Эффект насыщения выходной мощности волоконных Yb-Er-лазеров

А.А.Сурин, Н.В.Коваленко

Представлены результаты экспериментального наблюдения эффекта насыщения выходной мощности в волоконных лазерах с активной Yb-Er-средой. Выведена формула для оценки мощности насыщения. Предложен способ оценки времени жизни уровня ⁴I_{11/2} или концентрации ионов Er на основе измерений мощности насыщения.

Ключевые слова: волоконные лазеры, активная Yb-Er-среда, мощность насыщения, время жизни возбужденного уровня.

1. Введение

Мощный (несколько десятков ватт) одномодовый лазер, излучающий на длине волны 1550 нм с шириной линии ~0.1 нм, представляет интерес для использования, например, при создании бортовых систем сканирования [1], атмосферных оптических линий связи, в дальнометрии, а также для преобразования излучения во вторую гармонику в кристаллах с периодической доменной структурой [2]. При генерации второй гармоники излучения на $\lambda = 1550$ нм можно получить лазер, генерирующий на $\lambda = 775$ нм, при генерации третьей гармоники – на $\lambda =$ 517 нм; сложение частот этих излучений с частотами излучений на $\lambda = 1030-1070$ нм даёт различные длины волн красного и синего диапазонов спектра.

Получение узкой (менее 0.1 нм) спектральной линии в резонаторной схеме с эрбиевой активной средой на маломодовом волокне ограничено низким порогом модовой нестабильности [3], а также нелинейными эффектами, приводящими к уширению линии, в особенности четырёхволновым смешением [4]. С целью повышения порога модовой нестабильности было предложено использовать для накачки одномодовое излучение с большой длиной волны [5]. При применении данного подхода к волоконным Yb-Er-лазерам для создания мощного одномодового источника излучения на $\lambda = 1550$ нм одним из основных факторов, ограничивающих выходную мощность, стал эффект её насыщения. В дальнейшем для простоты будем называть уровень мощности, до которого происходит насыщение выходной мощности лазера, мощностью насыщения P_{sat}.

Эффект насыщения мощности был ранее теоретически предсказан для эрбиевых [6] и иттербий-эрбиевых активных сред [7]. В обеих работах он объясняется существованием так называемого узкого места, ограничивающего передачу энергии накачки рабочему уровню. В итоге при увеличении мощности излучения накачки скорость возбуждения уровня растёт, а скорость передачи возбуждения на метастабильный уровень через промежуточные уровни остается практически постоянной. В работе [6] показано, что для чисто эрбиевых сред таким узким местом является переход между уровнями ${}^{4}I_{11/2} \rightarrow$ ⁴I_{13/2}. Для иттербий-эрбиевых сред в более общем виде ограничением является ещё и скорость передачи возбуждения от Yb к Er [7]. Нужно отметить, что существование узкого места может быть присуще и лазерам с другими активными ионами с подобными схемами рабочих уровней, поэтому приведенный ниже анализ результатов настоящей работы, базирующийся на общих соображениях, может быть применим и к другим средам.

В настоящей работе представлены экспериментальные исследования эффекта насыщения выходной мощности в лазере на Yb-Er-волокне, а также выведена формула для оценки мощности насыщения для лазера данного типа.

2. Результаты экспериментов

На рис.1, а приведена типичная оптическая схема эксперимента. Были протестированы три различные оптические схемы лазера на Yb-Er-волокне, различавшиеся длиной и параметрами активного волокна. Поскольку нашей целью было получение линейно поляризованного излучения, то в оптическом тракте использовалось только волокно, поддерживающее поляризацию. Однако, поскольку данный факт не существенен, все рассуждения и результаты, представленные ниже, в равной степени будут справедливы и для изотропных схем. Параметры используемых активных волокон приведены в табл.1. Были использованы волокна с фосфоросиликатной матрицей с концентрациями n_{Yb} ионов Yb, на порядок превышающими концентрации n_{Er} ионов Er. Накачка лазеров в жилу активного волокна диаметром d и длиной L осуществлялась одномодовым излучением на длинах волн $\lambda_{\rm p} = 1065$ и 1070 нм. Активное волокно помещалось в воду для охлаждения (иначе оно сильно разогревалось и мощностные параметры лазера со временем изменялись). В

А.А.Сурин. ООО НТО «ИРЭ-Полюс», Россия, Московская обл., 141190 Фрязино, пл. Акад. Введенского, 1; e-mail: aSurin@ntoire-polus.ru

Н.В.Коваленко. ООО НТО «ИРЭ-Полюс», Россия, Московская обл., 141190 Фрязино, пл. Акад. Введенского, 1; Московский физико-технический институт (государственный университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9

Поступила в редакцию 14 октября 2020 г., после доработки – 30 октября 2020 г.

Рис.1. Оптическая схема волоконного Yb-Er-лазера с одномодовой накачкой (*a*) и схема №4 лазера (*б*); HR-1550 и OC-1550 – сильно- и слабоотражающие волоконные брэгтовские решётки соответственно.

Табл.1. Параметры используемых лазеров.

Номер схемы	<i>L</i> (м)	<i>d</i> (мкм)	$n_{\rm Er}~({\rm ppm})$	λ _р (нм)
1	4	9.1	230	1070
2	6	9.1	230	1070
3	5	18	300	1065
4	10	18	300	1065

Рис.2. Зависимости выходной мощности на длинах волн 1550 и 1065 нм лазера (схема № 3) с одномодовой накачкой на $\lambda_p = 1065$ нм (*a*) и спектр излучения на $\lambda_s = 1550$ нм при выходной мощности 15 Вт (*б*); $\kappa = 50\%$ – дифференциальная доля мощности непоглощенного излучения накачки в области насыщения сигнала.

спектре выходного излучения, помимо сигнального излучения на $\lambda_s = 1550$ нм, также присутствовало непоглощённое излучение накачки. Поэтому выходное излучение коллимировалось, после чего с помощью дихроичного зеркала его спектральные компоненты разделялись и измерялись их мощности.

На основе оптической схемы № 3 была собрана схема № 4, для чего на выходе лазера был добавлен участок активного волокна, игравший роль усилителя. В результате повышалась эффективность преобразования излучения накачки в излучение на $\lambda_s = 1550$ нм (рис.1, δ).

На рис.2 представлены ватт-ваттные и спектральная характеристики лазера для оптической схемы №3. Выходная мощность на $\lambda_s = 1550$ нм при малых мощностях накачки возрастает с дифференциальной эффективностью $\eta = 27\%$ и выходит на насыщение при $P_{sat} \approx 15$ Вт. При этом выходная мощность спектральной компоненты накачки ($\lambda_p = 1065$ нм) растёт в области насыщения линейно.

В табл.2 приведены мощности насыщения и дифференциальные эффективности эрбиевых лазеров для всех использованных оптических схем. Для схемы №4 мощность насыщения не была достигнута вследствие недостаточной мощности лазера накачки.

3. Анализ полученных результатов

Насыщение выходной мощности наблюдается в каждом из проведённых экспериментов. Мощности насыщения существенно различаются и зависят от длины волны накачки и параметров волокон (табл.2).

Ограничение выходной мощности лазеров мы связываем с существованием конечного времени, за которое

Табл.2. Экспериментальные результаты.

Номер схемы	η (%)	ж (%)	<i>P</i> _{sat} (Вт) (эксперимент)						
1	30	74	1.7						
2	34	65	2.5						
3	27	50	15						
4	30	-	>27						

ион может получить энергию и передать часть её во внешнюю среду в виде электромагнитного излучения, перейдя при этом обратно в невозбуждённое состояние.

Схема передачи энергии в иттербий-эрбиевой системе представлена на рис.3. Энергия фотона накачки возбуждает ион иттербия (переход ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$), после чего возбуждение передаётся на короткоживущий уровень ${}^{4}I_{11/2}$ иона эрбия, с которого происходит безызлучательная релаксация на метастабильный уровень ${}^{4}I_{13/2}$.

Генерация излучения в лазере с активной средой, соответствующей схеме рис.3, в отсутствие паразитых потерь, апконверсии и поглощения с возбуждённого уровня может быть описана следующей системой стационарных скоростных уравнений:

$$0 = c(\rho_{s}^{+} + \rho_{s}^{-})(\sigma_{Er}^{a}n_{1} - \sigma_{Er}^{e}n_{2}) - \frac{n_{2}}{\tau_{2}} + \frac{n_{3}}{\tau_{3}},$$

$$0 = -\frac{n_{3}}{\tau_{3}} + C_{tr}(n_{1}n_{5} - n_{3}n_{4}),$$

$$0 = -\frac{n_{5}}{\tau_{5}} - C_{tr}(n_{1}n_{5} - n_{3}n_{4}) + c\rho_{p}(\sigma_{Yb}^{a}n_{4} - \sigma_{Yb}^{e}n_{5}),$$

$$\frac{\partial \rho_{s}^{+}}{\partial z} = \rho_{s}^{+}(\sigma_{Er}^{e}n_{2} - \sigma_{Er}^{a}n_{1}),$$

$$\frac{\partial \rho_{s}^{-}}{\partial z} = -\rho_{s}^{-}(\sigma_{Er}^{e}n_{2} - \sigma_{Er}^{a}n_{1}),$$

$$\frac{\partial \rho_{p}}{\partial z} = \rho_{p}(\sigma_{Yb}^{e}n_{5} - \sigma_{Yb}^{a}n_{4}),$$

$$n_{1} + n_{2} + n_{3} = n_{Er},$$

$$n_{41} + n_{5} = n_{4}.$$
(1)

Здесь n_i , τ_i – населённости и времена жизни уровней в соответствии с рис.3; $n_{\rm Er}$, $n_{\rm Yb}$ – концентрации ионов эрбия и иттербия в волокне; $\rho_{\rm s}^+$, $\rho_{\rm s}^-$, $\rho_{\rm p}$ – плотности потока фотонов (м⁻² · c⁻¹) сигнального излучения на $\lambda_{\rm s}$ = 1550 нм, распространяющегося в резонаторе в прямом и обратном направлениях, и излучения накачки; $\sigma_{\rm Er}^{\rm a}$, $\sigma_{\rm Yb}^{\rm e}$, $\sigma_$

Рис.3. Схема преобразования энергии излучения в лазерной Yb-Erсреде.

В данной конфигурации скорости передачи возбуждения на переходах ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ и ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ не могут быть ограничивающим фактором, т. к. эти переходы являются вынужденными и их скорости растут при увеличении мощности излучения. Ограничивающими могут быть лишь переходы ${}^{2}F_{5/2} \rightarrow {}^{4}I_{11/2}$ и ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$, т. к. их скорости зависят только от величин плотности инверсии в среде, которые не могут превышать определённого уровня.

Отметим также, что соотношения концентраций активных ионов в среде подобраны такими, что скорости передачи возбуждения между ионами Yb и Er очень велики [8]. Следовательно, узким местом при накачке рабочего уровня является переход ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$, и мощность насыщения P_{sat} можно представить так:

$$P_{\rm sat} = \frac{hc}{\lambda_{\rm s}} \frac{N_3}{\tau_3},\tag{2}$$

где h – постоянная Планка; N_3 – общее число ионов Ег с возбужденным электроном на уровне 3. Однако выражение (2) содержит неизвестную населённость уровня ${}^{4}I_{11/2}$ в процессе генерации, что затрудняет оценку мощности насыщения.

При высоких скоростях энергообмена между ионами Yb и Er можно допустить, что в системе (1) коэффициент $C_{\rm tr} \rightarrow \infty$. Тогда должно выполняться соотношение

$$\frac{n_5}{n_4} \approx \frac{n_3}{n_1}.\tag{3}$$

Отметим, что при увеличении мощности накачки населённости уровней ионов иттербия стремятся к значениям, обеспечивающим просветление (насыщение) соответствующего перехода и определяемым сечениями поглощения и вынужденного излучения на этом переходе:

$$n_5 \approx \frac{\sigma_{\rm Yb}^a}{\sigma_{\rm Yb}^e} n_4. \tag{4}$$

В процессе лазерной генерации мощность излучения в резонаторе настолько велика, что переход эрбия также практически насыщен и населённости соответствующих уровней связаны соотношением

$$n_2 \approx \frac{\sigma_{\rm Er}^a}{\sigma_{\rm Er}^e} n_1. \tag{5}$$

Используя (3)–(5) и выражение для полного числа ионов эрбия в каждой точке волокна ($n_{\rm Er} = n_1 + n_2 + n_3$), получаем

$$n_3 \approx n_{\rm Er} \left[1 + \frac{\sigma_{\rm Yb}^{\rm e}}{\sigma_{\rm Yb}^{\rm a}} \left(1 + \frac{\sigma_{\rm Er}^{\rm a}}{\sigma_{\rm Er}^{\rm e}} \right) \right]^{-1}.$$
 (6)

При равномерном легированим волокна общее число ионов эрбия в нём

$$N_{\rm Er} = \frac{\pi d^2}{4} L n_{\rm Er} \,. \tag{7}$$

В первом приближении в процессе генерации будут участвовать только ионы эрбия, находящиеся в области распространения сигнального одномодового излучения:

$$N_3 = \frac{\pi d_{\rm m}^2}{4} L n_3, \tag{8}$$

где *d*_m – диаметр моды излучения.

С учётом (6)–(8) выражение (2) для мощности насыщения можно записать в следующем виде:

$$P_{\text{sat}} = \frac{hc}{\lambda_{\text{s}}} \frac{N_{\text{Er}}}{\tau_3} \frac{d_{\text{m}}^2}{d^2} \left[1 + \frac{\sigma_{\text{Yb}}^{\text{e}}}{\sigma_{\text{Yb}}^{\text{a}}} \left(1 + \frac{\sigma_{\text{Er}}^{\text{a}}}{\sigma_{\text{Er}}^{\text{e}}} \right) \right]^{-1}.$$
(9)

В случае усилителя для обеспечения усиления сигнала должно выполняться соотношение

$$n_2 > \frac{\sigma_{\rm Er}^a}{\sigma_{\rm Er}^e} n_1. \tag{10}$$

В этом случае

$$P_{\text{sat}} < \frac{hc}{\lambda_{\text{s}}} \frac{N_{\text{Er}}}{\tau_3} \frac{d_{\text{m}}^2}{d^2} \left[1 + \frac{\sigma_{\text{Yb}}^a}{\sigma_{\text{Yb}}^a} \left(1 + \frac{\sigma_{\text{Er}}^a}{\sigma_{\text{Er}}^e} \right) \right]^{-1}.$$
 (11)

Одним из существенных факторов, влияющих на величину мощности насыщения, является выбор длины волны накачки, от которой зависит величина коэффициента

$$\sum = \left[1 + \frac{\sigma_{\rm Yb}^{\rm e}}{\sigma_{\rm Yb}^{\rm a}} \left(1 + \frac{\sigma_{\rm Er}^{\rm a}}{\sigma_{\rm Er}^{\rm e}}\right)\right]^{-1}.$$

Для диодной накачки на $\lambda_p = 965$ нм $\Sigma \approx 0.44$, тогда как для накачки на $\lambda_p = 1070$ нм он уже равен 0.005. Таким образом, изменение длины волны накачки может привести к изменению мощности насыщения на несколько порядков (рис.4).

Полученное выражение определяет теоретический предел мощности иттербий-эрбиевого волоконного лазера заданной геометрии. В соответствии с формулами (9) и (11)

$$P_{\rm sat} < \frac{hc}{\lambda_{\rm s}} \frac{N_{\rm Er}}{\tau_3}.$$
 (12)

Мощность насыщения будет стремиться к теоретическому пределу (12) при использовании коротковолновой

Рис.4. Зависимости коэффициента Σ от длины волны λ_p излучения накачки для использованного в экспериментах фосфоросиликатного волокна. Для других волокон с другими матрицами зависимости будут различаться.

накачки вблизи $\lambda_p = 900$ нм (рис.4), однако в данном случае фактором, ограничивающим выходную мощность лазера, может стать паразитная генерация ионов Yb.

Для более строгого математического описания полученных результатов было проведено моделирование генерации волоконного лазера с использованием скоростных уравнений (1) и параметров, представленных ниже (r_{out} – коэффициент отражения выходной решетки).

λ_{s} (HM)														1	550
λ_{p} (нм)														1	065
d_{m} (мкм)															.12
$n_{\rm Er}({\rm ppm})$															300
$n_{\rm Yb}~({\rm ppm})$														10	000
$r_{\rm out}(\%)$.															.10
$ au_2$ (MC)															.10
$ au_3$ (мкс) .															. 1
$\tau_{5}\left(\text{Mc}\right)$															1.4
$\sigma_{\mathrm{Yb}}^{\mathrm{e}}$ (ПМ ²)														.0).13
$\sigma^{\rm a}_{\rm Yb}$ (IIM ²)												1	.6	$\times 1$	0-3
$\sigma_{\rm Er}^{\rm e}$ (ПМ ²)														.0).22
$\sigma^{\rm a}_{\rm Er}$ (пм ²)														.0).18

Сравнивались мощности насыщения, полученные тремя способами.

1. При компьютерном моделировании на основе системы скоростных уравнений (1).

2. По формуле (2), где N₃ рассчитывалось посредством интегрирования по всему объёму концентрации n₃, взятой из результатов моделирования.

3. По формуле (9).

Мощности насыщения, полученные способами 1 и 2, совпали и оказались меньше мощности, рассчитанной по формуле (9), менее чем на 5%. Это различие в первую очередь связано с предположением, что среда просветлена для сигнального излучения (5), и оно уменьшается с увеличением коэффициента отражения выходной решётки при моделировании. Тем не менее из результатов данного сравнения следует правомочность предположений, на основе которых была выведена формула (9).

На основе экспериментальных данных и формулы (9) было оценено время жизни уровня ${}^{4}I_{11/2}$ (табл.3). Видно, что для оптических схем лазеров с различными количествами (концентрациями) ионов эрбия и длинами волн излучения накачки мощности насыщения существенно различаются, однако «восстановленные» времена жизни τ_3 , как и должно быть, примерно одинаковы.

Табл.3. Экспериментальные и теоретические результаты.

Номер схемы	$(d_{\rm m}^2 N_{\rm Er}/d^2) \times 10^{-16}$	$\Sigma \times 10^3$	<i>P</i> _{sat} (Вт) (эксперимент)	τ ₃ (мкс) (по фор- мулам (9), (11))
1	0.53	4	1.7	0.68
2	0.8	4	2.5	0.69
3	3.5	5	15	0.61
4	7.0	5	> 27	< 0.68

Время жизни уровня ⁴I_{11/2} иона Ег значительно изменяется при использовании различных матриц стекла. В работе [6] для фосфатных стёкол, легированных эрбием, приведено $\tau_3 < 3$ мкс, а в работе [7] для расчётов берётся $\tau_3 = 0.1$ мкс, но не указана матрица, для которой взято время жизни уровня. В случае фосфоросиликатной мат-

рицы это время составляет ~0.6 мкс [8], что хорошо согласуется с полученными результатами (табл.3), хотя накачка. фосфоросиликатные матрицы в [8] и в настоящей работе Нами

могут различаться. Таким образом, измерение мощности насыщения может быть использовано для определения характеристик волоконных иттербий-эрбиевых лазерных систем. В частности, как описано выше, можно оценить время жизни уровня ${}^{4}I_{11/2}$ для различных видов стекол. С другой стороны, по измерению мощности насыщения при известных длине и геометрии волокна, а также при известных сечениях и временах жизни безызлучательного уровня ${}^{4}I_{11/2}$ ионов эрбия можно оценить число ионов эрбия в активном волокне, а следовательно, и их концентрацию.

Для подобного рода измерений рекомендуется подбирать оптическую схему с малой мощностью насыщения, что позволит избежать нагрева волокна, который может существенно изменить значения сечений поглощения и вынужденного излучения, а также избежать проявления других ограничивающих факторов. Мощность насыщения можно понизить подбором более длинноволновой накачки и отрезка активного волокна меньшей длины.

4. Заключение

В настоящей работе впервые, насколько известно авторам, экспериментально наблюдалось насыщение выходной мощности волоконных Yb–Er-лазеров. Этот эффект связан с ограничением скорости передачи энергии с уровня ${}^{4}I_{11/2}$ на уровень ${}^{4}I_{13/2}$ иона эрбия и может быть основной причиной ограничения выходной мощности для ряда лазерных систем, в которых используются ко-

Нами выведена формула (9) для оценки мощности насыщения, которая может быть использована при разработке волоконных Yb–Er-лазеров, а также проанализированы основные факторы, влияющие на мощность насыщения. С помощью формулы (9) на основе экспериментальных данных было оценено время жизни (~0.6 мкс) безызлучательного уровня ${}^{4I}_{11/2}$ иона Ег в фосфоросиликатном активном волокне. Для оценки корректности предположений, использованных при выводе формулы (9), было проведено сравнение величины мощности насыщения, полученной с её использованием, и величины, полученной в результате моделирования скоростных уравнений.

Предложен также новый способ измерения параметров активной среды (времени жизни уровней и концентрации активных ионов) на основе измерений мощности насыщения.

Авторы выражают благодарность руководству НТО «ИРЭ–Полюс» за поддержку данных исследований.

- Briese C. et al. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 40, 119 (2013).
- Сурин А.А., Ларин С.В., Борисенко К.Ю., Прусаков К.Ю., Стирманов Ю.С. Квантовая электроника, 46 (12), 1097 (2016) [Quantum Electron., 46 (12), 1097 (2016)].
- Puju P.V., Zelenova M.V., Tyrtyshnyy V.A. Proc. 17th Internat. Conf. «Laser Optics» (WeS1A-21, 2016).
- 4. Singh S.P., Singh N. Progr. Electromagnet. Res., 73, 249 (2007).
- Сурин А.А., Молков А.А., Борисенко Т.Е., Прусаков К.Ю. Квантовая электроника, 48, 1095 (2018) [Quantum Electron., 48, 1095 (2018)].
- 6. Quimby R.S. Appl. Opt., 30 (18), 2546 (1991).
- 7. Yahel E., Hardy A. J. Lightwave Technol., 21 (9), 2044 (2003).
- 8. Melkumov M.A. et al. Inorgan. Mater., 46 (3), 299 (2010).