma(\lambda_{m1}) \approx \Gamma(\lambda_{m2}) \approx 0.1 \, c^{-1}$. Стоить отметить, что переходы 806.9 и 809.5 нм расположены достаточно далеко от обеих магических длин волн, причем их вероятности невелики, поэтому они вносят небольшой вклад в скорость рассеяния: примерно лишь 5% и 0.7% от суммарного значения скорости распада для λ_{m1} и λ_{m2} соответственно. Однако близость этих резонансов сказывается на вкладе гиперполяризуемости в сдвиг частоты часового перехода. Согласно оценкам, проведенным в [14], вклад гиперполяризуемости для оптической решетки с интенсивностью 45 кВт/см² составляет менее 1 Гц и менее 10 мГц для магических длин волн λ_{m1} и λ_{m2} соответственно.

Таким образом, можно сделать однозначный вывод, что использование длины волны $\lambda_{m2} = 813.3$ нм позволит достичь более высокой точности работы оптических ча-сов на атомах тулия.

5. Заключение

Выполнено измерение спектра дифференциальной динамической поляризуемости часового перехода 1.14 мкм атома тулия в области длин волн 800–860 нм. Определены две магические длины волны: $\lambda_{m1} = 807.727(18)$ нм и $\lambda_{m2} = 813.3(2)$ нм, причем λ_{m1} определена впервые. С использованием построенной модели определена вероятность перехода $|4f^{13}(^2F^o)6s^2; J = 5/2\rangle \rightarrow |4f^{12}(^3F_4)5d_{3/2}6s^2; J = 7/2\rangle$ с верхнего часового уровня. Сравнение двух магических длин волн показывает, что использование λ_{m2} в

оптических часах является предпочтительным, поскольку в этой рабочей точке оптические часы обладают меньшей чувствительностью к длине волны оптической решетки, углу поляризации излучения оптической решетки относительно направления магнитного поля и меньшим значением гиперполяризуемости.

Показано, что, используя оптическую решетку на длине волны $\lambda_{m2} = 813.3$ нм, можно контролировать относительные сдвиги частоты часового перехода, связанные с оптической решеткой, лучше, чем 10^{-17} . Работы по созданию оптических часов на внутриоболочечном переходе в атоме тулия ведутся в лабораториях ФИАН.

Работа выполнена при поддержке Российского научного фонда (грант № 19-12-00137).

- Ludlow A.D., Boyd M.M., Ye J., Peik E., Schmidt P.O. Rev. Mod. Phys., 87 (2), 637 (2015).
- Safronova M.S., Porsev S.G., Sanner C., Ye J. Phys. Rev. Lett., 20 (17), 173001 (2018).
- 3. Derevianko A., Pospelov M. Nat. Phys., 10 (12), 933 (2014).
- Grotti J., Koller S., Vogt S., Häfner S., Sterr U., Lisdat C., Denker H., Voigt C., Timmen L., Rolland A., et al. *Nat. Phys.*, 14 (5), 437 (2018).
- Falke S., Lemke N., Grebing C., Lipphardt B., Weyers S., Gerginov V., Huntemann N., Hagemann C., Al-Masoudi A., Häfner S., et al. *New J. Phys.*, 16 (7), 073023 (2014).
- Bloom B.J., Nicholson T.L., Williams J.R., Campbell S.L., Bishof M., Zhang X., Zhang W., Bromley S.L., Ye J. *Nature*, **506** (7486), 71 (2014).
- Beloy K., Hinkley N., Phillips N.B., Sherman J.A, Schioppo M., Lehman J., Feldman A., Hanssen L.M., Oates C.W., Ludlow A.D. *Phys. Rev. Lett.*, **113** (26), 260801 (2014).
- Ushijima I., Takamoto M., Das M., Ohkubo T., Katori H. Nat. Photonics, 9 (3), 185 (2015).
- Middelmann T., Lisdat C., Falke S., Winfred J.SR V., Riehle F., Sterr U. *IEEE Trans. Instrum. Meas.*, 60 (7), 2550 (2011).
- Derevianko A., Dzuba V.A., Flambaum V.V. Phys. Rev. Lett., 109 (18), 180801 (2012).
- Campbell C.J., Radnaev A.G., Kuzmich A., Dzuba V.A., Flambaum V.V., Derevianko A. *Phys. Rev. Lett.*, **108** (12), 120802 (2012).
- Yudin V.I., Taichenachev A.V., Okhapkin M.V., Bagayev S.N., Tamm C., Peik E., Huntemann N., Mehlstäubler T.E., Riehle F. *Phys. Rev. Lett.*, **107** (3), 030801 (2011).
- Golovizin A., Fedorova E., Tregubov D., Sukachev D., Khabarova K., Sorokin V., Kolachevsky N. *Nature Commun.*, 10 (1), 1724 (2019).
- Sukachev D., Fedorov S., Tolstikhina I., Tregubov D., Kalganova E., Vishnyakova G., Golovizin A., Kolachevsky N., Khabarova K., Sorokin V. *Phys. Rev. A*, **94** (2), 022512 (2016).
- Porsev S.G., Ludlow A.D., Boyd M.M., Ye J. Phys. Rev. A, 78, 032508 (2008).
- 16. Lepers M., Wyart J.-F., Dulieu O. Phys. Rev. A, 89, 022505 (2014).
- Hinkley N., Sherman J.A., Phillips N.B., Schioppo M., Lemke N.D., Beloy K., Pizzocaro M., Oates C.W., Ludlow A.D. Science, 341 (6151), 1215 (2013).
- Kramida A., Ralchenko Yu., Reader J., NIST ASD Team. https:// physics.nist.gov/asd [2019, September 2].
- Sugar J., Meggers W.F., Camus P. J. Res. Nat. Bur. Stand. A, 77 (1), 1 (1973).
- 20. Wickliffe M.E., Lawler J.E. J. Opt. Soc. Am B, 14 (4), 737 (1997).
- Cowan R.D. The theory of atomic structure and spectra, Number 3 (San Diego: Univ. California Press, 1981).
- Сукачев Д.Д., Калганова Е.С., Соколов А.В., Федоров С.А., Вишнякова Г.А., Акимов А.В., Колачевский Н.Н., Сорокин В.Н. Квантовая электроника, 44 (6), 515 (2014) [Quantum Electron., 44 (6), 515 (2014)].
- Калганова Е.С., Головизин А.А., Шевнин Д.О., Трегубов Д.О., Хабарова К.Ю., Сорокин В.Н., Колачевский Н.Н. Квантовая электроника, 48 (5), 415 (2018) [Quantum Electron., 48 (5), 415 (2018)].
- Федорова Е.С., Трегубов Д.О., Головизин А.А., Вишнякова Г.А., Мишин Д.А., Роводченко Д.И., Хабарова К.Ю., Сорокин В.Н., Колачевский Н.Н. Квантовая электроника, 49 (5), 418 (2019) [Quantum Electron., 49 (5), 418 (2019)].
- Kolachevsky N., Akimov A., Tolstikhina I., Chebakov K., Sokolov A., Rodionov P., Kanorski S., Sorokin V. Appl. Phys. B, 89 (4), 589 (2007).