Динамика релаксации люминесценции планарных и свернутых нанокристаллов CdSe в матрице фотонного кристалла

А.С.Селюков, М.И.Данилкин, С.П.Елисеев, А.С.Кузнецов, В.П.Графова, С.О.Климонский, Ю.Г.Вайнер, Р.Б.Васильев, А.Г.Витухновский

Приведены результаты исследования образцов инвертированных фотонно-кристаллических пленок, содержащих планарные и свернутые в форме свитков нанокристаллы CdSe. Получены спектры пропускания данных структур, подтверждающие наряду с изменением цвета пленок вхождение в них нанокристаллов, изучена динамика затухания интенсивности фотолюминесценции. Показано, что фотонно-кристаллическая матрица оказывает существенное влияние на кинетику люминесценции наноструктур. Различия кривых затухания, измеренных для нанокристаллов в фотонно-кристаллической матрице и для их ансамбля на стеклянной подложке, объяснены влиянием стоп-зоны фотонного кристалла, а также самой кристаллической матрицы, которая ориентирует анизотропные нанокристаллы и предотвращает их агрегацию. Полученные результаты могут представлять существенный интерес с точки зрения потенциальных применений в оптоэлектронных устройствах.

Ключевые слова: нанопластины, наносвитки, CdSe, фотонный кристалл, кинетика люминесценции.

1. Введение

Многие свойства нанокристаллов определяются не только их размерами, но и формой. Следовательно, целенаправленное управление морфологией наночастиц позволяет создавать наноструктуры, обладающие новыми свойствами. Современные нанотехнологии сделали возможным изготовление наночастиц самых разных форм: наностержни, нанопроволоки, нанотрубки, наноленты, наносферы, нанооболочки и многие другие. В частности, с использованием методик коллоидного синтеза создан новый класс полупроводниковых квазидвумерных нанокристаллов на основе халькогенидов кадмия, представляющих собой сверхтонкие пластины толщиной в несколько атомных монослоев с хорошо контролируемым числом таких слоев. Отсутствие разброса толщин пластинок приводит к устранению в ансамблях таких наночастиц эффектов дисперсии индивидуальных параметров экситонного поглощения и фотолюминесценции и, как следствие,

Поступила в редакцию 3 февраля 2020 г.

к сужению соответствующих спектральных линий, что очень привлекательно для многих потенциальных приложений. Другой причиной, обуславливающей уникальные оптические и спектральные свойства исследуемых нанопластин, являются присущие им пространственный конфайнмент и сильная анизотропия вследствие их предельно малой толщины. В частности, это приводит к гигантскому росту сил осцилляторов электронных переходов, а также к большим скоростям излучательной рекомбинации и узким полосам люминесценции (см., напр., [1]).

В последние годы появились технологии, позволяющие создавать свернутые в виде трубок структуры (наносвитки) на основе упоминаемых плоских полупроводниковых нанопластин. Это открывает новые возможности в области оптических нанотехнологий. Поэтому в настоящее время возрастает интерес к оптическим и люминесцентным свойствам наноразмерных объектов нового типа, а именно двумерных пластин и таких новых трехмерных объектов, как свитки. Квантовые ограничения, приводящие к узким экситонным спектрам у пластин и свитков, зависят от ориентации элементарных возбуждений относительно геометрии объекта, что открывает дополнительные возможности для использования этих материалов в управляемых оптоэлектронных устройствах. При этом синтез наночастиц в форме пластин и свитков становится все более управляемым [2-4], а сами частицы находят активное применение в различных устройствах [5-8]. В то же время возникают проблемы при изучении таких объектов, обусловленные тем, что при исследовании ансамбля произвольно расположенных и хаотично ориентированных в изучаемом объеме наночастиц невозможно определить «истинную» кинетику их затухания и другие люминесцентные характеристики из-за эффективного взаимодействия частиц между собой и усреднения сигналов от многих частиц. Так, кинетика затухания люминесценции обычно заметно ускоряется в первые наносекунды после оптического возбуждения вследствие резонансной миграции поглощенной энергии к соседним частицам [9], т.е., по сути,

А.С.Селюков. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Всероссийский институт научной и технической информации РАН, Россия, 125190 Москва, ул. Усиевича, 20

М.И.Данилкин. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53

С.П.Елисеев, А.Г.Витухновский. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9

А.С.Кузнецов, В.П.Графова, С.О.Климонский, Р.Б.Васильев. Московский государственный университет им. М.В.Ломоносова, Россия, 119991 Москва, Воробьевы горы

Ю.Г.Вайнер. Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9; Институт спектроскопии РАН, Россия, 108840 Москва, Троицк, ул. Физическая, 5; e-mail: vainer@isan.troitsk.ru

быстрое затухание возникает из-за процессов концентрационного тушения. Медленные компоненты оказываются усиленными и растянутыми, поскольку тушение в таких объектах часто не переводит возбуждение полностью в тепло, а способствует высвечиванию с задержкой и немного увеличенным стоксовым сдвигом, который и останавливает резонансную миграцию. Усреднение же сигнала от большого числа частиц еще более усложняет картину, делая ее мало пригодной для детального анализа. Случайная ориентация частиц с ярко выраженными анизотропными свойствами делает исследования менее ценными.

Введение люминесцирующих компонентов в фотонные кристаллы проводилось многими исследователями (см., напр., обзор [10]). Однако в случае наносвитков их введение внутрь фотонного кристалла открывает новые возможности, поскольку можно ожидать, что при правильном подборе размеров ячеек кристалла и наносвитков последние войдут в кристалл ориентированным образом. Ориентирование наносвитков путем их введения в фотонный кристалл оказывается не единственным преимуществом указанного метода, т.к. в этом случае частицы практически не взаимодействуют друг с другом. Это позволяет получать данные о свойствах самих изолированных наносвитков, а не усредненную информацию об ансамбле взаимодействующих между собой наночастиц. Таким образом, указанным способом можно получать индивидуальную информацию без необходимости изучения одиночных наночастиц. Кроме того, в случае ориентированно расположенных наносвитков открываются новые возможности по управлению кинетикой их люминесценции в фотонных кристаллах. Так, если направление свечения совпадает с направлением фотонной стоп-зоны, возникающее при этом снижение плотности оптических состояний будет приводить к существенному замедлению скорости затухания люминесценции. Подобного рода эффекты весьма интересны с точки зрения будущих применений в оптоэлектронных устройствах.

2. Эксперимент

Фотонные кристаллы изготавливали путем инвертирования пленок синтетических опалов, получаемых методом осаждения коллоидных частиц SiO₂ на вертикальные стеклянные подложки [11]. Сферические частицы SiO₂ требуемого диаметра синтезировали по методике доращивания зародышей, представленной в [12]. Свойства получаемых на вертикальных пластинках пленок описаны в [13]. Изготовленные пленки накрывали второй стеклянной пластинкой с зазором в 40 мкм (метод сэндвича [14]), после чего полученную сэндвич-структуру заполняли смолой ЕТРТА (триметилолпропан этоксилат триакрилат, M_n ~ 428, Sigma-Aldrich) с добавкой примерно 2 мас.% фотоинициатора 2-гидрокси-2-метил-1-фенил-1-пропанон (Sigma-Aldrich). После фотополимеризации смолы пластинки удаляли, а исходную опаловую структуру из SiO₂ вытравливали плавиковой кислотой. Полученные пленки имели толщину 40 мкм и состояли из двух слоев (оба из ЕТРТА): тонкого (3-5 мкм) слоя фотонного кристалла со структурой инвертированного опала и более толстого сплошного бесструктурного слоя, игравшего роль подложки. Структура инвертированного опала представляла собой плотноупакованные сферические пустоты диаметром 250-280 нм (в зависимости от размера сферических частиц темплата), соединенные отверстиями диаметром около 50-60 нм. Таким образом, самые крупные наносвитки длиной 100–120 нм и диаметром ~25–30 нм [15], а также небольшие нанопластины с латеральными размерами до 60 нм [5] могли проникать в них. Были получены два типа фотонно-кристаллических пленок: с более коротковолновой стоп-зоной (P2A-2) и более длинноволновой стоп-зоной (J3B-1).

Наноструктуры CdSe были синтезированы согласно методике, описанной в [15]. Полученные растворы разбавляли толуолом в 20 раз до концентрации CdSe ~ 0.25 мг/мл. Для введения наносвитков пленки инвертированных фотонных кристаллов погружали на 1 мин в раствор, вытаскивали в вертикальном положении, несколько секунд ополаскивали в чистом толуоле с целью удаления частиц, оставшихся на поверхности, и высушивали на воздухе. Процедуру пропитки повторяли трижды; затем для окончательного удаления наносвитков с поверхности обе стороны пленок протирали ватой со спиртом. Поскольку наносвитки не растворимы ни в воде, ни в этаноле, последняя процедура не приводила к их вымыванию из объема пленок.

Спектр поглощения раствора наноструктур CdSe в толуоле был получен при помощи спектрофотометра Specord M40. Спектры полного пропускания (прямой луч + рассеянный свет) пленок инвертированных фотонных кристаллов снимали на спектрофотометре Lambda 950 (Perkin Elmer) с использованием белой интегрирующей сферы. Спектр фотолюминесценции наноструктур CdSe в матрице фотонного кристалла был получен при помощи спектрометра с ПЗС-матрицей Maya Pro2000 (Ocean Optics). В качестве источника возбуждения люминесценции использовался светодиод с непрерывным излучением на длине волны 365 нм.

Кинетика затухания фотолюминесценции образцов измерялась системой время-коррелированного счета одиночных фотонов PicoQuant MicroTime 200, объединенной с инвертированным флуоресцентным микроскопом Olympus IX71. В качестве источника возбуждения люминесценции использовался полупроводниковый лазер PDL 828, излучающий на длине волны 376 нм с длительностью импульсов 50 пс и частотой следования импульсов 5 МГц. Детектором служил лавинный фотодиод τ-SPAD-50, соединенный с платой счета одиночных фотонов PicoQuant PicoHarp 300. Ширина аппаратной функции регистрирующей системы на полувысоте составляла ~300 пс. Полоса люминесценции образцов была выделена при помощи интерференционного фильтра Chroma с центральной длиной волны 370 нм и полосой пропускания 20 нм. Для обеспечения релевантности сравнения получаемых результатов все измерения проводились с одинаковым временем накопления 11.64 мин. При этом минимальное общее число отсчетов (площадь под кривой затухания) с учетом всех проведенных экспериментов было $\sim 2 \times 10^{\circ}$, в то время как заявленное производителем детектора т-SPAD-50 число темновых отсчетов в секунду составляет менее 50, что соответствует не более 3.5×10^4 отсчетов за все время эксперимента. Таким образом, интегральный динамический диапазон измерений составлял ~10⁵, что обеспечивало возможность достоверного сравнения кривых затухания.

3. Результаты и их обсуждение

О факте введения наноструктур CdSe в фотонный кристалл можно судить по соответствующему изменению цве-

Рис.1. Фотография фотонных кристаллов P2A-2 с наноструктурами CdSe (левая половина образца желтого цвета) и без них (правая половина образца). Цветной вариант рисунка помещен на сайте нашего журнала https://www.quantum-electron.ru.

Рис.2. Спектр оптического поглощения раствора наноструктур CdSe в толуоле (сплошная линия) и характерный спектр люминесценции этих наноструктур в фотонно-кристаллической матрице (штриховая линия) (*a*), спектры пропускания образца фотонного кристалла P2A-2 без наноструктур CdSe (штриховая линия) и с наноструктурами CdSe (сплошная линия) (*б*), аналогичные спектры пропускания для образца фотонного кристалла J3B-1 (*в*).

та фотонно-кристаллической матрицы (рис.1). Также следует отметить, что под различными углами наблюдения цвет образца как с наноструктурами CdSe (левая половина образца), так и без них (правая половина) различается. Это характерная для фотонных кристаллов игра света (опалесценция), связанная с усилением отражения в области фотонных стоп-зон.

Подробное сравнительное исследование спектральных и кинетических свойств нанопластин и наносвитков CdSe, а также их морфологии было проведено в работе [16]. В спектре поглощения (рис.2, а, сплошная кривая), полученном для раствора наноструктур CdSe в толуоле, наблюдаются характерные экситонные особенности с максимумами на длинах волн 435 и 462 нм, отвечающие переходам из подзон легких и тяжелых дырок валентной зоны в зону проводимости. Данные характеристики поглощения соответствуют атомарно тонким планарным наноструктурам CdSe толщиной в три монослоя [17]. В спектре фотолюминесценции наноструктур CdSe в матрице фотонного кристалла проявляется полоса межзонной люминесценции на длине волны 467 нм с шириной на полувысоте ~12 нм, а также широкая полоса в длинноволновой области спектра, обусловленная люминесценцией дефектов. Кроме того, на длине волны ~517 нм наблюдается небольшой пик, связанный с межзонной люминесценцией наночастиц большей толщины, которые часто присутствуют в растворе как побочный продукт реакции. Также для наноструктур CdSe стоит отметить чрезвычайно малый (5 нм) стоксов сдвиг между максимумами поглощения и люминесценции, что обусловлено малой величиной энергетического расщепления между «темным» и «светлым» экситонными состояниями в исследуемых наноструктурах [18].

Спектры пропускания фотонно-кристаллических матриц P2A-2 и J3B-1, обработанных раствором наночастиц CdSe в толуоле (рис.2, δ и s), также свидетельствуют о введении данных наноструктур внутрь фотонного кристалла, поскольку в этих спектрах наблюдаются характерные изменения в областях, соответствующих экситонному поглощению наночастиц CdSe. Более того, у образца P2A-2 обнаружено существенное изменение вида спектральной зависимости фотонной стоп-зоны, поскольку для данного кристалла положение стоп-зоны накладывается на область поглощения наночастиц CdSe. В свою очередь, для образца J3B-1 с наноструктурами CdSe вид стоп-зоны по сравнению с таковой для необработанной матрицы не изменяется.

Ввиду изменения плотности фотонных состояний, а также селекции по направлению излучения эмиттеров ожидалось, что введение наноструктур CdSe в фотоннокристаллическую матрицу позволит управлять динамикой затухания люминесценции этих объектов. Для изучения этой возможности использовались фотонные кристаллы, положение стоп-зоны которых согласуется с максимумом спектра фотолюминесценции наноструктур CdSe (P2A-2) либо смещено в область бо́льших длин волн (J3B-1). Результаты измерений кинетики люминесценции приведены на рис.3.

На участке кривой релаксации от 0 до 5 нс обнаружено замедление кинетики люминесценции для образца фотонно-кристаллической матрицы P2A-2 с наноструктурами CdSe (кривая 1), для которого положение стоп-зоны совпадает с максимумом межзонной люминесценции наночастиц CdSe, по сравнению с затуханием люминесцен-

Рис.3. Кинетика затухания люминесценции наноструктур CdSe в фотонно-кристаллической матрице P2A-2 (*I*), в фотонно-кристаллической матрице J3B-1 (*2*) и на стекле (*3*).

ции этих нанокристаллов на стекле (кривая 3). Данный эффект связан с тем, что при введении наночастиц в фотонно-кристаллическую матрицу частицы, размеры которых меньше размера полости, окажутся сориентированными в направлении нормали к поверхности под действием электрического поля, возникающего при освещении фотонного кристалла. Действующие в определенных кристаллографических направлениях (в том числе по нормали к поверхности) стоп-зоны приводят, по-видимому, к уменьшению вероятности взаимодействия между соседними наночастицами, из-за чего кривая *I* на рис.3 оказывается наиболее приближенной к естественной кривой затухания (либо даже соответствует замедленной кинетике, поскольку свечение в нормальном направлении «задавлено» стоп-зоной), в то время как для других образцов имеет место концентрационное тушение, приводящее к ускорению на начальном участке кривой (0-5 нс) и замедлению на завершающем этапе. В случае образца ЈЗВ-1 (кривая 2 на рис.3) стоп-зона не оказывает существенного влияния, частицы не являются надежно изолированными друг от друга и начальный участок кривой затухания близок к таковому для нанокристаллов на стекле.

Более надежным подтверждением этой гипотезы, повидимому, могло бы стать измерение время-разрешенных спектров люминесценции в различных временных окнах: на начальном и на среднем участках затухания. Упорядоченная ориентация анизотропных частиц в фотонном кристалле, а также управление их ориентацией [19] и люминесцентными свойствами с помощью электрического поля [20] открывают большие возможности для создания новых оптоэлектронных устройств.

4. Заключение

В работе получены и исследованы образцы инвертированных фотонно-кристаллических пленок, содержащих в себе планарные и свернутые в форме свитков нанокристаллы CdSe. На основе полученных спектров пропускания образцов, обработанных и не обработанных коллоидным раствором наноструктур CdSe, сделан вывод о вхождении наночастиц в изучаемые фотонно-кристаллические пленки. Продемонстрировано, что фотонно-кристаллическая матрица оказывает существенное влияние на затухание фотолюминесцеции наночастиц CdSe. Так, при согласовании положения стоп-зоны фотонного кристалла с максимумом люминесценции наноструктур CdSe на начальной стадии наблюдалось более медленное затухание люминесценции, чем для наноструктур CdSe, помещенных на стеклянную подложку, что связано как с влиянием стоп-зоны фотонного кристалла, так и с ослаблением процессов концентрационного тушения. Полученные результаты демонстрируют возможность управления люминесцентными характеристиками плоских и скрученных нанокристаллов посредством их внедрения в фотоннокристаллическую матрицу, что может представлять интерес для потенциальных применений в оптоэлектронных устройствах.

Спектральные измерения выполнены при финансовой поддержке РФФИ (грант № 18-02-00653 а), кинетические измерения – при финансовой поддержке РФФИ (грант № 18-02-00811 а), синтез наноструктур CdSe – при поддержке РФФИ (грант № 19-03-00481 а).

- Achtstein A.W., Schliwa A., Prudnikau A., Hardzei M., Artemyev M.V., Thomsen Ch., Woggon U. Nano Lett., 12, 3151 (2012).
- Kurtina D.A., Garshev A.V., Vasil'eva I.S., Shubin V.V., Gaskov A.M., Vasiliev R.B. *Chem. Mater.*, **31**, 9652 (2019).
- Kormilina T.K., Cherevkov S.A., Fedorov A.V., Baranov A.V. Small, 13, 1702300 (2017).
- Kelestemur Y., Olutas M., Delikanli S., Guzelturk B., Akgul M.Z., Demir H.V. J. Phys. Chem. C, 119, 2177 (2015).
- Селюков А.С., Витухновский А.Г., Лебедев В.С., Ващенко А.А., Васильев Р.Б., Соколикова М.С. ЖЭТФ, 147, 687 (2015).
- Giovanella U., Pasini M., Lorenzon M., Galeotti F., Lucchi C., Meinardi F., Luzzati S., Dubertret B., Brovelli S. *Nano Lett.*, 18, 3441 (2018).
- Fan F., Kanjanaboos P., Saravanapavanantham M., Beauregard E., Ingram G., Yassitepe E., Adachi M.M., Voznyy O., Johnston A.K., Walters G., Kim G.H., Lu Z.H., Sargent E.H. *Nano Lett.*, **15**, 4611 (2015).
- Lhuillier E., Robin A., Ithurria S., Aubin H., Dubertret B. Nano Lett., 14, 2715 (2014).
- Guzelturk B., Erdem O., Olutas M., Kelestemur Y., Demir H.V. ACS Nano, 8, 12524 (2014).
- Wu S., Xia H., Xu J., Sun X., Liu X. Adv. Mater., 30, 1803362 (2018).
- Jiang P., Bertone J.F., Hwang K.S., Colvin V.L. Chem. Mater., 11, 2132 (1999).
- Климонский С.О., Бахия Т., Кнотько А.В., Лукашин А.В. Докл. РАН, 457, 50 (2014).
- Бахия Т., Баранчиков А.Е., Горелик В.С., Климонский С.О. Кристаллография, 62, 815 (2017).
- Cai Z., Teng J., Xiong Z., Li Y., Li Q., Lu X., Zhao X.S. *Langmuir*, 27, 5157 (2011).
- Васильев Р.Б., Соколикова М.С., Витухновский А.Г., Амброзевич С.А., Селюков А.С., Лебедев В.С. Квантовая электроника, 45, 853 (2015) [Quantum Electron., 45, 853 (2015)].
- Schlenskaya N.N., Yao Y., Mano T., Kuroda T., Garshev A.V., Kozlovskii V.F., Gaskov A.M., Vasiliev R.B., Sakoda K. *Chem. Mater.*, **29**, 579 (2017).
- Mahler B., Nadal B., Bouet C., Patriarche G., Dubertret B. J. Am. Chem. Soc., 134, 18591 (2012).
- Biadala L., Liu F., Tessier M.D., Yakovlev D.R., Dubertret B., Bayer M. Nano Lett., 14, 1134 (2014).
- Abécassis B., Tessier M.D., Davidson P., Dubertret B. Nano Lett., 14, 710 (2014).
- Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., Vasiliev R.B., Lazareva E.P. J. Lumin., 186, 194 (2017).