Роль водяного пара при поглощении наносекундного лазерного излучения с длиной волны 266 нм атмосферным воздухом

А.Н.Куряк, Б.А.Тихомиров

Исследованы зависимости поглощения излучения четвертой гармоники Nd: YAG-лазера воздухом и бинарными смесями водяного пара с азотом и кислородом при атмосферном давлении от энергии (пиковой интенсивности) излучения. Обнаружено, что при добавлении одинакового количества водяного пара к сухому азоту и кислороду поглощения этих смесей существенно различаются. Получены предварительные количественные оценки сечений двух- и трехфотонного поглощения молекул воды и кислорода: $\sigma^{(2)}(H_2O) = (4 \pm 1) \times 10^{-49}$ см⁴·с и $\sigma^{(3)}(O_2) = (5.6 \pm 1.4) \times 10^{-78}$ см⁶·с². Установлено, что поглощение излучения с длиной волны 266 нм и пиковой интенсивностью от 0.05 до 2 ГВт·см⁻² в приземной атмосфере определяется двухфотонным поглощением излучения водяным паром и трехфотонным поглощениием в кислороде. Во влажном воздухе с содержанием водяного пара 1% коэффициент поглощения лазерного излучения на длине волны 266 нм превышает коэффициент поглощения в сухом воздухе в 4–5 раз. Поглощение в адоте отсутствует. Развита методика оптико-акустических измерений сечений многофотонного поглощения в однокомпонентных газах и газовых смесях.

Ключевые слова: атмосферный воздух, водяной пар, УФ излучение, многофотонное поглощение, оптико-акустический детектор.

1. Введение

В последние годы значительно повысился интерес к изучению роли водяного пара при поглощении высокоинтенсивного УФ лазерного излучения в воздухе [1,2], в том числе в режиме филаментации лазерных пучков в атмосфере [3]. Повышенный интерес связан прежде всего с тем, что, несмотря на относительно небольшое содержание водяного пара в воздухе, его вклад в поглощение высокоинтенсивного УФ излучения значительно превышает вклад основных компонентов воздуха (азот и кислород), однако данная проблема остается мало изученной. Так, в работе [1] с помощью метода оптико-акустической (ОА) спектроскопии впервые установлено, что поглощение фемтосекундных импульсов с длиной волны 248 нм и интенсивностью излучения $I \approx 10 \ \Gamma B \text{T} \cdot \text{cm}^{-2}$ в атмосферном воздухе на порядок превышает поглощение в сухом воздухе и пропорционально квадрату интенсивности излучения. В работе [2] с помощью метода оптико-гальванической (ОГ) спектроскопии показано, что коэффициент поглощения наносекундных импульсов лазерного излучения с длиной волны 248 нм водяным паром в воздухе и в бинарных смесях с азотом и кислородом в диапазоне интенсивностей излучения 0.1-10 ГВт·см⁻² также пропорционален квадрату интенсивности. В качестве физического механизма поглощения в [2] рассматривается (2+1)-фотонная ионизация (REMPI – Resonance Enhanced Multiphoton Ionization), при которой молекулы H₂O в результате двухфотонного поглощения сначала переходят в высоковозбужденные электронные состояния, а затем в

Поступила в редакцию 19 декабря 2019 г.

результате поглощения еще одного фотона ионизуются. Коэффициент поглощения фемтосекундных лазерных импульсов с интенсивностью излучения 0.01-10 ТВт·см⁻² водяным паром пропорционален кубу интенсивности. В этом случае поглощение излучения происходит в результате (3 + 1)-фотонной REMPI-ионизации молекул H₂O. Наблюдаемое во всем диапазоне изменения интенсивности $(0.1 - 10^4 \,\Gamma B T \cdot c M^{-2})$ поглощение в кислороде связано с трехфотонной ионизацией молекул О2. В азоте поглощение наносекундных импульсов в диапазоне 0.1-10 ГВт·см⁻² отсутствует, но наблюдается для фемтосекундных импульсов в диапазоне 0.01-10 ТВт · см⁻² и связано с (3 + 1)-фотонной REMPI-ионизацией молекул N2. В [2] найдено соотношение 5:3 между вкладами от кислорода и азота в ионизацию атмосферного воздуха фемтосекундными лазерными импульсами. Вклад от поглощения молекулами Н₂О при их объемном содержании в воздухе ~2.5% превышает на порядок и более суммарный вклад от молекул N₂ и O₂ как для фемтосекундных, так и для наносекундных лазерных импульсов.

В отличие от ОГ спектроскопии [4], при реализации которой измеряется концентрация свободных электронов в канале распространения лазерного импульса, в ОА методе [5] измеряется амплитуда сигнала давления, генерируемого в результате поглощения излучения и последующего увеличения поступательной энергии молекул. Если ОГ сигнал генерируется только в результате ионизации молекул, то ОА сигнал может появляться из-за целого ряда физических процессов: поглощения на колебательно-вращательных (КВ) и электронных переходах молекул, вынужденного комбинационного рассеяния, ионизации и диссоциации молекул, поглощения излучения продуктами фотохимических реакций и т. д. ОА метод отлично зарекомендовал себя в исследованиях спектров поглощения молекулярных газов в видимом, ИК и микроволновом диапазонах спектра и в газовом анализе. В УФ обла-

А.Н.Куряк, Б.А.Тихомиров. Институт оптики атмосферы им. В.Е.Зуева СО РАН, Россия, 634055 Томск, пл. Акад. Зуева, 1; e-mail: kurjak@iao.ru, bat@iao.ru

сти, где поглощение излучения чаще всего связано с электронным возбуждением и многофотонной ионизацией атомов и молекул, работоспособность ОА метода, на наш взгляд, изучена недостаточно.

Импульсный Nd:YAG-лазер с нелинейными преобразователями частоты излучения, генерирующий мощные наносекундные импульсы на пяти длинах волн, в том числе на трех длинах волн в УФ диапазоне спектра, применяется в большом числе лабораторных и натурных экспериментов, например, при исследовании атмосферы оптическими методами. Однако количественные данные о сечениях многофотонного поглощения УФ излучения Nd:YAG-лазера основными газовыми компонентами воздуха (азотом, кислородом и водяным паром) в литературе отсутствуют.

В настоящей работе представлены количественные данные о сечениях многофотонного поглощения излучения 4-й гармоники наносекундного Nd: YAG-лазера (длина волны 266 нм) кислородом и водяным паром, полученные на основе измерений зависимости амплитуды OA сигнала от энергии (интенсивности) излучения для бинарных смесей азота и кислорода с водяным паром.

2. Техника измерений

Схема экспериментальной установки с Nd: YAG-лазером и OA детектором (OAД) с временным разрешением сигналов представлена на рис.1.

Лазер (модель LS-2134U, Минск) с нелинейными преобразователями частоты основного излучения 1064 нм в гармоники позволяет получать импульсы линейно поляризованного излучения на длине волны 266 нм (энергия фотона $hv \approx 4.7$ эВ) длительностью $\tau_{0.5} = 6$ нс (FWHM) с частотой следования до 15 Гц. Радиус пучка с распределением интенсивности излучения в виде концентрических колец за диафрагмой (Д) составляет 4 мм. Энергия лазерных импульсов варьируется в пределах 0–20 мДж путем дискретного изменения энергии разряда в лампе-вспышке и измеряется с помощью калиброванного ОА приемника (ОАП).

ОАД включает в себя цилиндрическую камеру диаметром 20 см и длиной 25 см. Для ввода и вывода излучения на торцах камеры вмонтированы оптические окна (О) из кварцевого стекла КУ. Внутри камеры в фокальной плоскости линзы (Л2) с фокусным расстоянием F = 100 см установлен конденсаторный микрофон МК-301 (М). При поглощении части энергии лазерного импульса в камере ОАД генерируется акустический биполярный импульс с амплитудой, пропорциональной поглощенной энергии ла-

Рис.1. Схема экспериментальной установки:

СД – светоделительный клин; Л1 – отрицательная линза; Э – поглощающий экран; К – вакуумный кран.

зерного импульса, который с помощью микрофона преобразуется в электрический сигнал. Электрический сигнал микрофона усиливается широкополосным усилителем (У) и регистрируется цифровым осциллографом TDS1012. В настоящем эксперименте исследовались зависимости амплитуды U_0 сигналов ОАД от энергии лазерных импульсов E с синхронным накоплением 64 сигналов ОАД и ОАП для каждого значения энергии лазерного импульса. Необходимо отметить, что для ОАД с временным разрешением полезного и фоновых акустических сигналов амплитуда U_0 пропорциональна поглощенной энергии лазерного импульса в широком динамическом диапазоне (до 120 дБ), а в отсутствие поглощения в исследуемом газе равна нулю.

Перед измерениями камера ОАД несколько раз откачивалась до остаточного давления $P \approx 0.01$ мбар и промывалась азотом. Затем в камеру напускался азот или кислород. В эксперименте использовались азот (99.996%) и кислород (99.999%) с содержанием влаги не более 10 ррт производства ООО «ПГС-сервис». В экспериментах со смесями этих газов с водяным паром сначала путем испарения в вакуум дважды дистиллированной жидкости в камеру напускался водяной пар, затем добавлялся азот или кислород. Напуск комнатного воздуха осуществлялся путем долговременной прокачки воздуха через камеру. Давление газов в камере ОАД измерялось с помощью вакуумметров DVR-5 и ВИТ-2.

3. Методика оценки сечений поглощения

Амплитуда сигнала ОАД при *n*-фотонном поглощении однокомпонентным газом импульсного лазерного излучения с гауссовым распределением интенсивности определяется формулой [6]

$$U_0 \approx \alpha n^{3/4} [\sigma^{(n)} N n^{-3/2} I_0^{n-1}] E$$

= $\alpha \sigma^{(n)} N n^{-3/2} \left(\frac{2\sqrt{\ln 2}}{\pi^{3/2} r_0^2 \tau_{0.5}} \right) E^n,$ (1)

где α – чувствительность ОАД для случая линейного поглощения; $\sigma^{(n)}$ – сечение *n*-фотонного поглощения. Число молекул поглощающего газа N = LP, где $L = 2.68 \times 10^{19}$ см⁻³ – число Лошмидта; P – давление газа. При наличии линейного поглощения (n = 1) и составляющих нелинейного многофотонного (n = 2, 3, ...) поглощения в формуле (1) необходимо просуммировать по *n* вклады от всех составляющих. Сомножитель $\sigma^{(n)}Nn^{-3/2}I_0^{n-1}$ имеет смысл эффективного коэффициента *n*-фотонного поглощения, выраженного через пиковую интенсивность гауссова импульса

$$I_0 = \frac{2E}{\pi^{3/2} r_0^2 \tau}.$$

Здесь $\tau = \tau_{0.5} \sqrt{\ln 2}$; r_0 – радиус гауссова пучка, при котором интенсивность $I(r_0) = I_0 e^{-2}$. При E = 1 Дж, $r_0 = \sqrt{\lambda F/2\pi} = 2.06 \times 10^{-2}$ см [7] и $\tau_{0.5} = 6$ нс пиковая интенсивность $I_0 = 141$ ГВт/см². Из выражения (1) для сечения *n*-фотонного поглощения получаем

$$\sigma^{(n)} \approx b^{(n)} n^{3/4} \left[\alpha \left(\frac{2\sqrt{\ln 2}}{\pi^{3/2} r_0^2 \tau_{0.5}} \right)^{n-1} LPE^{n-1} \right]^{-1},$$
(2)

где $b^{(n)}$ – коэффициент подгонки соответствующей составляющей в экспериментальной зависимости $U_0(E)$ полиномом *n*-й степени. Физические величины имеют следующие размерности: $\sigma^{(n)}$ – размерность см²ⁿ · cⁿ⁻¹ · Дж¹⁻ⁿ, $\alpha - \mathbf{B} \cdot \mathbf{Д} \mathbf{x}^{-1} \cdot \mathbf{cM}$, P -бар, $E - \mathbf{Д} \mathbf{x}$. Для перехода в формуле (2) к классической размерности сечения многофотонного поглощения – $\sigma^{(n)} [$ см²ⁿ · cⁿ⁻¹] [8] – необходимо полученные с помощью (2) значения делить (n - 1) раз на 1.33×10¹⁸ – число фотонов с длиной волны 266 нм в 1 Дж энергии. Впервые формула (1) была использованы нами для определения сечений двухфотонного поглощения фемтосе-кундных лазерных импульсов с длиной волны 800 нм водяным паром и сухим воздухом [9].

Формула (1) применима, если чувствительность α остается неизменной для всех исследуемых газов, т.е. при таких давлениях газов, длительности лазерного импульса и радиусе лазерного пучка, когда выполняется соотношение [10]

$$\frac{\tau_0}{P_{\text{tot}}} \ll 1.316 \left(\tau^2 + \frac{r_0^2}{2V_s^2}\right)^{1/2},\tag{3}$$

где τ_0 – время жизни молекул в возбужденном/ионизованном состоянии при общем давлении газа $P_{tot} = 1$ мбар; V_s – скорость звука. Согласно работам [2, 11, 12] время жизни плазмы в канале распространения фемтосекундных лазерных импульсов в воздухе атмосферного давления, измеренное разными методами, не превышает 10 нс. Это означает, что для условий нашего эксперимента соотношение (3) будет выполняться при давлениях $P_{tot} \ge 200$ мбар.

Таким образом, для того чтобы определить сечение *n*-фотонного поглощения в однокомпонентном газе, необходимо аппроксимировать экспериментальные зависимости $U_0(E)$ полиномом *n*-й степени и по найденным коэффициентам подгонки $b^{(n)}$ с помощью формулы (2) вычислить значения сечений поглощения.

Для увеличения вклада линейного поглощения в $U_0(E)$ необходимо проводить измерения с коллимированными пучками или с применением длиннофокусных линз. Чтобы увеличить вклад в $U_0(E)$ от многофотонного поглощения, необходимо применять короткофокусные линзы. В газе, для которого трудно обеспечить выполнение соотношения (3) (в настоящей работе таковым является водяной пар), измерения проводятся в бинарных смесях этого газа с другим газом, в котором поглощение отсутствует, или с газом с известным коэффициентом поглощения. Калибровка ОАД осуществляется по известному поглощению лазерных импульсов спановым газом.

4. Результаты и их обсуждение

На рис.2 представлены зависимости амплитуды U_0 ОА сигнала от энергии E (пиковой интенсивности I_0) импульсного лазерного излучения на длине волны 266 нм при поглощении воздухом, сухими азотом и кислородом, а также смесями азота и кислорода с водяным паром при общем давлении газов и смесей в камере $P_{tot} = 1$ бар. Парциальное давление водяного пара P_{H_2O} в бинарных смесях составляет 9.6 мбар, в воздухе – 17.1 мбар. Из рисунка видно, что экспериментальные точки для всех исследуемых газов в целом хорошо ложатся на подгоночные кривые.

В табл.1 приведен состав исследуемых газов, а также значения коэффициентов $b^{(n)}$ аппроксимации экспериментальных зависимостей полиномом третей степени: $U_0 = b^{(1)}E + b^{(2)}E^2 + b^{(3)}E^3$. Из табл.1 и рис.2 следует, что при изменении пиковой интенсивности лазерных импульсов от 5.5×10^{-2} до 2 ГВт/см² в сухом кислороде проявляются линейный и трехфотонный процессы поглощения. Коэффициенты $b^{(1)}(O_2)$ и $b^{(3)}(O_2)$ при подгонке восстанавливаются с относительной погрешностью 3.3% и 0.7% соответственно. Пренебрежимо малая величина коэффициента $b^{(2)}(O_2) = 5.9 \times 10^{-13}$, которая после подгонки восстанавливаливается без среднеквадратичного отклонения (СКО), говорит о том, что двухфотонный процесс в кислороде отсутствует.

Рис.2. Зависимости амплитуды ОА сигнала от энергии и интенсивности гауссовых лазерных импульсов на длине волны излучения 266 нм в азоте, кислороде и их смесях с водяным паром и атмосферным воздухом.

Табл.1.	Коэффициенты	аппроксимации	экспериментальных	данных полиномом 3-й степени.
---------	--------------	---------------	-------------------	-------------------------------

Газ	P _{tot} (мбар)	Р _{Н2} О (мбар)	$b^{(1)}$	$b^{(2)}(10^2)$	$b^{(3)}(10^5)$
1. O ₂	1000	0	23.4±0.8	5.9×10 ⁻¹⁵	14.7±0.1
2. $O_2 + H_2O$	1000	9.6	37.2±14.5	388.7±34.9	13.5 ± 2.0
3. N ₂	1000	0	0.9 ± 0.1	8.2±0.1	5.1×10^{-16}
4. $N_2 + H_2O$	1000	9.6	14.3 ± 1.1	48.8 ± 0.1	6.8×10^{-15}
5. Воздух + H ₂ O	977	17.1	102.1 ± 7.0	155.3 ± 16.8	2.8 ± 0.1
6. $O_2 + H_2O$	1000	9.6	$23.4 + (22.1 \pm 6.0)$	48.8 + (317.9±5.6)	14.7
7. Воздух + H ₂ O	977	17.1	$0.2 \times 23.4 + (99 \pm 2.9)$	1.78×48.8 + (150.0±2.8)	0.2×14.7
Примечание: курси	ивом выделены фин	ксированные значен	ия коэффициентов, использу	емые при обработке эксперимент	альных данных.

Согласно [13] сечение линейного поглощения кислородом излучения на длине волны 266 нм в полосе Герцберга I $\sigma^{(1)}(O_2) = 9.4 \times 10^{-25}$ см². Используем значения $\sigma^{(1)}(O_2)$ и подгоночного коэффициента $b^{(1)}(O_2) = 23.4$ из табл.1 для калибровки ОАД, т.е. по формуле (2) определяем чувствительность ОАД, $\alpha = 9.3 \times 10^7$ В·Дж⁻¹·см, которая хорошо согласуется с результатами предыдущей калибровки данного ОАД ($\alpha = 10.5 \times 10^7$ В·Дж⁻¹·см) по известному поглощению наносекундных гауссовых импульсов ($\lambda = 694$ нм) на КВ переходах молекул водяного пара в атмосферном воздухе [14]. Сомножитель в круглых скобках в формуле (2) равен 1.2×10^{11} см⁻²·с⁻¹. Подставив найденные значения в выражение (3), получим простые соотношения для составляющих поглощения в однокомпонентном газе:

$$\sigma^{(1)} \approx 4.0 \times 10^{-26} b^{(1)} / P, \tag{4a}$$

$$\sigma^{(2)} \approx 4.4 \times 10^{-55} b^{(2)} / P,\tag{46}$$

$$\sigma^{(3)} \approx 3.8 \times 10^{-84} b^{(3)} / P. \tag{4B}$$

Применим эти соотношения и значения подгоночных коэффициентов из табл.1 для определения сечений поглощения. Оценки сечений сведены в табл.2, где указаны погрешности, соответствующие СКО восстановления коэффициентов $b^{(n)}$ из табл.1, а рядом с химической формулой молекулы приведены значения первого потенциала ионизации U_i и энергии диссоциации D_0 этих молекул, взятые из работы [15]. В частности, для сухого кислорода (первая строка в табл.2) получаем $\sigma^{(1)}(O_2) = (9.4\pm0.3) \times 10^{-25}$ см² и $\sigma^{(3)}(O_2) = (5.6\pm0.1) \times 10^{-78}$ см⁶ · c².

Для смеси азота с водяным паром наблюдается линейное и двухфотонное поглощение, а трехфотонный процесс отсутствует. В настоящий момент мы затрудняемся однозначно назвать причину существования линейного поглощения в увлажненном азоте. Однако можно полагать, что поглощение не связано с ионизацией молекул N2 и H₂O, т. к. для ионизации этих молекул требуется как минимум три и два фотона соответственно. Напомним, что авторы [2] с использованием ОГ метода регистрировали двухфотонную ионизацию молекул H_2O в диапазоне $I_0 =$ $0.1-10 \ \Gamma B T \cdot c M^{-2}$ и не наблюдали ионизацию в азоте под действием наносекундных импульсов на длине волны излучения 248 нм ($hv \approx 5$ эВ). Трехфотонная ионизация молекул азота регистрировалась ими в диапазоне $I_0 =$ 0.01-10 ТВт·см⁻² при работе с фемтосекундными импульсами.

Вероятным механизмом линейного поглощения наносекундных лазерных импульсов на длине волны 266 нм водяным паром является диссоциация молекул H₂O с последующим поглощением излучения молекулами ОН. Диссоциация молекул в однофотонном процессе под действием УФ излучения при энергии фотона $hv < D_0$ может происходить для колебательно-возбужденных молекул в основном электронном состоянии [16]. В нашем случае для этого подходит колебательное состояние 2v2 молекул H2O с энергией возбуждения $E_{\rm osc} = 0.4$ эВ, достаточной при поглощении фотона с энергией $hv \approx 4.7$ эВ для перевода молекулы H₂O в состояние, близкое к порогу диссоциации. Возможность такого процесса поглощения УФ излучения молекулами H₂O в деталях рассмотрена в [17]. Согласно [18, 19] в области 250-320 нм находятся сильные полосы поглощения радикала ОН, соответствующие электронному переходу $\Pi - \Sigma$.

Поглощение (амплитуда U_0) в сухом азоте примерно на порядок меньше поглощения бинарной смесью азота с водяным паром (см. рис.2). Полученные сечения для молекул водяного пара (четвертая строка в табл.2) примерно на три порядка больше сечений поглощения, отнесенных к молекуле азота (третья строка). Поэтому регистрируемое в настоящей работе линейное и двухфотонное поглощение излучения на 266 нм сухим азотом резонно отнести к поглощению молекулами H₂O, в небольшом количестве оставшимися в камере OAД. После многократной откачки с долговременной выдержкой под вакуумом и промывки камеры OAД азотом удалось уменьшить OA сигнал в два раза относительно первого напуска азота, но не до нуля.

Добавление к сухим газам (азоту и кислороду) водяного пара существенно увеличивает поглощение, но это увеличение неодинаково (см. рис.2). Например, при пиковой интенсивности $I_0 = 1.5 \ \Gamma B \text{T} \cdot \text{см}^{-2}$ добавка водяного пара (9.6 мбар) к азоту увеличивает амплитуду U_0 от 0.1 В в сухом азоте до 0.7 В в смеси азота с водяным паром. Добавка аналогичного количества водяного пара к кислороду приводит к увеличению U_0 от 2 до 6.4 В, т.е. поглощение, вносимое водяным паром, в кислороде более чем в 7 раз превышает поглощение, вносимое водяным паром, в азоте. Обработка экспериментальных данных $U_0(I_0)$ во всем исследуемом диапазоне для смесей кислорода и азота с водяным паром дает еще большее (в 80 раз) различие для сечений двухфотонного поглощения водяным паром, и меньшее (в 2.6 раза) – для сечений линейного поглощения. Такое большое различие может быть связано только с тем, что с увеличением интенсивности излу-

Табл.2. Сечения поглощения излучения лазерных импульсов (266 нм)

	H ₂ O, $U_i = 12.6 _{3}\text{B}$, $D_0 = 5.1 _{3}\text{B}$		N ₂ , $U_i = 15.6 _{3}\text{B}$, $D_0 = 9.8 _{3}\text{B}$		$O_2, U_i = 12.1 \text{3B}, D_0 = 5.1 \text{3B}$	
1 a3	$\sigma^{(1)} (10^{-23} \text{ cm}^2)$	$\sigma^{(2)}(10^{-50} \text{ cm}^4 \cdot \text{c})$	$\sigma^{(1)} (10^{-26} \mathrm{cm}^2)$	$\sigma^{(2)} (10^{-53} \text{ cm}^4 \cdot \text{c})$	$\sigma^{(1)} (10^{-25} \text{ cm}^2)$	$\sigma^{(3)} (10^{-78} \mathrm{cm}^6 \cdot \mathrm{c}^2)$
1. O ₂	_	_	_	_	9.4±0.3	5.6±0.1
2. $O_2 + H_2O$	15.6±6.1	176.5±15.9	_	-	0	5.2 ± 0.8
3. N ₂	_	_	3.7 ± 0.5	3.6 ± 0.1	_	-
4. $N_2 + H_2O$	6.0 ± 0.5	2.2 ± 0.1	_	-	-	-
5. Воздух + H ₂ O	24.0 ± 1.6	39.6±4.3	0	0	0	5.3 ± 0.2
6. $O_2 + H_2O$	9.3±2.5	$2.2 + (144.7 \pm 2.7)$	0	0	9.4	5.6
7. Воздух + H ₂ O	23.4±0.7	$2.2 + (38.2 \pm 0.7)$	0	0	9.4	5.6
Примечание: курс	сивом выделены фи	иксированные значени	ия сечений поглош	ения, используемые	при обработке эксг	вериментальных

чения в смеси кислорода с водяным паром в результате фотохимических реакций в канале распространения лазерного импульса наряду с ОН эффективно генерируются другие сильно поглощающие частицы, например молекулы озона и ионы кислорода. Поэтому значения $\sigma^{(2)}(H_2O)$, полученные из обработки данных для влажного кислорода и воздуха (вторая и пятая строки в табл.2), можно только формально связывать с двухфотонным поглощением водяным паром, реально они таковыми не являются.

Необходимо отметить, что сечение $\sigma^{(3)}(H_2O)$ имеет близкие (в пределах погрешностей подгонки) значения, определенные из экспериментальных данных для сухого и увлажненного кислорода. Кроме того, близкое значение $\sigma^{(3)}(H_2O)$ получается и из данных измерений с воздухом (пятая строка). Величина $\sigma^{(1)}(H_2O)$, определенная из экспериментальной зависимости $U_0(E)$ для воздуха (пятая строка), значительно больше значений, определенных из аналогичных зависимостей для смесей кислорода и азота с водяным паром (вторая и четвертая строки). Полученное превышение можно объяснить загрязненностью атмосферного воздуха.

В смеси кислорода с водяным паром (вторая строка в табл.2) вклад от линейного поглощения отнесен к водяному пару (составляющей линейного поглощения в кислороде пренебрегаем). В шестой строке в табл.1 учтен вклад от линейного поглощения кислородом, т.е. при аппроксимации экспериментальных данных коэффициент $b^{(1)}$ представлен в виде $b^{(1)}(O_2 + H_2O) = b^{(1)}(O_2) + b^{(1)}(H_2O)$, где $b^{(1)}(O_2) = 23.4$ (первая строка в табл.1); коэффициент $b^{(3)}(O_2)$ принят равным 14.7×10⁵ (первая строка в табл.1), а коэффициент $b^{(2)}(O_2 + H_2O)$ разбит на две составляющие – $b^{(2)}(N_2 + H_2O) + b^{(2)}(H_2O)$, где $b^{(2)}(N_2 + H_2O) = 48.8 \times 10^2$ (там же). В результате получено значение $\sigma^{(1)}(H_2O)$ (шестая строка в табл.2), только в 1.5 раза превышающее значение $\sigma^{(1)}(H_2O)$ для смеси водяного пара с азотом. Аналогичные действия в обработке экспериментальной зависимости $U_0(E)$ для воздуха слабо изменяют значение $\sigma^{(3)}$ (H₂O) (седьмая строка в табл.2) относительно значения $\sigma^{(3)}(H_2O)$ (пятая строка там же), что свидетельствует в пользу загрязненности воздуха. Сомножитель 0.2 в седьмой строке в табл.1 учитывает содержание кислорода (20%) в воздухе, сомножитель 1.78 – отношение парциальных давлений водяного пара в воздухе к парциальному давлению водяного пара в смеси $N_2 + H_2O$.

Наибольший вклад в погрешность определения сечений поглощения молекул вносит калибровка ОАД. Обычно суммарная погрешность измерения $\sigma^{(n)}$ принимается на уровне 25% [5]. Поэтому для оценок поглощения лазерных импульсов на длине волны 266 нм в атмосфере можно рекомендовать следующие значения сечений поглощения: $\sigma^{(1)}(O_2) = 9.4 \times 10^{-25} \text{ см}^2$ [13], $\sigma^{(1)}(H_2O) = (7 \pm 1.8) \times 10^{-23} \text{ см}^2$, $\sigma^{(2)}(H_2O) = (4 \pm 1) \times 10^{-49} \text{ см}^4 \cdot \text{с и } \sigma^{(3)}(O_2) = (5.6 \pm 1.4) \times 10^{-78} \text{ см}^6 \cdot \text{с}^2$.

На рис.3 представлены зависимости коэффициента поглощения *k* лазерных импульсов ($\lambda = 266$ нм) сухим воздухом при $P_{tot} = 1$ бар с содержанием кислорода 20% и влажным воздухом с содержанием водяного пара 1% от интенсивности излучения, построенные на основе рекомендуемых значений сечений поглощения. На рисунке показаны также вклады в коэффициент *k* от кислорода (штриховые линии) и водяного пара (пунктирные линии). Видно, что в диапазоне $I_0 = 0.05 - 2$ ГВт · см⁻² *k* в сухом воздухе увеличивается от 5×10^{-6} до 4.5×10^{-5} см⁻¹. На нижней границе диапазона интенсивностей поглощение в су-

Рис.3. Зависимости коэффициента поглощения гауссовых лазерных импульсов на длине волны излучения 266 нм сухим и влажным воздухом и кислородом при давлении *P*_{tot} = 1 бар от интенсивности и энергии излучения. Штриховые линиии – вклады линейного и нелинейного поглощения излучения кислородом, пунктирные – водяным паром.

хом воздухе определяется линейным поглощением в кислороде, на верхней границе преобладает трехфотонный процесс поглощения кислородом. Добавка водяного пара (10 мбар) к сухому воздуху в 4-5 раз увеличивает поглощение с преобладающим вкладом от двухфотонного поглощения молекулами воды на верхней границе рассматриваемого диапазона. На нижней границе поглощение в увлажненном воздухе определяется совместно линейным поглощением водяным паром и кислородом. Значение приведенного коэффициента $k (1.8 \times 10^{-6} \text{ см}^{-1} \cdot \text{мбар}^{-1})$ сфокусированного излучения 4-й гармоники излучения Nd: YAG-лазера водяным паром в воздухе практически совпадает со значением k, полученным в результате кюветных измерений поглощения несфокусированных лазерных импульсов (λ = 266 нм) водяным паром без добавления буферных газов [20].

5. Заключение

Развита методика ОА измерений сечений многофотонного поглощения излучения в газах и газовых смесях. Исследованы зависимости поглощения излучения 4-й гармоники Nd: YAG-лазера воздухом и бинарными смесями водяного пара с азотом и кислородом при атмосферном давлении от энергии (пиковой интенсивности) излучения. Обнаружено, что при добавлении одинакового количества водяного пара к сухому азоту или кислороду поглощения этих смесей существенно различаются. Обсуждены возможные причины такого различия. Получены предварительные количественные данные о сечениях поглощения: $\sigma^{(2)}(H_2O) = (4\pm 1) \times 10^{-49}$ см⁴ · с для водяного пара в воздухе, $\sigma^{(2)}(H_2O) = (2.2 \pm 0.5) \times 10^{-50} \text{ см}^4 \cdot \text{с}$ для водяного пара в азоте и $\sigma^{(3)}(O_2) = (5.6 \pm 1.4) \times 10^{-78} \text{ см}^6 \cdot \text{c}^2$. Показано, что во влажном воздухе с содержанием водяного пара 1% коэффициент поглощения лазерных импульсов (266 нм) в диапазоне интенсивностей $I_0 = 0.05 - 2 \ \Gamma B T \cdot cm^{-2}$ превышает коэффициент поглощения в сухом воздухе в 4-5 раз. На нижней границе этого диапазона коэффициент поглощения в воздухе определяется линейным поглощением излучения водяным паром и кислородом, на верхней границе наибольший вклад вносят двухфотонное поглгщение водяным паром и трехфотонное поглощение кислородом. Поглощение в азоте пренебрежимо мало.

Работа выполнена в рамках проекта IX.138.1.1. Программы фундаментальных научных исследований СО РАН на 2013 – 2020 гг. с частичной поддержкой РФФИ (грант № 17-02-00722-а).

- Ionin A.A., Kudryashov S.I., Ponomarev Y.N., Seleznev L.V., Sinitsyn D.V., Tikhomirov B.A. *AIP Conf. Proc.*, **1278**, 354 (2010).
- Shutov A.V., Ustinovskii N.N., Smetanin I.V., Mokrousova D.V., Goncharov S.A., Ryabchuk S.V., Sunchugasheva E.S., Seleznev L.V., Ionin A.A., Zvorykin V.D. *Appl. Phys. Lett.*, **111**, 224104 (2017).
- Shutov A.V., Mokrousova D.V., Fedorov V.Yu., Seleznev L.V., Rizaev G.E., Shalova A.V., Zvorykin V.D., Tzortzakis S., Ionin A.A. *Opt. Lett.*, 44, 2165 (2019).
- 4. Райзер Ю.П. Физика газового разряда (М.: Наука, 1992).
- Жаров В.П., Летохов В.С. Лазерная оптико-акустическая спектроскопия (М.: Наука, 1984).
- Протасевич А.Е., Тихомиров Б.А. Оптика атмосферы и океана, 24, 328 (2011).
- Пихтин А.Н. Оптическая и квантовая электроника (М.: Высшая школа, 2001).
- Делоне Н.Б. Взаимодействие лазерного излучения с веществом (М.: Наука, 1989).

- Киселев А.М., Пономарев Ю.Н., Степанов А.Н., Тихомиров А.Б., Тихомиров Б.А. Квантовая электроника, 41, 976 (2011) [Quantum Electron., 41, 976 (2011)].
- 10. Heritier J.-M. Opt. Commun., 44, 267 (1983).
- Aleksandrov N.L., Bodrov S.B., Murzanev A.A., Sergeev Y.A., Malkov Y.A., Stepanov A.N., Tsarev M.V. *Phys. Rev. E*, 94, 013204 (2016).
- Chen S., Liu X.-L., Lu X., Ma J., Wang J., Zhu B., Chen L., Li Y. Opt. Express, 25, 32514 (2017).
- Bogumil K., Orphal J., Homann T., Voigt S., Spietz P., Fleischmann O.C., Vogel A., Hartmann M., Bovensmann H., Frerick J., Burrows J.P. J. Photochem. Photobiol. A, 157, 167 (2003).
- Тихомиров А.Б., Тихомиров Б.А. Оптика атмосферы и океана, 24, 331 (2011).
- Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике (М.: Атомиздат, 1980).
- 16. Окабе Х. Фотохимия малых молекул (М.: Мир, 1981).
- Булдаков М.А., Зверева Н.А., Ипполитов И.И., Терпугова А.Ф. Оптика атмосферы и океана, 8, 1679 (1995).
- Merola S.S., Vaglieco B.M., Mancaruso E. *Exp. Therm. Fluid Sci.*, 28, 355 (2004).
- Сулакшина О.Н., Борков Ю.Г. В сб. Тез. докл. XXVI конф. «Аэрозоли Сибири» (Томск: ИОА СО РАН, 2019, с. 62).
- Пономарев Ю.Н., Тырышкин И.С. Оптика атмосферы, 2, 360 (1993).