Влияние методики гидротермального синтеза на интенсивность ап-конверсионной люминесценции субмикронных частиц β-NaYF₄: Er³⁺, Yb³⁺

Е.А.Сагайдачная, Ю.Г.Конюхова, Н.И.Казадаева, А.А.Доронкина, И.Ю.Янина, А.А.Скапцов, А.Б.Правдин, В.И.Кочубей

Исследованы различия интенсивностей люминесценции ап-конверсионных частиц β -NaYF₄: Er³⁺, Yb³⁺, синтезированных гидротермальным способом при различных условиях синтеза. Результаты исследований позволили сделать вывод о том, что для достижения максимальной интенсивности люминесценции таких частиц необходимо использовать фторид аммония и среду с pH = 3. При этом увеличивается длина частиц, вплоть до образования частиц стержнеобразной формы. Исходя из данных о размерах области когерентного рассеяния и о микронапряжениях, можно предположить, что частицы представляют собой поликристаллы. В то же время ограничение размеров области когерентного рассеяния возможно вследствие дефектности структуры. При синтезе в среде с pH = 3 происходит образование на поверхности кристаллитов гидролизованных областей, содержащих группы OH. Наличие этих групп не влияет на интенсивность ап-конверсионной люминесценции частиц субмикронного размера.

Ключевые слова: ап-конверсионные частицы, спектры люминесценции, комбинационное рассеяние.

1. Введение

Ап-конверсионные частицы с примесью ионов лантаноидов становятся сейчас все более популярными из-за перспективы их использования в биологии и медицине в качестве мультимодальных зондов [1,2]. Достоинства таких частиц очевидны. Возбуждение в ближней ИК области спектра, т.е. в окне прозрачности биотканей, обеспечивает отсутствие автофлуоресценции биоткани, более глубокое проникновение возбуждающего излучения в биоткани по сравнению с излучением видимой области, отсутствие фотообесцвечивания и т.д. [3].

В настоящее время одной из распространенных кристаллических матриц ап-конверсионных частиц является фторид натрия-иттрия NaYF₄ [4–6]. При синтезе апконверсионных частиц малых размеров, соответствующих требованиям применения in vivo [5], одной из основных проблем является получение частиц с высоким квантовым выходом излучения. Хорошо известно, что на эффективность ап-конверсионной люминесценции влияет множество параметров: размер, морфология, фаза кристаллической решетки и степень кристалличности частиц, концентрация легирующей примеси, тип ионов на поверхности частицы, энергии фононов кристаллической решетки, параметры взаимодействия с окружающей средой, интенсивность возбуждающего излучения, темпера-

Поступила в редакцию 27 ноября 2019 г.

тура частиц [7–9]. Так, например, уменьшение размеров частиц до нанометров приводит к уменьшению эффективности ап-конверсии [10]. Эксперименты показывают, что гексагональная кристаллическая решетка матрицы позволяет получить бо́льшую интенсивность ап-конверсионной люминесценции, чем кубическая [11]. Обнаружен также оптимум концентрации легирующих ионов эрбия в интервале 1–2 мол.% [12, 13].

На люминесцентные свойства частиц влияет также состояние поверхности [14], что обусловлено, в основном, безызлучательной передачей энергии возбуждения в окружающую среду через высокочастотные колебательные моды лигандов, например OH, связанных с поверхностью частиц.

В настоящее время существуют и широко используются несколько методов синтеза ап-конверсионных частиц: метод термического разложения [15–17], метод соосаждения [15, 16], золь-гель метод [15, 18]. Наиболее распространенным методом является сольвотермальный синтез [18], в основе которого лежит растворение неорганических реагентов при повышенных температуре и давлении с последующим ростом кристаллов из жидкой фазы. Частный случай такого синтеза – гидротермальный метод, растворителем в котором служит вода. Этот вариант синтеза широко распространен благодаря простоте реализации и невысокой стоимости исходных веществ. При этом проведение синтеза в водной среде упрощает процесс поверхностной модификации частиц для биомедицинских приложений [15, 19].

При гидротермальном синтезе ап-конверсионных частиц NaYF₄: Er^{3+} , Yb^{3+} можно использовать различные прекурсоры. Источниками редкоземельных металлов Y, Yb, Er могут быть их соли, например нитраты или хлориды. В качестве источника натрия применяются различные соли натрия: фторид, цитрат (Cit) и др. Источниками фтора могут служить растворы фторида натрия или фторида аммония [20]. Стоит отметить, что реагенты могут

Е.А.Сагайдачная, Ю.Г.Конюхова, Н.И.Казадаева, А.А.Доронкина, А.А.Скапцов, А.Б.Правдин. Саратовский национальный исследовательский государственный университет им. Н.Г.Чернышевского, Россия, 410012 Саратов, ул. Астраханская, 83

И.Ю.Янина, В.И.Кочубей. Саратовский национальный исследовательский государственный университет им. Н.Г.Чернышевского, Россия, 410012 Саратов, ул. Астраханская, 83; Национальный исследовательский Томский государственный университет, Россия, 634050 Томск, просп. Ленина, 36; e-mail: saratov_gu@mail.ru

оказывать двойное действие. Например, известно, что цитрат натрия и фторид натрия, используемые как источники ионов натрия и фтора в кристаллической решетке, влияют также и на сам процесс роста кристаллов [20, 21]. На этот процесс и превращение кристаллических фаз влияют значение pH среды и количество покрывающего поверхности роста агента (модификатора поверхности). Модификаторами поверхности кристаллов являются, например, этилендиаминтетрауксусная кислота и упомянутый цитрат натрия. При этом в зависимости от величины рН меняются условия блокирования роста различных граней кристалла. В результате можно управлять морфологией синтезируемых частиц, изменяя их форму от пластинок до наностержней [21]. В то же время модификаторы поверхности частиц являются источниками поверхностных лигандов, влияющих на эффективность ап-конверсии [22-25].

Результаты исследований факторов (параметров) синтеза, влияющих на свойства получаемых ап-конверсионных частиц, описаны в ряде статей [19–23, 26, 27]. Однако следует отметить, что условия синтеза и соотношение концентраций реагентов часто различаются в работах разных научных групп. (Например, время синтеза варьируется в пределах 1-24 ч, температура – в пределах 160° С -220° С, pH среды – от 3 до 11.) Это не позволяет установить закономерности, связывающие условия синтеза и параметры получаемых частиц.

Целью настоящей работы является исследование влияния pH реакционной среды и типа фторирующего агента на интенсивность ап-конверсионной люминесценции синтезированных гидротермальным способом частиц β -NaYF₄: Er³⁺, Yb³⁺ субмикронного размера.

2. Материалы и методы

Синтез частиц NaYF₄: Er³⁺, Yb³⁺ проводился по следующей методике. Сначала 5.25 г цитрата натрия Na₃C₆H₅O₇·2H₂O растворяли, перемешивая, в 7.5 мл дистиллированной воды. Через 30 мин добавляли раствор солей редкоземельных металлов (Re): 0.996 мл YCl₃·6H₂O (0.5 M), 0.212 мл YbCl₃·4H₂O (0.5 M) и 18.6 мкл $ErCl_3 \cdot 5H_2O(1 M)$ (молярное соотношение Y : Yb : Er = 1:0.2:0.04), и перемешивали в течение 30 мин до образования нерастворимого комплекса металл-цитрат. Значение рН среды варьировалось добавлением концентрированного раствора HCl или NaOH. Затем добавляли 9 мл одномолярного водного раствора фторирующего агента. Источниками фтора для синтеза частиц служили соли NaF и NH₄F. Следует отметить, что согласно [28] при использовании фтористого аммония в кислой среде образуются преимущественно стержнеподобные частицы. Молярное соотношение F: Cit: Re составляло 14.5: 28.6: 1. После перемешивания в течение 30 мин полученную смесь переливали в тефлоновую емкость, которую помещали в автоклав и выдерживали в течение 2.5 ч при температуре T = 180 °C. После инерционного остывания автоклава до комнатной температуры полученные частицы отделяли центрифугированием и три раза отмывали в воде. Частицы просушивали в воздушной атмосфере при $T = 70 \,^{\circ}\text{C}$ в течение 20 ч.

Исследовали как свежеприготовленные частицы, так и отожженные при T = 400 °C в течение одного часа на воздухе. Для характеризации частиц использовались методы электронной микроскопии, рентгеноструктурного фа-

зового анализа (РФА), люминесцентной спектроскопии и комбинационного рассеяния (КР). Ап-конверсионная люминесценция порошкообразных образцов регистрировалась при помощи люминесцентного спектрофлуориметра с волоконным вводом QE6500 FL (Ocean Optics, США). Люминесценция возбуждалась излучением лазерного диода STLE-M-980-W010 (λ = 980 нм) с волоконным выходом. Для достижения повторяемых результатов, необходимых для сравнения интенсивностей люминесценции различных образцов, фиксированное количество сухого порошка диспергировалось в воде, а затем осаждалось при слабом ультразвуковом воздействии и высушивалось. Таким образом достигалась плотная упаковка частиц в образце. Формирование пучка лазерного излучения и сбор люминесценции проводились коллиматорами 74-VIS (Ocean Optics, США). Интенсивность возбуждающего излучения составляла 4 Вт/см². Лазерное излучение, рассеянное образцом, подавлялось фильтром СЗС-23.

Размеры, форма и химический состав частиц определялись с помощью сканирующей электронной микроскопии при использовании микроскопа MIRA 2 LMU (TESCAN, Чехия).

Структура кристаллической решетки частиц устанавливалась с помощью прибора для рентгеноструктурного фазового анализа ARLX'TRA (Thermo Fisher Scientific, США) и программы Jana2006. Для регистрации спектров КР использовалась рамановская система (Ocean Optics, США) на базе спектрометра QEPRO-RAMAN, лазера LASER-785-IP-LAB (λ = 785 нм, мощность 1 Вт) и зонда для рамановской спектроскопии RIP-RPB-785-FC. Все спектральные измерения проводились при комнатной температуре.

3. Результаты и их обсуждение

Согласно данным электронной микроскопии синтезированные частицы $NaYF_4$: Er^{3+} , Yb^{3+} существенно различаются по форме (рис.1).

В результате синтеза с использованием фторида натрия образуются гексагональные призмы, различающиеся длиной и диаметром (рис.1, образцы 1–3, табл.1). Для частиц характерны достаточно широкие распределения по размерам. Примеры распределений приведены на рис.2. При pH = 3 поверхность частиц дефектна, в ряде случаев наблюдаются сростки. Следует отметить, что визуально оцениваемая дефектность поверхности уменьшается при увеличении времени синтеза до 20 ч.

При использовании фтористого аммония и среды с pH = 3 синтезируются стержнеподобные частицы с диаметром $d \approx 500$ нм и длиной $L \approx 5$ мкм (рис.1, образец 4, табл.1). В то же время встречаются частицы с диаметром $d \approx 90$ нм и длиной $L \approx 500$ нм.

Соотношение концентраций редкоземельных элементов в частицах приведено в табл.1. Согласно данным химического анализа, полученным с помощью электронной микроскопии, относительная концентрация иттербия и эрбия в кристаллах выше, чем в реакционной смеси. Данный факт можно объяснить различной способностью используемых редкоземельных металлов образовывать цитратные комплексы.

В спектрах, полученных методом РФА, полосы свежеприготовленных образцов соответствуют гексагональной структуре (рис.3). Для анализа микроструктуры кристаллов были построены графики Вильямсона–Холла, из ко-

Образец 4

ew held: 3.307 µm Det: SE EM MAG: 100.00 kx Dete(m/d/y): 01/10/19 1 MKM Oбразец 5

MMW: 3000 KV winfeld: 3.305 µm Det: SE MMAG: 100.04 kx Date(midy): 01/10/19 Offpasett 3

View field: 3.307 µm Det: SE SEM MAG: 100.00 kx Date(m/d/y): 01/10/19 1 MKM Образец 6

Рис.1. Изображения частиц $NaYF_4: Er^{3+}, Yb^{3+}$, полученные с помощю сканирующего электронного микроскопа, для образцов 1-6 из табл.1.

Номер образца	Фторирующий агент	рН	Длина (нм)	Диаметр (нм)	Cootнoшение Y:Yb:Er	Размер ОКР (нм)	Параметр микродеформаций (10 ⁻³)	Интегральная интенсивность люминесценции (произв. ед.)	
								до отжига	после отжига
1	NaF	8	375 ± 25	310 ± 30	1:0.4:0.06	154	2.7	8.8×10^{2}	2.2×10^{3}
2	NaF	10	385 ± 25	310 ± 19	1:0.3:0.05	256	0.4	1.6×10^{3}	2.1×10^{4}
3	NaF	3	460 ± 40	315 ± 25	1:0.3:0.03	170	1.5	2.1×10^4	1.2×10^{5}
4	$\rm NH_4F$	3	4450 ± 400	480 ± 50	1:0.35:0.05	> 1000	0.9	1.1×10^{6}	3.9×10^{6}
5	$\rm NH_4F$	8	340 ± 20	295 ± 23	1:0.3:0.05	36	0.4	3.5×10^{3}	1.2×10^{5}
6	$\rm NH_4F$	10	280 ± 7	270 ± 14	1:0.35:0.05	45	0.6	6×10^{3}	3.3×10^{4}

Табл.1. Характеристики ап-конверсионных частиц NaYF₄: Ег³⁺, Yb³⁺, полученных при различных условиях синтеза.

торых следует, что размер области когерентного рассеяния (ОКР) в кристаллах (табл.1) существенно меньше их геометрических размеров. Это может быть вызвано как дефектностью кристаллов (табл.1, параметр микродеформаций), так и их поликристалличностью. После отжига образцов положения их полос в РФА-спектрах не изменились, что указывает на постоянство кристаллической структуры. При этом интенсивность полос несколько увеличилась, что свидетельствует об увеличении степени кристалличности решетки.

Спектры люминесценции частиц NaYF₄: Er^{3+} , Yb^{3+} до и после отжига приведены на рис.4. Вследствие высокой интенсивности люминесценции частиц образца 4 их спектры приведены на отдельном рисунке. Различие в интенсивностях люминесценции достигает трех порядков. Можно сделать вывод о том, что наибольшая интенсивность наблюдается для образцов, синтезированных при pH = 3,

причем максимальная – для образцов, полученных при использовании фтористого аммония.

Отжиг частиц приводит к увеличению интенсивности их люминесценции. Это увеличение различно для разных спектральных полос и частиц, полученных разными методами синтеза. Ввиду изменений отношений интенсивностей полос в результате отжига, для анализа нами оценивалось изменение интегральной интенсивности люминесценции в диапазоне 500–700 нм (табл.1). Для исследованных частиц корреляция между структурными данными, концентрациями примесей и интенсивностью люминесценции отсутствует.

Известно, что на интенсивность ап-конверсионной люминесценции влияет тушение гидроксильными и цитратными группами, расположенными на поверхности частиц [29]. Отжиг частиц удаляет эти группы с поверхности, однако степень удаления зависит от температуры отжига:

Рис.2. Гистограммы распределения числа частиц N по размерам для образцов 3 (*a*) и 4 (*б*). Серые гистограммы соответствуют распределению по диаметру частиц *d*, черные – распределению по длине частиц *L*.

Рис.3. РФА-спектры образцов 4 (*a*) и 3 (δ), а также схема расположения пиков на дифрактограмме кристалла NaYF₄ с гексагональной структурой (*в*).

она максимальна при T = 700 °C и практически отсутствует при T = 350 °C [28,29]. Цитратные группы не только определяют структуру частиц и блокируют их рост, формируя, при наших режимах синтеза, гексагональную структуру, но и блокируют преобразование гексагональной структуры в кубическую при отжиге.

Нормированные спектры КР неотожженных образцов приведены на рис.5,*а*. Спектры КР соответствуют β -структуре кристаллов NaYF₄ [30, 31]. В области $\nu = 225-450$ см⁻¹ расположены фононные полосы нанокристаллов NaYF₄. Средневзвешенная частота фононной моды объемного чистого монокристалла NaYF₄ составляет 360 см⁻¹, в то время как для нанокристаллов с примесью Уb и Ег она равна 304 см⁻¹ [30, 32]. Положение пиков, т. е. частота фононных колебаний, может меняться из-за связывания цитрата с поверхностью, однако для исследованных образцов оно одинаково и не меняется при отжиге (рис.5, δ). Спектры КР образца 4 наиболее интенсивны. Это объясняется его меньшей дефектностью и лучшей кристалличностью [25] и хорошо согласуется с данными РФА.

В области v = 800-1200 см⁻¹ в спектрах частиц, синтезированных при pH = 3, присутствуют шесть полос разной интенсивности. Природа данных полос имеет различное объяснение. В частности, предполагается, что колебательные полосы при v > 500 см⁻¹ относятся к колебаниям цитрата [32]. По мнению авторов [32], на наличие цитрата на поверхности частиц указывают сильные полосы неплоских деформационных колебаний СООН в области

Рис.4. Спектры люминесценции частиц NaYF₄: Er³⁺, Yb³⁺ до (*a*) и после (δ) отжига при T = 400 °C в течение часа, а также аналогичные спектры образца 4 с высокой интенсивностью люминесценции (*в*). Цифры – номера образцов в табл.1, буква t соответствует отожженным образцам (частицам).

786–908 см⁻¹ и валентных колебаний С–О в области 998–1112 см⁻¹. В то же время отсутствие ряда полос, относящихся к цитратным группам, и тот факт, что наблюдаемые полосы не исчезают для частиц, отожженных при

Рис.5. Спектры КР образцов до отжига (*a*) и спектры КР образца 4 до и после отжига при T = 400 °C (δ).

высоких температурах, когда цитратные группы должны удаляться с поверхности, позволяют усомниться в данном выводе.

В работе [33] природа данных полос анализируется как путем их сравнения со спектрами КР других типов кристаллов, так и путем расчета колебательных характеристик матрицы кристалла NaYF₄. Сделан вывод, что наличие полос в диапазоне 750–1500 см⁻¹ нельзя объяснить собственными колебаниями решетки кристалла NaYF₄ либо наличием фазы кристаллов типа Y_2O_3 , YOF или Y(OH)₃. Присутствие полос авторы [33] объясняют существованием гидролизованных поверхностных областей сложного состава, например Re–X–OH, где X = O, F.

Однако это не может объяснить увеличения интенсивности ап-конверсионной люминесценции одновременно с ростом интенсивностей данных полос (что наблюдалось нами для наночастиц, полученных при ряде других синтезов, необсуждаемых в данной работе, и отмечается авторами [34]), т. к. в случае наночастиц эти связанные с поверхностью гидроксильные группы способствуют передаче энергии возбуждения в окружающую среду, т. е. являются тушителями люминесценции. Тем не менее в нашем случае частиц субмикронного размера можно ожидать, что из-за большего отношения объема частицы к площади ее поверхности влияние гидроксильных групп, находящихся на поверхности, будет малым.

4. Выводы

Таким образом, по результатам работы можно сделать вывод о том, что для достижения максимальной интенсивности люминесценции ап-конверсионных частиц NaYF₄: Er^{3+} , Yb³⁺, синтезируемых гидротермальным методом, необходимо использовать фторид аммония и среду с pH = 3. При этих условиях синтеза длина получаемых частиц увеличивается, вплоть до образования частиц стержнеобразной формы. Исходя из данных о размерах ОКР и микронапряжениях, можно предположить, что частицы представляют собой поликристаллы. В то же время к ограничению размеров ОКР может приводить и дефектность структуры. При синтезе с pH среды, равным 3, происходит образование на поверхности частиц гидролизованных областей, содержащих группы ОН. Наличие этих групп, по нашему мнению, не влияет на интенсивность ап-конверсионной люминесценции частиц субмикронного размера.

Исследование выполнено при поддержке гранта Российского научного фонда (проект № 19-12-00118).

- 1. Chen G., Qiu H., Prasad P.N., Chen X. Chem. Rev., 114, 5161 (2014).
- Wang F., Banerjee D., Liu Y., Chen X., Liu X. Analyst, 135, 1839 (2010).
- 3. Eliseeva S.V., Bünzli J.-C.G. Chem. Soc. Rev., 39, 189 (2010).
- 4. Jafari M., Rezvanpour A. Adv. Powder Technol., 30, 1731 (2019).
- 5. Del Rosa B., Jaque D. Methods Appl. Fluoresc., 7, 022001 (2019).
- 6. Fan Y., Liu L., Zhang F. *Nano Today*, **25**, 68 (2019).
- 7. Li X., Zhang F., Zhao D. Chem. Soc. Rev., 44, 1346 (2015).
- DaCosta M.V., Doughan S., Han Y., Krull U.J. Anal. Chim. Acta., 832, 1 (2014).
- Tessitore G., Mandl G.A., Brik M.G., Parke W., Capobianco J.A. Nanoscale, 11 (25), 12015 (2019).
- Sun M., Dong H., Dougherty A.W., Lu Q., Peng D., Wong W.-T., Huang B., Sun L.-D., Yan C.-H. *Nano Energy*, 56, 473 (2019).
- 11. Yi G.S., Chow G.M. Adv. Funct. Mater., 16, 2324 (2006).
- Kaiser M., Würth C., Kraft M., Soukka T., Resch-Genger U. Nano Res., 12, 1871 (2019).
- Rafique R., Baek S.H., Tu Phan L.M., Chang S.-J., Gul A.R., Park T.J. Mater. Sci. Eng. C, 99, 1067 (2019).
- Podhorodecki A., Banski M., Noculak A., Sojka B., Pawlik G., Misiewicz J. Nanoscale, 5, 429 (2013).
- Chang H., Xie J., Zhao B., Liu B., Xu S., Ren N., Xie X., Huang L., Huang W. *Nanomaterials*, 5, 1 (2015).
- Gainer C.F., Romanowski M. J. Innovative Opt. Health Sci., 7, 1330007 (2014).
- 17. Chen J., Zhao J.X. Sensors, 12, 2414 (2012).
- Zhang F. Photon Upconversion Nanomaterials (London-New York: Springer, 2016).
- Zhao J., Zhao J., Sun Y., Kong X., Tian L., Wang Y., Tu L., Zhao J., Zhang H. J. Phys. Chem. B, 112, 15666 (2008).
- Li C., Yang J., Quan Z., Yang P., Kong D., Lin J. Chem. Mater., 19, 4933 (2007).
- Zhang X., Yu H., Guo L., Jin J., Li Q., Guo Y., Fu Y., Shi Y., Zhao L. J. Alloys Compd., 728, 1254 (2017).
- Li C., Quan Z., Yang J., Yang P., Lin J. Inorg. Chem., 46, 6329 (2007).
- 23. Zhou J., Liu Q., Feng W., Sun Y., Li F. Chem. Rev., 115, 395 (2015).
- Liu X., Deng R., Zhang Y., Wang Yu., Chang H., Huang L., Liu X. Chem. Soc. Rev., 44, 1479 (2015).
- 25. Altavilla C. (Ed.) Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Series: Nanomaterials and their Applications (Boca Raton: Taylor & Francis, 2016).
- Shang Y., Hao S., Liu J., Tan M., Wang N., Yang C., Chen G. Nanomaterials, 5, 218 (2015).
- Ding M., Yin S., Ni Y., Lu C., Chen D., Zhong J., Ji Z., Xu Z. Ceram. Int., 41, 77411 (2015).
- 28. Zhao J.W., Jia T.K., Kong X.G. Adv. Mater. Res., 496, 79 (2012).
- Chunxia Li, Jun Yang, Zewei Quan, Piaoping Yang, Deyan Kong, Jun Lin. Chem. Mater., 19, 4933 (2007).
- 30. Wang F., Wang J., Liu X.G. Angew Chem. Int. Ed., 49, 7456 (2010).
- Wilhelm S., Hirsch T., Patterson W.M., Scheucher E., Mayr T., Wolfbeis O.S. *Theranostics*, 3, 239 (2013).
- 32. Klier D.T., Kumke M.U. J. Mater. Chem. C, 3, 11228 (2015).
- Du Y. PhD thesis (Department of Materials Science & Engineering National University of Singapore, 2012).
- Suyver J.F., Grimm J., Van Veen M.K., Biner D., Krämer K.W., Güdel H.U. J. Lumin., 117, 1 (2006).