# Эффективная генерация излучения в смесях гелия и фтора в диффузных разрядах, формируемых убегающими электронами

В.Ф.Тарасенко, А.Н.Панченко, В.В.Кожевников

Исследованы параметры вынужденного излучения, генерируемого в диффузных разрядах, которые формируются в смесях гелия и фтора в резко неоднородном электрическом поле. Получена генерация в видимой и ВУФ областях спектра на переходах атомов и молекул фтора. Показано, что в смесях He – F<sub>2</sub> генерация на длине волны 157 нм продолжается в течение нескольких полупериодов тока разряда. За счет однородности диффузного разряда получен максимальный КПД генерации F<sub>2</sub>-лазера 0.15%, что соответствует КПД лазеров данного типа с накачкой поперечными объемными разрядами с предыонизацией.

**Ключевые слова:** эффективная **ВУФ** генерация, диффузный разряд, неоднородное электрическое поле, убегающие электроны.

# 1. Введение

Электроразрядные лазеры на молекулах фтора с длиной волны генерации 157 нм являются мощными источниками вынужденного излучения в области вакуумного ультрафиолета. Такое излучение сильно поглощается большинством материалов, что дает возможность широко использовать данный лазер для их очистки и обработки [1], в литографии [2-4], для фотохимического осаждения [5] и т. д. Для накачки F2-лазеров, как правило, применяются поперечные объемные разряды с предварительной ионизацией газовой смеси. Однако в смесях со фтором наблюдается быстрая контракция объемного разряда, которая происходит в течение 20-30 нс [6]. Это делает необходимым использовать для возбуждения короткие мощные импульсы напряжения большой амплитуды и высокое давление рабочей смеси [7,8]. В этих условиях такой важный параметр лазера, как его КПД, из-за рассогласования импеданса генератора и сопротивления разряда обычно меньше 0.1%. Расчетный КПД  $\eta_{int}$  относительно вложенной энергии для F<sub>2</sub>-лазера составляет 1% [9] и может быть реализован с использованием генераторов двойного разряда при уменьшении мощности накачки и давления активной газовой смеси [10].

Максимальные КПД электроразрядных лазеров на молекулярном фторе относительно запасаемой в генераторе энергии (0.15%) были получены в [11,12] при накачке короткими мощными импульсами длительностью ~10 нс.

Следует отметить, что объемная диффузная плазма может быть создана за счет инициирования убегающими электронами в газовых промежутках с электродами, имеющими малый радиус кривизны, на которые подаются импульсы высокого напряжения с фронтами ~1 нс [13]. В

**В.Ф.Тарасенко, А.Н.Панченко, В.В.Кожевников.** Институт сильноточной электроники СО РАН, Россия, 634055 Томск, просп. Академический, 2/3; e-mail: alexei@loi.hcei.tsc.ru

Поступила в редакцию 15 июня 2020 г.

работе [14] предложено такие диффузные разряды называть «объемные разряды, инициируемые пучком электронов лавитен» (ОРИПЭЛ) (Runaway Electron Preionized Diffuse Discharge (REP DD)). Показано, что ОРИПЭЛ может использоваться для получения эффективной генерации в различных диапазонах спектра [15].

Целью настоящей работы является исследование параметров вынужденного излучения в смесях гелия и фтора при накачке импульсным диффузным разрядом.

# 2. Экспериментальная аппаратура и методики измерений

Для проведения исследований характеристик излучения, генерируемого в наносекундных диффузных разрядах, которые формируются в различных газовых смесях импульсами высокого напряжения, была создана лазерная камера, соединенная с импульсным генератором РАДАН-220 и подробно описанная в [16]. Максимальная энергия *E*, запасенная в формирующей линии генератора емкостью  $C = 50 \text{ п}\Phi$  [17], составила 2.1 Дж. Эта величина определяется пробивным напряжением *U* серийного искрового разрядника-обострителя P-49, которое в наших экспериментах было равно 280±10 кВ.

Высоковольтный импульс от генератора РАДАН-220 подавался на электроды из нержавеющей стали, выполненные в виде лезвий с закругленными краями и углом при вершине 5°. Радиус кривизны острых кромок составлял 0.05 мм. Это обеспечивало неоднородное распределение напряженности электрического поля в разрядном промежутке и, соответственно, его усиление у электродов, что позволяло формировать объемные диффузные разряды в различных активных газовых смесях при давлениях до 10 атм. Длина электродов составляла 30 см, а зазор между ними d был равен 1.8 см. На боковой стенке камеры имелось дополнительное окно для фотографирования разряда и регистрации параметров импульсов его спонтанного излучения. Резонатор был образован плоским алюминиевым зеркалом и плоскопараллельной пластинкой из MgF2.

Для измерений энергии лазерного излучения применялся измеритель типа OPHIR (Ophir Optronics LTD, Inc.) с сенсорной головкой PE50BB, которая устанавливалась на минимальном расстоянии от выходного зеркала резонатора; зазор между ними продувался гелием. Поскольку в смесях  $He-F_2$  наблюдалась одновременная генерация на переходах атомов и молекул фтора в видимой и BVФ областях спектра, для определения энергии видимого излучения измерение проводилось без продувки зазора.

Лазерные импульсы на линиях FI измерялись фотоэлементом ФЭК-29СПУ. Для измерения ВУФ импульсов фотокатод в стандартном фотоэлементе ФЭК-22 заменялся полированной медной пластинкой. Фотоэлемент вакуумно-плотно присоединялся к выходному зеркалу резонатора и откачивался до остаточного давления  $5 \times 10^{-4}$  мм рт. ст. Работа выхода медного катода составила 4.53–5.10 эВ, что соответствует красной границе фотоэффекта:  $\lambda = 274-245$  нм [18].

Фотоэлемент с медным катодом тестировался импульсами лазерного излучения на  $\lambda = 351-353$  нм (XeF\*-лазер), 337.1 нм (азотный лазер) и 248 нм (KrF\*-лазер). Формы лазерных импульсов на  $\lambda = 248$  нм, зарегистрированных ФЭК-22 и модифицированным фотоэлементом, совпадали, а излучение на  $\lambda = 337$  и 351-353 нм фотоэлементом с медным катодом не фиксировалось. Следует отметить, что методики измерений импульсов ВУФ излучения плазмы приборами с металлическими фотокатодами хорошо разработаны, обеспечивают высокую точность и достаточно широко распространены [19–21]. Спектры излучения плазмы диффузного разряда в диапазоне длин волн 200–1100 нм фиксировались спектрометром HR400 (Ocean Optics).

Для измерения импульсов тока разряда использовался омический шунт, собранный из низкоиндуктивных чип-резисторов. Электрические сигналы регистрировались цифровым осциллографом TDS 3054.

# 3. Результаты экспериментов и их обсуждение

## 3.1. Генерация на линиях атомарного фтора

В плазме разряда в смесях гелия со фтором кинетические процессы, формирующие инверсию на переходах атомарного фтора, являются частью кинетики ВУФ лазеров на молекулах F<sub>2</sub>. Одним из каналов заселения верхнего лазерного уровня ВУФ перехода молекулы фтора  $D'({}^{3}\Pi_{2g}) \rightarrow A'({}^{3}\Pi_{2u})$  является реакция передачи энергии

$$F^* + F_2 \to F_2^* + F,$$
 (1)

где F<sup>\*</sup> – возбужденные атомы фтора в метастабильных состояниях  $3s^4P_j$  (j = 5/2, 3/2, 1/2), которые являются нижними лазерными уровнями для лазера на линиях атомарного фтора [11]. Поэтому исследование генерации на линиях FI важно для более полного понимания кинетики F<sub>2</sub>-лазера.

Отличительной особенностью F-лазера является малое время запаздывания лазерного импульса относительно начала импульса накачки и широкая область генерации, достигающая 1 см при давлении газовой смеси 1–3 атм, тогда как в случае N<sub>2</sub>-лазера [16] выходной пучок значительно уже. Это можно связать с тем, что порог генерации на линях фтора достаточно низок, а область протекания тока в начальной стадии ОРИПЭЛ достаточно широка [22]. Затем область протекания основного тока разряда сужается, и, поскольку для достижения порога генерации на молекулах фтора требуется более высокая плотность тока, ширина автографа ВУФ излучения уже не превышает 3–4 мм [7].

Длительность лазерного излучения на линиях FI с превышением добротности резонатора равна нескольким полупериодам тока разряда, что свидетельствует о высокой устойчивости ОРИПЭЛ в смесях со фтором. В спектре лазерного излучения присутствуют пять линий в диапазоне 634–755 нм. При этом на периферии лазерного пятна при низком давлении преобладает излучение на  $\lambda = 634$  нм, тогда как в центре апертуры наблюдаются линии с $\lambda > 700$  нм. Это выглядит как провал интенсивности излучения в центре пятна генерации, поскольку глаз ИК излучение не видит.

На рис.1 приведены зависимости интенсивностей спонтанного и вынужденного излучений на линиях атомарного фтора от давления гелия в активной смеси. Буквами Q и D обозначены квартеты (переходы с уровней  $3p^4S_{3/2}^0$  и  $3p^4P^0_{5/2,3/2,1/2}$ ) и дублеты (переходы с уровней  $3p^2S^0_{1/2}$  и  $3p^2 P_{1/2,3/2}^0$ ) соответственно. Согласно [23] интенсивность спонтанного излучения Р равна произведению населенности n[FI] верхнего уровня перехода и вероятности спонтанного излучения A: P = n[FI]A. Из рис. 1, *а* следует, что населенности верхних уровней переходов слабо зависят от давления гелия. Исключением является квартетный переход на  $\lambda = 739.8$  нм, интенсивность излучения на котором существенно возрастает. Интенсивности же лазерных линий в зависимости от давления гелия ведут себя совершенно иначе (рис.  $1, \delta$ ). При увеличении давления буферного газа наблюдается резкий рост мощности генерации



Рис.1. Зависимости интенсивностей P спонтанного (*a*) и вынужденного (*б*) излучений на линиях FI от давления *p* гелия в смеси с F<sub>2</sub> (5 мм рт. ст.). Буквами Q и D обозначены квартеты и дублеты, длины волн приведены в нанометрах.

на квартетных переходах  $3p^4P_{5/2}^0 - 3s^4P_{5/2,3/2}$  на  $\lambda = 739.8$  и 755.2 нм, тогда как интенсивность излучения на остальных линиях снижается практически до нуля. Можно предположить, что данные зависимости обусловлены быстрой релаксацией верхних уровней дублетных переходов при столкновениях атомов фтора и гелия. При росте давления смеси область генерации становится такой же, как и у F<sub>2</sub>-лазера. Общая энергия излучения на линиях FI линейно растет с увеличением давления смеси и при *p* = 8 атм превышает 0.3 мДж. Это также подтверждает устойчивость ОРИПЭЛ в смесях со фтором, поскольку при контрагировании разряда энергия генерации на линиях FI резко падает [24].

Если предположить, что один атом фтора в состояниях  $3s^4P_{5/2, 3/2}$  производит один лазерный фотон на  $\lambda =$ 157 нм, реакция (1) может обеспечить энергию генерации на молекулах F<sub>2</sub> до 1.6 мДж.

## 3.2. ВУФ лазер на молекулах фтора

Работу F<sub>2</sub>-лазера с накачкой диффузным разрядом иллюстрирует рис.2. На рис.2, *а* приведены характерные осциллограммы импульса тока в разрядном промежутке  $I_d$ , импульса спонтанного излучения диффузного разряда в области  $\lambda = 200-800$  нм, максимумы которого соответствовали максимумам  $I_d$ , и лазерного импульса на  $\lambda = 157$  нм. Порог ВУФ генерации достигается при  $p \approx 3$  атм. Лазерный импульс на  $\lambda = 157$  нм начинается вблизи первого максимума  $I_d$  и имеет три выраженных пика, соответствующих трем последовательным осциляциям тока диффузного разряда. Полная длительность ВУФ лазерного импульса достигала 30 нс. Мощности излучения в первых двух пиках возрастали с увеличением давления ак-



Рис.2. Характерные осциллограммы импульсов спонтанного излучения диффузного разряда  $P_{sp}$  и  $F_{2}$ -лазера  $P_{157}$ , а также тока разряда  $I_d$ ; смесь Не (7 атм) и  $F_2$  (5 мм рт. ст.) (*a*), а также зависимости энергии излучения F-лазера  $Q_{FI}$  и  $F_2$ -лазера  $Q_{157}$  от давления Не в смеси с  $F_2$  (5 мм рт. ст.) (*b*).

тивной смеси, а интенсивность третьего пика при этом снижалась. Это связано с тем, что амплитуды первых пиков тока слабо зависели от давления гелия, а амплитуда тока накачки в третьем пике уже заметно падала.

Энергия излучения лазера на молекулярном фторе, как и в работах [8,9,11,12], линейно росла с увеличением давления активной смеси. Это связано с ростом энергии, вкладываемой в активную среду, поскольку напряжение на разрядном промежутке пропорционально давлению смеси [25], а ток разряда в первых двух пиках, в течение которых осуществляется основной энерговклад, в наших экспериментах в основном определяется волновым сопротивлением генератора РАДАН-220 и слабо зависит от давления. Максимальная энергия генерации при давлении He 8.5 атм  $Q_{157} = 3$  мДж. При этом, согласно зависимости на рис.2, б, возможен ее дальнейший рост. Данная энергия соответствует КПД F2-лазера 0.15%, который был получен при накачке F2-лазера поперечным самостоятельным разрядом с предыонизацией [11, 12]. Отсюда также можно сделать вывод, что примерно половина молекул  $F_2^*$  в состоянии D'( ${}^{3}\Pi_{2g}$ ) формируется по нейтральному каналу (1).

Согласно оценке, удельная мощность накачки в наших экспериментах с учетом данных о напряжении в квазистационарной стадии объемного разряда  $U_{\rm qs}$ , приведенных в [25], составляет 6–7 МВт/см<sup>3</sup>, что соответствует приведенному в [12] оптимальному значению, требуемому для получения максимальной эффективности  $F_2$ -лазера.

Существование ВУФ лазерного импульса в течение нескольких осцилляций тока в разрядном промежутке также свидетельствует о высокой устойчивости диффузного разряда, формируемого в неоднородном электрическом поле за счет предыонизации убегающими электронами [14]. Этот эффект можно связать с близкими к описанным в [26] условиями формирования диффузного разряда при амплитуде импульсов напряжения, превышающей 250 кВ, и быстром нарастании плотности тока в разрядном промежутке ( $dj/dt > 50 \text{ A} \cdot \text{см}^{-2} \cdot \text{нc}^{-1}$ ). Характерной особенностью данного режима накачки является быстрый рост концентрации электронов и ионов в процессах прямой ионизации. В этих условиях формируется плазма без флуктуаций концентрации заряженных частиц в объеме, что и приводит к высокой устойчивости диффузного разряда.

## 4. Заключение

Исследована генерация в смесях гелия со фтором при накачке диффузным разрядом, формируемым в неоднородном электрическом поле убегающими электронами. Получена генерация в видимой и ВУФ областях спектра на переходах атомов и молекул фтора. Показано, что объемная стадия диффузного разряда сохраняется в течение нескольких последовательных осцилляций тока в лазерном промежутке. Достигнута энергия генерации в ВУФ области до 3 мДж при длительности ВУФ лазерного импульса до 30 нс. За счет малой длительности и оптимальной мощности накачки получен максимальный КПД генерации F<sub>2</sub>-лазера 0.15%, равный КПД лазеров данного типа с возбуждением поперечными объемными разрядами с предыонизацией.

Работа выполнена в рамках государственного задания ИСЭ СО РАН по теме №13.1.4.

- Cefalas A., Sarantopoulou E., Kollia Z. Appl. Phys. A, 73, 571 (2001).
- Sarantopoulou E., Kollia Z., Kočevar K., Muševič I., Kobe S., Dražić G., Gogolides E., Argitis P., Cefalas A.C. Mater. Sci. Eng. C, Biomim. Mater., Sens. Syst., 23, 995 (2003).
- Hofmann T., Hueber J.-M., Das P., Scholler S. Proc. SPIE. 3679, 541 (1999).
- Spratte S., Voss F., Bragin I., Bergmann E., Niemoeller N., Nagy T., Rebhan U., Targsdorf A., Paetzel R., Govorkov S.V., Hua G. *Proc.* SPIE. 5040, 1344 (2003).
- Takao H., Okoshi M., Inoue N. Jpn. J. Appl. Phys., 42, Part 2, 5A, L461 (2003).
- Mathew D., Bastiaens H.M.J., Boller K.-J., Peters P.J.M. Appl. Phys. Lett., 88, 101502 (2006).
- Yamada K., Miyazaki K., Hasama T., Sato T. Appl. Phys. Lett., 54, 597 (1989).
- Kakehata M., Hashimoto E., Kannari F., Obara M. Appl. Phys. Lett., 56, 2599 (1990).
- 9. Ohwa M., Obara M. Appl. Phys. Lett, 51, 958 (1987).
- Bastiaens H.M.J., Peters P.J.M., Witteman W.J. Proc. SPIE, 3092, 374 (1996).
- Ищенко В.Н., Кочубей С.А., Ражев А.М. Квантовая электроника, 13, 1072 (1986) [Sov. J. Quantum Electron., 16, 707 (1986)].
- Атежев В.В., Вартапетов С.К., Жуков А.Н., Курзанов М.А., Обидин А.З., Ямщиков В.А. Квантовая электроника, 33, 677 (2003) [Quantum Electron., 33, 677 (2003)].
- Тарасова ЈІ.В., Худякова Л.Н. ЖТФ, **39**, 1530 (1969) [Sov. Phys. Techn. Phys., **14**, 1148 (1969)].

- Тарасенко В.Ф., Бакшт Е.Х., Бураченко А.Г., Костыря И.Д., Ломаев М.И., Рыбка Д.В. ЖТФ, 80, 51 (2010) [J. Techn. Phys., 55, 210 (2010)].
- Вильтовский П.О., Ломаев М.И., Панченко А.Н., Панченко Н.А., Рыбка Д.В., Тарасенко В.Ф. Квантовая электроника, 43, 605 (2013) [Quantum Electron., 43, 605 (2013)].
- Panchenko A.N., Tarasenko V.F., Lomaev M.I., Panchenko N.A., Suslov A.I. Opt. Commun., 430, 210 (2019).
- Mesyats G.A., Korovin S.D., Rostov V.V., Shpak V.G., Yalandin M.I. Proc. IEEE, 92, 1166 (2004).
- Pimpec F.Le, Milne Ch.J., Hauri Ch.P., Ardana-Lamas F. *Appl. Phys. A*, **112**, 647 (2013).
- Nassisi V., Beloglazov A., Giannico E., Perrone M.R., Rainò A. J. Appl. Phys., 84, 2268 (1998).
- Henneken H., Cholze F.S., Krumrey M., Ulm G. Metrologia, 37, 485 (2000).
- Sozer E.B., Jiang C., Gundersen M.A., Umstattd R.J. *IEEE Trans.* Dielect. Electr. Insulat., 16, 993 (2009).
- Sorokin D.A., Tarasenko V.F., Beloplotov D.V., Lomaev M.I. J. Appl. Phys, 125, 143301 (2019).
- 23. Lochte-Holtgreven W. (Ed.) *Plasma Diagnostics* (Amsterdam: North-Holland Publ. Comp., 1968).
- 24. Parvin P., Mehravaran H., Jaleh B. Appl. Opt., 40, 3532 (2001).
- Вартапетов С.К., Жигалкин А.А., Лапшин К.Э., Обидин А.З., Хомич В.Ю., Ямщиков В.А. Квантовая электроника, 36, 393 (2006) [Quantum Electron., 36, 393 (2006)].
- Panchenko A.N., Tarasenko V.F. Progr. Quantum Electron., 36, 143 (2012).