Оптические поля в пористых матрицах из полилактида

А.П.Свиридов, В.С.Жигарьков, А.Г.Шубный, В.И.Юсупов

Исследуются оптические поля, индуцируемые лазерным излучением внутри пористых полимерных матриц (скаффолдов) при стимулирующем воздействии на клетки. Путем численного моделирования на основе экспериментальных данных, полученных с помощью двойной интегрирующей сферы, определены спектры коэффициентов рассеяния света и факторов анизотропии пористых скаффолдов из полилактида в видимом и ближенем ИК диапазонах. Исследования проводились для сухих и влажных скаффолдов, изготовленных методами сверхкритического флюидного вспенивания и поверхностного селективного лазерного спекания. Методом Монте-Карло рассчитано распределение плотности потока излучения в предположениях фазовой функции рассеяния Хейни—Гринитейна и модельной фазовой функции рассеяния на сферических полостях. Показано, что распределение плотности потока излучения в основном зависит от коэффициента рассеяния и среднего косинуса угла отклонения (g-фактор). Полученные результаты имеют важное практическое значение для тканевой инженерии, основанной на применении полимерных пористых скаффолдов с клетками для замещения дефектов тканей; с их помощью может быть определен диапазон доз при лазерной стимуляции клеток.

Ключевые слова: пористая полимерная матрица, скаффолд, лазерная стимуляция клеток, оптические поля, численное моделирование.

1. Введение

Одной из быстроразвивающихся областей современной медицины является тканевая инженерия [1,2], основанная на использовании скаффолдов с соответствующими клетками для замещения дефектов поврежденных тканей или целых органов. Первоначально создается тканеинженерная конструкция [3], которой и является скаффолд; она обеспечивает необходимые биомеханические свойства соответствующей ткани, создает структурную поддержку для клеток, обеспечивает условия для их метаболизма и дифференцировки [4].

Метаболизм клеток в скаффолдах во многом определяется рядом химических и физических факторов: химической структурой материала, локальной топографией, архитектурой и механическими свойствами. На клеточную жизнь внутри тканеинженерной конструкции влияют диффузионные ограничения на доставку кислорода и питательных веществ внутрь скаффолда из окружающей культуральной среды. Так, на глубинах от поверхности, превышающих характерное расстояние для диффузии кислорода (~100 мкм [5]), наблюдается снижение жизнеспособности клеток, падение плотности клеточной популяции и даже гибель клеток, как правило, по типу некроза [6].

Для преодоления диффузионных ограничений обычно осуществляется прокачка жидкости (перфузия) через скаффолд. Другим эффективным методом, позволяющим улучшить жизнеспособность находящихся в объеме конструкта клеток, является метод фотобиомодуляции, заключающийся в кратковременном воздействии на био-

А.П.Свиридов, В.С.Жигарьков, А.Г.Шубный, В.И.Юсупов. Институт фотонных технологий Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН, Россия, 108840 Москва, Троицк, ул. Пионерская, 2; e-mail: sviridoa@gmail.com

Поступила в редакцию 13 декабря 2019 г.

логические объекты низкоинтенсивным монохроматическим (лазерным) или немонохроматическим (светодиодным) излучением в видимой и ближней ИК областях спектра [7-10]. Установлено, что результат фотобиомодуляции зависит от типа клеток, а также от дозы, интенсивности, временных и спектральных характеристик воздействия [11]. Показано, что низкоинтенсивное воздействие в терапевтическом диапазоне доз обладает протекторным эффектом против различных негативных (кислородное [12] и пищевое [13] голодание) и повреждающих факторов (от ультрафиолета до ионизирующих излучений) [14, 15]. Низкоинтенсивное (не приводящее к влияющему на метаболизм клеток повышению температуры) оптическое облучение может вызывать изменение скорости пролиферации клеток и влияет на их дифференцировку. Так, в работе [16] показано, что при воздействии низкоинтенсивным лазерным излучением с $\lambda = 635$ нм дозой 62.5 Дж/см² на стволовые нейрональные клетки, помещенные в желатин - метакрилатную матрицу, пролиферация клеток значительно (на 44%) возрастает, и на поздних сроках культивирования усиливается дифференцировка. Мы полагаем, что негативное влияние на находящиеся в глубине скаффолда клетки, связанное с диффузионным ограничением на доставку кислорода и питательных веществ из окружающей культуральной среды, может быть в значительной степени нивелировано с помощью фотобиомодуляции.

В процессе фотобиомодуляции воздействие на образцы низкоинтенсивным излучением, как правило, осуществляется путем их облучения с одной стороны. Из-за поглощения и рассеяния света в объеме матрицы уровни облучения светом находящихся в трехмерном скаффолде клеток могут значительно различаться. В этом случае часть клеток нередко подвергается воздействию вне «терапевтического диапазона» фотобиостимуляции. Для приповерхностных клеток интенсивность падающего излучения может оказаться выше оптимальной, а для сильно

удаленных от поверхности клеток, наоборот, – ниже. Для оценки этого эффекта необходимо знать распределение плотности светового потока во всем объеме скаффолда. По сути, это количество квантов света, проходящих через элемент объема в единицу времени. Такая задача решается путем численного расчета с привлечением экспериментально полученной информации об эффективных оптических свойствах материала скаффолда [17-20]. Подобные расчеты многократно выполнялись ранее для различных сильно рассеивающих сред. В настоящей работе выполнено моделирование распределения плотности потока излучения в скаффолдах, предназначенных для тканевой инженерии. В качестве двух модельных матриц выбраны скаффолды, сформированные на основе полилактида методами сверхкритического флюидного (СКФ) вспенивания в среде сверхкритического СО2 (СК СО2) и поверхностного селективного лазерного спекания (ПСЛС) [6,21,22]. В обоих случаях использовались классические модели матриц, обладающих взаимосвязанной системой пор. При этом если в первом случае поры формируются хаотически в результате выхода флюида из набухшего полимера, то во втором - образование полимерного скаффолда происходит по заданной компьютерной модели. Для формирования обоих типов структур (вспенивание в СК СО2 и спекание) применялся полилактид – один из наиболее используемых материалов для формирования тканеинженерных конструктов [23-27].

Цель настоящей работы — оценка распределения интенсивности низкоинтенсивного излучения в видимой и ближней ИК областях спектра в трехмерных пористых скаффолдах из полилактида, изготовленных методами вспенивания в СК CO_2 и поверхностного селективного лазерного спекания.

2. Материалы и методы

В эксперименте использовались скаффолды из полилактида, изготовленные двумя методами [6]: СКФ вспениванием в среде СК CO_2 [21] и поверхностным селективным лазерным спеканием [22].

В первом случае пористые полимерные скаффолды получали путем вспенивания сополимеров D,L-лактида и ε -капролактона (4 мол.%) в среде СК СО $_2$ в соответствии с методикой [21]. Формирование вспененных образцов в среде СК СО $_2$ осуществлялось на установке, разработанной в ИФТ РАН [6,21,28]. Исходный сополимер в виде порошка с частицами размером 100-200 мкм и массой 400 мг помещали в фторполимерную форму, которую устанавливали в реактор установки. Для оптических экспериментов из образца вырезали скаффолд диаметром 8 мм и толщиной 1.2 мм.

В качестве материала для создания скаффолдов методом ПСЛС [6,22] применялся полилактид марки PDL 02A (Corbion) в виде порошка с размером частиц до 100 мкм. Для увеличения гидрофильности материал выдерживался в 1%-ном растворе гиалуроновой кислоты и высушивался с помощью лиофильной сушки FreeZone Plus 2.5 (LABCONCO). В качестве сенсибилизатора использовалась вода. Для оптических экспериментов формировали образец диаметром 8 мм и толщиной 1.2 мм.

Исследовались оптические характеристики сухих и влажных образцов. Влажные образцы получали путем выдерживания в дистиллированной воде в течение 24 ч. Изменения за несколько минут проведения эксперимента

оптических характеристик влажных образцов, вызванные испарением воды, не учитывались.

Схема оригинальной установки для определения оптических характеристик скаффолдов [6, 29] приведена на рис. 1

Основу установки составляют две интегрирующие сферы 1 и 2 диаметром 75 мм, покрытые изнутри стандартным диффузно рассеивающим материалом. Сферы устанавливались строго соосно с коллиматорами 5 и 6. Образец скаффолда 7 с помощью специального держателя 8 располагался между сферами и освещался равномерным пучком света диаметром 4.8 мм от источника 3, соединенного с коллиматором 5 волоконным световодом. В качестве источника света использовался галогеновый источник HL-2000 (Ocean Optics, США). Отраженный от передней поверхности образца и обратно рассеянный свет собирался интегрирующей сферой І. Диффузно прошедший через образец свет собирался интегрирующей сферой 2. Свет, прошедший через образец без отклонения, попадал на коллиматор 6. С помощью спектрометра USB4000 (Ocean Optics, США) с диапазоном длин волн 200-1100 нм измерялись спектры излучений в двух сферах и на выходе коллиматора 6.

Полученные данные позволяли рассчитать спектры коэффициентов диффузного рассеяния $R_{\rm d}$, диффузного пропускания $T_{\rm d}$ и коллимированного пропускания $T_{\rm c}$:

$$R_{\rm d} = I_1/I_{10}, T_{\rm d} = I_2/I_{10}, T_{\rm c} = I_3/I_{30},$$
 (1)

где I_1 – интенсивность света в сфере I с образцом; I_{10} – интенсивность в сфере I, когда ее выходное отверстие закрыто стандартной заглушкой с диффузно рассеивающим покрытием; I_2 – интенсивность в сфере I (с образцом), когда ее выходное отверстие закрыто стандартной заглушкой; I_3 – интенсивность на выходе коллиматора I_3 0;

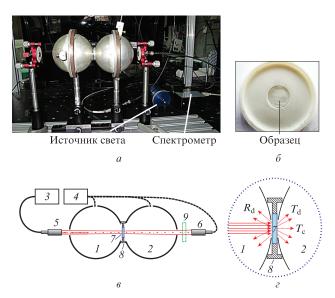


Рис.1. Установка для определения оптических характеристик образцов скаффолдов: a – внешний вид; δ – образец скаффолда в держателе; s – схема установки (I, 2 – интегрирующие сферы, 3 – источник широкополосного излучения, 4 – спектрометр, 5, 6 – коллиматоры, 7 – образец, 8 – держатель образца, 9 – нейтральный фильтр); s – расположение образца в увеличенном масштабе (стрелками условно показаны диффузные, отраженные и диффузно прошедшие через образец излучения, по интенсивностям которых рассчитываются спектры диффузного рассеяния $R_{\rm d}$, диффузного пропускания $T_{\rm d}$ и коллимированного пропускания $T_{\rm c}$).

 I_{30} – интенсивность на выходе коллиматора δ в отсутствие образца. При измерении I_{30} для ослабления излучения перед коллиматором δ устанавливался нейтральный фильтр NGG10 (9). Затем результаты измерений пересчитывали с учетом спектра пропускания нейтрального фильтра.

Из-за малой величины коэффициента поглощения $\mu_{\rm a}$ полилактида коэффициент рассеяния $\mu_{\rm s}$ определяли по величине коэффициента коллимированного пропускания T_c : $\mu_s = \ln(T_c)/d$, где d – толщина образца скаффолда. Затем с помощью модернизированного метода Монте-Карло [18, 20] в пакете программ Матлаб решалась прямая задача. Для этого рассчитывались стохастические траектории пакетов фотонов, падающих на образец перпендикулярно к его поверхности и образующих однородный пучок диаметром 5.0 мм. Предполагалось, что плотность вероятности угла рассеяния описывается функцией Хейни-Гринштейна [18, 20], зависящей лишь от среднего косинуса угла рассеяния (фактора анизотропии д). Программа позволяла по заданным значениям кооффициентов $\mu_{\rm s}$ и $\mu_{\rm a}$, показателей преломления полилактида, воды и воздуха, пористости скаффолдов найти распределение поглощенной энергии света в объеме образца и определить $R_{\rm d}$ и $T_{\rm d}$. При малых значениях $\mu_{\rm a}$ поглощенная энергия в каждом элементе объема соответствует искомой плотности светового потока. Варьируя д, можно найти значения $R'_{\rm d}$ и $T'_{\rm d}$, дающие наилучшее согласие с экспериментом. Для этого необходимо определить минимум

$$\Delta = \frac{(R'_{\rm d} - R_{\rm d})^2}{R_{\rm d}^2} + \frac{(T'_{\rm d} - T_{\rm d})^2}{T_{\rm d}^2}.$$
 (2)

Проводилось сравнение распределений плотности поглощенной энергии света в объеме образца, рассчитанных с использованием функции Хейни – Гринштейна и геометрической функции рассеяния на сферических полостях. В случае пористой структуры (с мелкими сферическими пузырьками) плотность вероятности угла рассеяния зависит только от показателей преломления материала и пузырьков в предположении, что рассеяние фотонов происходит по закону Френеля.

Показатель преломления полилактида вычислялся с использованием известного выражения [27], справедливого в диапазоне длин волн 300–1300 нм:

$$n = (1.44500 \pm 0.00075) + (4892 \pm 143) (\text{Hm}^2/\lambda^2).$$
 (3)

В диапазоне значений $\lambda=500-900$ нм, в соответствии с (3), показатель преломления полилактида $n=1.4559\pm0.0038$. Во всем исследуемом диапазоне изменения n не превышали $\pm0.26\%$, что существенно меньше ошибки экспериментальных измерений.

Был определен показатель поглощения пленки полилактида. Для этого крошки полилактида растворили в дихлорметане, раствор нанесли на покровное стекло и высушили на воздухе до образования пленки толщиной 125 мкм. На спектрофотометре Varian Cary 50 Scan измерили спектр поглощения; средняя величина показателя поглощения в диапазоне 500-900 нм составила 0.28 ± 0.11 см $^{-1}$.

Для визуализации пористой структуры материала образцов использовался сканирующий электронный микроскоп PHENOM ProX (Phenom World, Нидерланды).

3. Результаты и их обсуждение

На рис.2 показаны внешний вид двух образцов матриц в держателях и СЭМ-изображения их срезов. Видно, что структуры образцов, полученных разными методами, значительно различаются. В скаффолде 1 (вспенивание в СК CO_2) выделяются поры относительно большого размера — до 300 мкм (рис.2,a); при этом вне этих пор структура полилактида достаточно однородная. В образце 2 (спекание) выделяются зерна полилактида округлой формы (рис.2, δ). Поры между этими зернами достигают ~ 100 мкм. При этом структура полилактида в самих зернах, как видно по нескольким их срезам, мелкопористая. Пористость материала матриц, определенная по СЭМизображениям срезов, составила $70\% \pm 4\%$ для образца 1 и $62\% \pm 3\%$ для образца 2.

Рассчитанные по спектрам коэффициентов коллимированного пропускания $T_{\rm c}$ спектры $\mu_{\rm s}$ представлены на рис.3. Как видно из рисунка, для разных образцов, находящихся в сухом и влажном состояниях, формы полученных спектров качественно совпадают, но их уровни существенно различаются. При переходе от сухих образцов к влажным $\mu_{\rm s}$ во всем спектральном диапазоне уменьшается для каждого из образцов примерно на одну и ту же величину. В среднем это уменьшение для образца 1 составляет 17%, а для образца 2–10%. Наибольшие значения $\mu_{\rm s}$ зарегистрированы для сухого образца 2, полученного методом поверхностного селективного лазерного спекания, наименьшие – для влажного образца 1, созданного методом вспенивания в СК CO_2 .

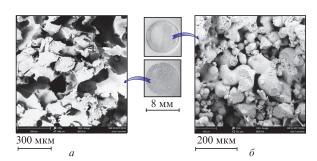


Рис.2. Образцы скаффолдов, полученные методами вспенивания (a) и спекания (δ) (приведены оптические изображения образцов в держателях и участки СЭМ-изображений).

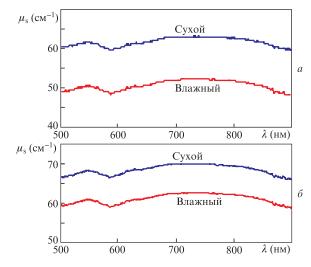


Рис.3. Спектры μ_s для сухих и влажных матриц, полученных методами вспенивания в СК СО₂ (a) и лазерного спекания (δ).

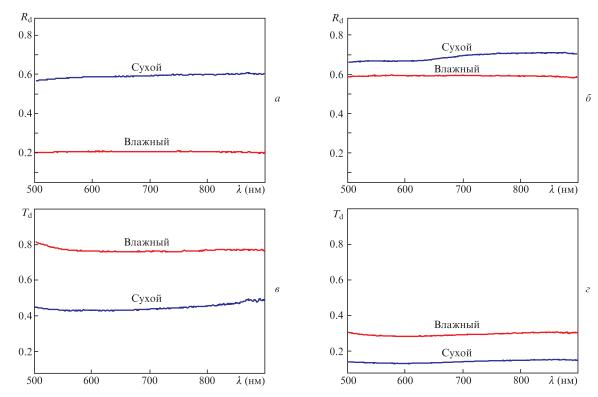


Рис.4. Спектры коэффициентов диффузного рассеяния $R_{\rm d}$ (a, δ) и пропускания $T_{\rm d}$ (θ , ε) для сухих и влажных скаффолдов, полученных методами вспенивания в СК ${\rm CO}_2(a,\theta)$ и лазерного спекания (δ , ε).

Спектры коэффициентов диффузного рассеяния $R_{\rm d}$ и диффузного пропускания $T_{\rm d}$, полученные с помощью интегрирующей сферы, приведены на рис.4. Видно, что полученные значения $R_{\rm d}$ и $T_{\rm d}$ для сухих и влажных образцов слабо зависят от длины волны. При этом их величины существенно различаются. При переходе от сухих образцов к влажным $R_{\rm d}$ во всем спектральном диапазоне уменьшается, а $T_{\rm d}$ – увеличивается. В среднем уменьшение $R_{\rm d}$ для образца 1 существенно и составляет 67%, а для образца 2 – только 12%. Увеличение $T_{\rm d}$ в среднем составило 73% для образца 1 и 104% для образца 2. Наибольшие значения $R_{\rm d}$ зарегистрированы для сухого образца 2, наименьшие – для влажного образца 1. В то же время наибольшие значения $T_{\rm d}$ зарегистрированы для влажного образца 1, а наименьшие – для сухого образца 2.

В табл.1 приведены полученные экспериментально значения коэффициентов диффузного рассеяния $R_{\rm d}$, диффузного пропускания $T_{\rm d}$ и коллимированного пропускания $T_{\rm c}$, а также рассчитанные значения фактора анизо-

Табл.1. Полученные экспериментально значения коэффициентов рассеяния $\mu_{\rm s}$, диффузного рассеяния $R_{\rm d}$, диффузного пропускания $T_{\rm d}$, коллимированного пропускания $T_{\rm c}$ и рассчитанные значения фактора анизотропии g для сухих и влажных образцов, изготовленных различными методами (λ = 633 нм).

Параметр	Образец 1 (вспенивание в СК CO ₂)		Образец 2 (лазерное спекание)	
	Сухой	Влажный	Сухой	Влажный
$\mu_{\rm s}$ (cm ⁻¹)	61±1	50±2	69±1	61±2
$R_{\rm d}$	0.59 ± 0.01	0.20 ± 0.01	0.69 ± 0.02	0.60 ± 0.01
$T_{\rm d}$	0.45 ± 0.02	0.76 ± 0.01	0.14 ± 0.01	0.28 ± 0.01
$T_{\rm c}(10^{-5})$	64 ± 2	240 ± 10	27 ± 1	67 ± 2
g	0.6 ± 0.1	0.85 ± 0.10	0.30 ± 0.05	0.45 ± 0.11

тропии g для образцов сухих и влажных скаффолдов, изготовленных различными методами. Наименьшие значения фактора анизотропии ($g=0.3\pm0.05$) получены для сухого образца 2, а наибольшие ($g=0.85\pm0.1$) — для влажного образца 1.

С использованием полученных оптических параметров материалов образцов были рассчитаны распределения плотности поглощенной энергии света внутри образцов, которые линейно связаны с плотностью светового потока. В дальнейшем под термином интенсивность будем подразумевать плотность светового потока (рис.5).

Полученные зависимости интенсивности света в образцах от глубины (расстояния от поверхности, на которую падает свет с интенсивностью I = 1) качественно схожи. Видно, что с увеличением глубины интенсивность растет, а затем, достигнув максимального значения, монотонно уменьшается. Смачивание скаффолдов приводит к уменьшению максимального значения интенсивности, увеличению глубины достижения этого максимума и меньшему наклону кривой в области монотонного уменьшения интенсивности. Для скаффолда 1 эти изменения таковы: максимальное значение интенсивности уменьшилось с 1.28 до 1.21 (на 5%), глубина достижения максимальной интенсивности света увеличилась с 0.23 до 0.40 мм (на 73%), угол наклона кривой в области монотонного уменьшения интенсивности уменьшился с 40° до 29° (на 28%). Для скаффолда 2 изменения составили: максимальная интенсивность уменьшилась с 1.28 до 1.24 (на 3%), глубина достижения максимальной интенсивности света увеличилась с 0.15 до 0.20 мм (на 33%), угол наклона кривой в области монотонного уменьшения интенсивности уменьшился с 40° до 39° (на 2.5%).

Полученные закономерности распределения интенсивности падающего света в скаффолдах из полилактида находятся в качественном соответствии с результатами

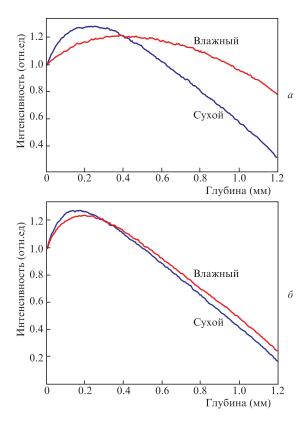


Рис. 5. Рассчитанные по методу Монте-Карло распределения интенсивности лазерного излучения с $\lambda=633$ нм внутри сухих и влажных образцов, полученных методами вспенивания в СК $\mathrm{CO}_2(a)$ и лазерного спекания (δ) .

для других сильно рассеивающих сред, полученными путем расчета по методу Монте-Карло [17-20] или прямыми измерениями [30]. В случае преобладающего рассеяния с увеличением расстояния от поверхности интенсивность света первоначально нарастает, а затем, достигнув максимума, монотонно уменьшается. В случае влажных образцов, когда поры заполнены водой, $\mu_{\rm s}$ уменьшается, что приводит к увеличению фактора анизотропии д и «просветлению» образца. На первый взгляд парадоксальным является тот факт, что при примерно одинаковой пористости ($70\% \pm 4\%$ для образца 1 и $62\% \pm 3\%$ для образца 2) смачивание образца 2 привело к существенно меньшему изменению μ_s (см. рис.3, табл.1) и меньшему отличию профиля распределения интенсивности света по глубине образца (рис.5). Однако если обратиться к СЭМизображениям образцов (см. рис.2), то можно увидеть существенное различие в их структурах. Если в образце 1 вне крупных (до 300 мкм) пор структура полилактида однородная, то в образце 2 структура в зернах (вне крупных) мелкопористая. Пористость этой мелкозернистой структуры второго образца, оцененная по СЭМ-изображениям, составила $30\% \pm 3\%$. Если при смачивании этого образца водой заполняются только крупные поры, а мелкие поры в зернах остаются незаполненными, то этим можно объяснить не столь существенное изменение оптического рассеяния во втором образце при его смачивании водой.

Было проведено сравнение световых полей, рассчитанных с помощью фазовой функции рассеяния Хейни – Гринштейна и численной модели рассеяния света сферической полостью при одинаковых g=0.56 (рис.6); это значение соответствует показателю преломления полилактида n=1.4559. Модельная фазовая функция рассея-

ния представляет собой плотность вероятности угла отклонения пучка света сферической полостью, рассчитанная из геометрических представлений хода световых лучей и формул Френеля для коэффициентов преломления и отражения. При этом учитываются многократные отражения внутри полости. Индикатрисы рассеяния для функции Хейни-Гринштейна и численной модели рассеяния света сферической полостью при среднем косинусе угла отклонения 0.56 представлены на вставке к рис.6,а. Отметим, что модельная фазовая функция рассеяния на сферической полости зависит лишь от относительного показателя преломления и не зависит от диаметра полости.

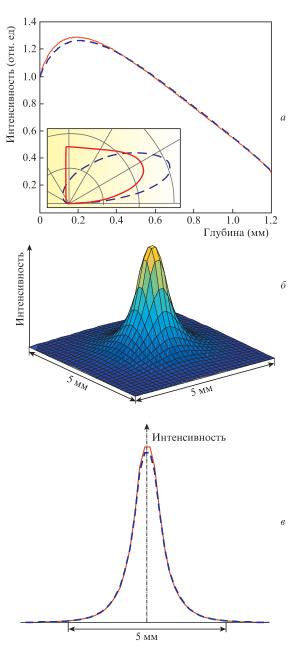


Рис.6. Распределения интенсивности лазерного излучения в сухом скаффолде 1, полученные с использованием функции Хейни – Гринштейна (штриховые кривые) и численной модели рассеяния света сферической полостью (сплошные кривые) с g=0.56: a – изменение интенсивностей с расстоянием от поверхности (на вставке даны индикатрисы рассеяния для двух методов); δ – распределение интенсивности на глубине 0.54 мм, построенное на основе численной модели рассеяния света сферической полостью; ϵ – профили распределений интенсивности на глубине 0.54 мм, рассчитанных двумя методами.

Как следует из рис.6, распределения интенсивностей световых полей, рассчитанные двумя методами, практически не различаются. Максимальное расхождение, которое наблюдается в районе максимумов кривых (рис.6,a, e), не превышает 4%. Такой результат в принципе ожидаем для многократного рассеяния света в слабо поглощающей среде. Важным обстоятельством в этом случае становится равенство средних косинусов углов отклонения светового пучка. По-видимому, распределение энергии пучка света в слабо поглощающей, но сильно рассеивающей среде определяется главным образом средним углом отклонения света при рассеянии, а прочие детали фазовой функции рассеяния становятся не столь значительными или пренебрежимо малыми. Феноменологическая фазовая функция рассеяния Хейни-Гринштейна довольно часто применяется для оценки распространения света в рассеивающих средах, особенно в биологических тканях. Для сравнения мы использовали также численную модель рассеяния света сферической полостью, которая в определенной степени физически обоснована. Доступны и другие фазовые функции рассеяния оптически неоднородных сред, среди которых может представлять интерес плотность вероятности угла отклонения света случайно-ориентированной поверхностью раздела двух сред с разными показателями преломления [31, 32].

4. Заключение

Определены распределения плотности светового потока в трехмерных пористых матрицах из полилактида, изготовленных методами СКФ-вспенивания и поверхностного селективного лазерного спекания, при облучении образцов коллимированным пучком света. Такая информация актуальна для тканевой инженерии при выборе оптимальных параметров лазерной стимуляции клеток, находящихся в полимерных скаффолдах. Показано, что при формировании светового поля в случае сильно рассеивающих сред определяющими параметрами являются фактор анизотропии g и коэффициент рассеяния μ_s .

Авторы выражают благодарность Н.В.Минаеву за помощь в конструировании установки, Н.Н.Воробьевой и С.Н.Чурбанову за подготовку образцов.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках Государственного задания ФНИЦ «Кристаллография и фотоника» РАН в части развития лазерных технологий, а также РФФИ (гранты № 17-02-00832, 17-02-01248 и 18-29-06056) в части фотоники и сверхкритических флюидов.

- 1. Nerem R.M., Sambanis A. Tissue Eng., 1 (1), 3 (1995).
- 2. Lanza R., Langer R., Vacanti J.P. *Principles of Tissue Engineering* (London: Elsevier/Academic Press, 2014)).
- Dvir T., Timko B.P., Kohane D.S., Langer R. Nat. Nanotechnol., 6, 13 (2011).

- 4. Ivanov A.N., Norkin I.A., Puchin'ian D.M. Tsitologiia, 56 (8), 543 (2014).
- Radisic M., Deen W., Langer R., Vunjak-Novakovic G. Am. J. Physiol. Heart Circ. Physiol., 288 (3), H1278 (2005).
- Yusupov V.I., Sviridov A.P., Zhigarkov V.S., Shubnyy A.G., Vorobieva N.N., Churbanov S.N., Minaev N.V., Timashev P.S., Rochev Y.A., Bagratashvili V.N. *Proc. SPIE*, 10716, 107161U (2018).
- Baxter G.D. Therapeutic Lasers: Theory and Practice (New York: Churchill Livingstone, 1994).
- 8. Tuner J., Hode L. Low Level Laser Therapy Clinical Practice and Scientific Background (Spjutvagen: Prima Books, 1999).
- Chung H., Dai T., Sharma S.K., Huang Y.Y., Carroll J.D., Hamblin M.R. *Ann. Biomed. Eng.*, 40 (2), 516 (2012).
- Karu T.I. Ten Lectures on Basic Science of Laser Phototherapy (Grangesberg: Prima Books, 2007).
- Андреева Н.В., Зотов К.В., Егоров Е.Е., Кандараков О.Ф., Юсупов В.И., Баграташвили В.Н., Белявский А.В. Молекулярная биология, 52 (6), 1014 (2018).
- Iwase T., Hori N., Morioka T., Carpenter D.O. Laser Surg. Med., 19 (4), 465 (1996).
- Chailakhyan R.K., Yusupov V.I., Gorskaya Yu.F., Kurolesova A.I., Gerasimov Yu.V., Sviridov A.P., Tambiev A.Kh., Vorobyeva N.N., Grosheva A.G., Shishkova V.V., Moskvina I.L., Bagratashvili V.N. *J. Innov. Opt Health Sci.*, 10 (1), 1650036 (2016).
- Осипова Е.А., Крылов В.В., Юсупов В.И. Журнал Сибирского федерального университета. Биология, 3, 301 (2011).
- Заичкина С.И., Дюкина А.Р., Розанова О.М., Симонова Н.Б., Романченко С.П., Сорокина С.С., Закржевская Д.Т., Юсупов В.И., Баграташвили В.Н. Бюллетень экспериментальной биологии и медицины, 161 (1), 32 (2016).
- Zhu W., George J.K., Sorger V.J., Grace Zhang L. Biofabrication, 9 (2), 025002 (2017).
- Niemz M.H. Laser-Tissue Interactions: Fundamentals and Applications (Springer, Science & Business Media, 2013).
- Welch A.J., van Gemert M.J., Star W.M., in Optical-Thermal Response of Laser-Irradiated Tissue (Dordrecht: Springer, 2011, pp 27-64).
- 19. Тучин В.В. УФН, **167**, 917 (1997) [*Phys. Usp.*, **40** (5), 495 (1997)].
- Tuchin V.V., Maksimova I.L., Zimnyakov D.A., Kon I.L., Mavlyutov A.H., Mishin A.A. J. Biomed. Opt., 2 (4), 401 (1997).
- Timashev P.S., Vorobieva N.N., Minaev N.V., Piskun Y.A., Vasilenko I.V., Lakeev S.G., Bagratashvili V.N. Russ. J. Phys. Chem. B, 10 (8), 1195 (2016).
- 22. Антонов Е.Н., Кротова Л.И., Минаев Н.В., Минаева С.А., Миронов А.В., Попов В.К., Баграташвили В.Н. Квантовая электроника, 45 (11), 1023 (2015) [Quantum Electron., 45 (11), 1023 (2015)].
- 23. Maquet V., Martin D., Malgrange B., Franzen R., Schoenen J., Moonen G., Jérôme R. J. Biomed. Mater. Res., Part A, 52 (4), 639 (2000).
- 24. Sachlos E., Czernuszka J.T. Eur. Cells Mater., 5 (29), 39 (2003).
- 25. Van Sliedregt A., Radder A.M., De Groot K., Van Blitterswijk C.A. J. Mater Sci. Mater. Med., 3 (5), 365 (1992).
- 26. Ahmed J., Varshney S.K. Int. J. Food Prop., 14 (1), 37 (2011).
- Hutchinson M.H., Dorgan J.R., Knauss D.M., Hait S.B. *J. Polym. Environ.*, 14 (2), 119 (2006).
- 28. Минаев Н.В., Антонов Е.Н., Минаева С.А., Чурбанов С.Н. ПТЭ, 1, 150 (2019).
- 29. Юсупов В.И., Минаев Н.В., Свиридов А.П. ПТЭ, 6, 130 (2019).
- Карабутов А.А., Пеливанов И.М., Подымова Н.В., Скипетров С.Е., Письма в ЖЭТФ, 70 (3), 187 (1999) [JETP Lett., 70 (3). 183 (1999)].
- 31. Свиридов А.П. Квантовая электроника, **37**, 1 (2007) [*Quantum Electron.*, **37**, 1 (2007)].
- 32. Sviridov A.P. Proc SPIE., 6164, 61640D (2005).