Генерационные характеристики кристаллов ZrO₂-Y₂O₃-Ho₂O₃ при накачке импульсным излучением Tm:LiYF₄-лазера

П.А.Рябочкина, С.А.Артемов, Н.Г.Захаров, Е.В.Салтыков, К.В.Воронцов, А.Н.Чабушкин, Е.Е.Ломонова

Получена импульсная двухмикронная лазерная генерация на переходе ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов Ho^{3+} кристаллов $ZrO_{2} - Y_{2}O_{3} - Ho_{2}O_{3}$ при резонансной накачке на уровень ${}^{5}I_{7}$ этих ионов излучением импульсного лазера на кристалле LiYF₄: Tm. Эффективность преобразования излучения накачки, падающей на кристалл, в излучение лазерной генерации и дифференциальный КПД генерации при длительности импульсов 8 мс и частоте их следования 10 Гц составили 25% и 28% соответственно.

Ключевые слова: тулиевый лазер, двухмикронный спектральный диапазон, кристалл $ZrO_2 - Y_2O_3 - Ho_2O_3$.

1. Введение

Большой интерес к разработке двухмикронных твердотельных лазеров вызван их широким применением в медицинской технике, в лидарах, в приборах для мониторинга различных газов, а также в качестве источников для накачки лазеров, генерирующих излучение в области 4-5 мкм. В настоящее время известно значительное количество работ, в которых сообщается о двухмикронных лазерах на легированных ионами Tm³⁺ и Ho³⁺ кристаллах и керамике, генерирующих излучение в различных режимах [1–15].

В работах [13–15] нами сообщалось о получении двухмикронного лазерного излучения на переходе ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺ кристаллов ZrO₂–Y₂O₃–Ho₂O₃ при резонансной накачке на уровень ${}^{5}I_{7}$ этих ионов непрерывным излучением LiYF₄: Tm-лазера [13, 14] и тулиевого волоконного лазера [15].

Для кристаллов ZrO₂–Y₂O₃–R₂O₃ (где R – ионы редкоземельных (P3) металлов), как и для полуторных оксидов и керамики (Y₂O₃, Lu₂O₃, Sc₂O₃), легированных P3 ионами, величина расщепления кристаллическим полем мультиплетов этих ионов на штарковские подуровни превышает аналогичную величину в других оксидных материалах (например, в Y₃A₁₅O₁₂) [14]. Так, область спектра люминесценции перехода ⁵I₇ → ³I₈ ионов Ho³⁺ в кристаллах ZrO₂–Y₂O₃–Ho₂O₃ соответствует интервалу 1800–2300 нм, что позволило получить на них самую длинноволновую лазерную генерацию среди кристаллических сред, легиро-

П.А.Рябочкина, С.А.Артемов. Национальный исследовательский Мордовский государственный университет им. Н.П.Огарёва, Россия, 430005 Саранск, ул. Большевистская, 68;

e-mail: ryabochkina@freemail.mrsu.ru

Поступила в редакцию 14 апреля 2020 г.

ванных ионами Ho^{3+} , и реализовать область перестройки длины волны генерации в интервале 2056–2168 нм [14]. В работе [15] при использовании непрерывного тулиевого волоконного лазера в качестве источника накачки была получена двухмикронная импульсная генерация на кристаллах $ZrO_2-Y_2O_3-Ho_2O_3$ в режиме модулированной добротности с длительностью импульсов 140 и 310 нс при частотах их следования 1 и 10 кГц соответственно.

Следует отметить, что низкая теплопроводность кристаллов стабилизированного диоксида циркония ограничивает возможность их использования в качестве активных элементов твердотельных лазеров с высокой выходной мощностью излучения. Повышение мгновенной мощности лазерного излучения возможно за счёт использования импульсной накачки, позволяющей значительным образом снизить тепловую нагрузку на кристалл. Поэтому представляет интерес изучение генерационных характеристик кристаллов $ZrO_2 - Y_2O_3 - Ho_2O_3$ при резонансной импульсной накачке на уровень ⁵I₇ ионов Ho³⁺ излучением импульсного твердотельного лазера на кристаллах LiYF₄:Tm.

2. Результаты исследований

Для проведения исследований методом прямого высокочастотного нагрева в холодном тигле на установке «Кристалл 407» (диаметр тигля 130 мм, скорость его опускания 10 мм/ч) были выращены кристаллы $ZrO_2-Y_2O_3$ (13.6 мол. %) – Ho_2O_3 (0.4 мол. %), обозначаемые далее как Ho: YSZ. Для проведения генерационных экспериментов из этих кристаллов были вырезаны активные элементы в виде прямоугольных параллелепипедов размерами $3 \times 3 \times 18$ мм.

Оптическая схема импульсного Ho: YSZ-лазера представлена на рис.1. Накачка вырезанного из кристалла Ho: YSZ активного элемента осуществлялась излучением импульсного Tm:LiYF₄-лазера, накачиваемого, в свою очередь, импульсами излучения мощных линеек лазерных диодов. Длина волны Tm:LiYF₄-лазера накачки λ_p равнялась 1910 нм, длительность его импульсов при проведении экспериментов варьировалась и составляла 2, 4, 6 и 8 мс при частоте следования 10 Гц. Выбор указанных дли-

Н.Г.Захаров, Е.В.Салтыков, К.В.Воронцов. ФГУП «Российский федеральный ядерный центр – ВНИИЭФ», Россия, Нижегородская обл., 607188 Саров, просп. Мира, 37

А.Н.Чабушкин. ООО «МЦКТ», Россия, 143025, Московская обл., Одинцовский р-н, дер. Сколково, ул. Новая, 100

Е.Е.Ломонова. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38

Рис.1. Оптическая схема лазера на кристаллах Ho: YSZ при накачке импульсным Tm: LiYF₄-лазером.

тельностей определялся тем, что, поскольку определенное в [13] время жизни уровня ${}^{5}I_{7}$ ионов Ho ${}^{3+}$ составляет 14.7 мс, представлялось интересным изучить энергетические характеристики импульсной генерации при длительностях импульса накачки, меньших или соизмеримых с этим временем. Максимальная длительность импульса накачки (8 мс) была выбрана из соображений предотвращения разрушения активного элемента LiYF₄: Tm-лазера.

На рис.2 приведены зависимости сечений поглощения для перехода ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ и вынужденного излучения для перехода ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов Но³⁺ в кристаллах Но: YSZ, полученные из экспериментально зарегистрированных спектра поглощения и спектра люминесценции этих переходов и представленные нами ранее в работах [13, 14]. Из спектра поглощения данного кристалла (переход ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ ионов Но³⁺) видно, что длина волны 1910 нм является оптимальной для процесса накачки.

Торцы активного элемента из кристалла Ho: YSZ не были просветлены, поэтому для предотвращения попадания отражённого излучения обратно в лазер накачки в ходе эксперимента активный элемент наклонялся на небольшой угол относительно направления излучения накачки. Для эффективного теплоотвода активный элемент заворачивался в индиевую фольгу и помещался в медную оправку, температура которой в процессе проведения эксперимента поддерживалась на уровне T = 13 °C. Излучение импульсного Tm: LiYF₄-лазера накачки фокусировалось в активный элемент линзой с фокусным расстоянием f =300 мм. Диаметр перетяжки пучка накачки в активном элементе при этом составил d = 0.6 мм.

Резонатор лазера был образован плоским входным и сферическим выходным зеркалами. Входное плоское зеркало имело высокий коэффициент пропускания на длине волны накачки HT = 98% (λ_p = 1910 нм) и высокий коэффициент отражения на длине волны генерации HR = 99.9% (λ_g = 2105 нм). В качестве выходного использовалось сферическое зеркало с радиусом кривизны *r* = 300 мм. Пропускание выходного зеркала T_m на λ_g составило 10%,

Рис.2. Спектральные зависимости сечений поглощения перехода ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ и вынужденного излучения перехода ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺ в кристаллах Ho: YSZ, *T* = 300 K [13, 14].

Рис.3. Спектр лазера на кристалле Но: YSZ.

коэффициент отражения R на λ_p был равен 90%, что обеспечивало двойной проход излучения накачки через активный элемент из кристалла Но:YSZ. При измерении характеристик Но:YSZ-лазера использовалось дихроичное зеркало с $T_m = 98\%$ на λ_g и R = 99.9% на λ_p для «отсечки» излучения лазера накачки.

В ходе экспериментов была получена импульсная генерация на кристалле Ho: YSZ при накачке Tm: LiYF₄-лазером с длительностями импульсов 2, 4, 6, 8 мс и частотой их следования 10 Гц. Длина волны генерации составила 2107 нм при ширине спектра по полувысоте $\Delta \lambda = 10$ нм (рис.3).

Рис.4. Импульсы генерации Но: YSZ- и Tm: LiYF₄-лазеров при длительности импульсов накачки 2 (*a*) и 8 мс (*б*) и частоте следования 10 Гц.

На рис.4 представлены импульсы генерации Но : YSZлазера и Tm : LiYF₄-лазера накачки, зарегистрированные с помощью фотоприемника SIP-100-250M-TO39-NG (Vigo System). Видно, что излучение обоих лазеров имеет характерную пичковую структуру.

Измерение энергий импульсной генерации лазера на кристалле Ho: YSZ и Tm: LiYF₄-лазера накачки осуществлялось с помощью пироэлектрического датчика PE50BB-DIF-C (Ophir). Зависимости энергии генерации Ho: YSZлазера от энергии Tm: LiYF₄-лазера накачки при длительностях импульсов накачки $\tau_p = 2$ и 8 мс показаны на рис.5.

Эффективность преобразования энергии излучения импульсов накачки, падающей на кристалл, в излучение импульсов лазерной генерации при их длительности 8 мс и частоте следования 10 Гц составила $\eta_0 = 25\%$ при дифференциальном КПД генерации $\eta_d = 28\%$. Аналогичные значения при длительностях импульса 2 мс и той же частоте следования равнялись 16% и 22%. В экспериментах при длительностях импульсов накачки и генерации 4 и 6 мс был получен дифференциальный КПД генерации 24% и 25% соответственно. Увеличение эффективности Но: YSZ-лазера при увеличении длительности импульса накачки, на наш взгляд, обусловлено следующим. Во-первых, существует задержка начала импульса генерации относительно импульса накачки, в течение которой формируется инверсная населенность в активной среде. Во-вторых, средняя мощность в импульсе генерации выходит на максимум через определённый промежуток времени, зависящий от скорости накачки и времени жизни ионов Но³⁺ на верхнем лазерном уровне. Таким образом, вклад части импульса генерации с меньшей средней мощностью в общую энергию импульса лазерного излучения оказывается большим для коротких импульсов, что и приводит

Рис.5. Зависимости энергии генерации Но: YSZ-лазера $E_{\rm g}$ от энергии импульсного Tm: LiYF₄-лазера накачки $E_{\rm p}$ при длительностях импульсов 2 (*a*) и 8 мс (δ) и частоте следования 10 Гц.

к наблюдаемой зависимости. Отметим, что мы не рассматривали влияние термолинзы, поскольку при использованных параметрах лазера накачки оно не является существенным.

Необходимо отметить, что для исследованных диапазонов длительности и энергии импульсов накачки, а также при выбранной частоте следования импульсов, представленные энергетические зависимости были линейными, что свидетельствует о возможности увеличения как энергии, так и частоты следования импульсов генерации при увеличении соответствующих параметров лазера накачки. При энергиях накачки $E_p = 0.28$ и 1.11 Дж и длительностях импульса $\tau_p = 2$ и 8 мс (частота следования в обоих случаях 10 Гц) энергия генерации составила 0.05 и 0.26 Дж соответственно.

Итак, в настоящей работе исследован импульсный режим работы лазера на кристаллах состава $ZrO_2-Y_2O_3$ (13.6 мол.%) – $Ho_2O_3(0.4$ мол.%). При резонансной накачке на уровень ${}^{5}I_7$ ионов Ho^{3+} импульсным Tm : LiYF₄-лазером получена генерация на переходе ${}^{5}I_7 \rightarrow {}^{5}I_8$ с длиной волны $\lambda_g = 2107$ нм и длительностями импульсов 2,4,6 и 8 мс при частоте следования импульсов 10 Гц. Максимальная энергия генерации импульсов с длительностью 8 мс и частотой их следования 10 Гц составила 0.26 Дж при энергии накачки $E_p = 1.11$ Дж. Эффективность преобразования излучения накачки, падающей на кристалл, в излучение генерации и дифференциальный КПД генерации при длительностях импульсов 8 мс и частоте их следования 10 Гц составили 25% и 28% соответственно.

Работа выполнена при финансовой поддержке РФФИ (грант № 18-29-20039).

- 1. Walsh B.M. Laser Phys., 19, 855 (2009).
- Scholle K., in Frontiers in Guided Wave Optics and Optoelectronics (Croatia: INTECH, 2010, p. 471).
- Koopmann P., Lamrini S., Scholle K., Fuhrberg P., Petermann K., Huber G., in *Advances in Optical Materials, OSA Technical Digest* (Optical Society of America, 2011, paper ATuA5).
- Antipov O.L., Novikov A.A., Zakharov N.G., Zinoviev A.P. Opt. Mater. Express, 2, 183 (2012).
- Lagatsky A.A., Fusari F., Kurilchik S.V., Kisel V.E., Yasukevich A.S., Kuleshov N.V., Pavlyuk A.A., Brown C.T.A., Sibbett W. *Appl. Phys. B*, 97 (2), 321 (2009).
- Guo W., Chen Y., Lin Y., Gong X., Luo Z., Huang Y. J. Phys. D: Appl. Phys., 41, 115409 (2008).
- Больщиков Ф.А., Жариков Е.В., Захаров Н.Г., Лис Д.А., Рябочкина П.А., Субботин К.А., Антипов О.Л. Квантовая электроника, 40, 101 (2010) [Quantum Electron., 40, 101 (2010)].
- Больщиков Ф.А., Жариков Е.В., Захаров Н.Г., Лис Д.А., Рябочкина П.А., Субботин К.А., Антипов О.Л. Квантовая электроника, 40, 847 (2010) [Quantum Electron., 40, 847 (2010)].
- Lyapin A.A., Fedorov P.P., Garibin E.A., Malov A.V., Osiko V.V., Ryabochkina P.A., Ushakov S.N. Opt. Mater., 35, 1859 (2013).
- Antipov O.L., Novikov A.A., Larin S., Obronov I. Opt. Lett., 41, 2298 (2016).
- Рябочкина П.А., Чабушкин А.Н., Копылов Ю.Л., Балашов В.В., Лопухин К.В. Квантовая электроника, 46, 597 (2016) [Quantum Electron., 46, 597 (2016)].
- Борик М.А., Ломонова Е.Е., Малов А.В., Кулебякин А.В., Рябочкина П.А., Ушаков С.Н., Усламина М.А., Чабушкин А.Н. *Квантовая электроника*, **42**, 580 (2012) [*Quantum Electron.*, **42**, 580 (2012)].
- Борик М.А., Ломонова Е.Е., Ляпин А.А., Кулебякин А.В., Рябочкина П.А., Ушаков С.Н., Чабушкин А.Н. Квантовая электроника, 43, 838 (2013) [Quantum Electron., 43, 838 (2013)].
- Ryabochkina P.A., Chabushkin A.N., Lyapin A.A., Lomonova E.E., Zakharov N.G., Vorontsov K.V. Laser Phys. Lett., 14, 055807 (2017).
- Chabushkin A.N., Lyapin A.A., Ryabochkina P.A., Antipov S.A., Lomonova E.E. *Laser Phys.*, 28, 3 (2018).